/usr/include/trilinos/Zoltan2_CoordinatePartitioningGraph.hpp is in libtrilinos-zoltan2-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 | // @HEADER
//
// ***********************************************************************
//
// Zoltan2: A package of combinatorial algorithms for scientific computing
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine (kddevin@sandia.gov)
// Erik Boman (egboman@sandia.gov)
// Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef _ZOLTAN2_COORDCOMMGRAPH_HPP_
#define _ZOLTAN2_COORDCOMMGRAPH_HPP_
#include <cmath>
#include <limits>
#include <iostream>
#include <vector>
#include <set>
#include <fstream>
#include "Teuchos_CommHelpers.hpp"
#include "Teuchos_Comm.hpp"
#include "Teuchos_ArrayViewDecl.hpp"
#include "Teuchos_RCPDecl.hpp"
namespace Zoltan2{
#define Z2_ABS(x) ((x) >= 0 ? (x) : -(x))
/*! \brief coordinateModelPartBox Class,
* represents the boundaries of the box which is a result of a geometric partitioning algorithm.
*/
template <typename scalar_t,typename part_t>
class coordinateModelPartBox{
part_t pID; //part Id
int dim; //dimension of the box
scalar_t *lmins; //minimum boundaries of the box along all dimensions.
scalar_t *lmaxs; //maximum boundaries of the box along all dimensions.
scalar_t maxScalar;
scalar_t _EPSILON;
//to calculate the neighbors of the box and avoid the p^2 comparisons,
//we use hashing. A box can be put into multiple hash buckets.
//the following 2 variable holds the minimum and maximum of the
//hash values along all dimensions.
part_t *minHashIndices;
part_t *maxHashIndices;
//result hash bucket indices.
std::vector <part_t> *gridIndices;
//neighbors of the box.
std::set <part_t> neighbors;
public:
/*! \brief Constructor
*/
coordinateModelPartBox(part_t pid, int dim_):
pID(pid),
dim(dim_),
lmins(0), lmaxs(0),
maxScalar (std::numeric_limits<scalar_t>::max()),
_EPSILON(std::numeric_limits<scalar_t>::epsilon()),
minHashIndices(0),
maxHashIndices(0),
gridIndices(0), neighbors()
{
lmins = new scalar_t [dim];
lmaxs = new scalar_t [dim];
minHashIndices = new part_t [dim];
maxHashIndices = new part_t [dim];
gridIndices = new std::vector <part_t> ();
for (int i = 0; i < dim; ++i){
lmins[i] = -this->maxScalar;
lmaxs[i] = this->maxScalar;
}
}
/*! \brief Constructor
* deep copy of the maximum and minimum boundaries.
*/
coordinateModelPartBox(part_t pid, int dim_, scalar_t *lmi, scalar_t *lma):
pID(pid),
dim(dim_),
lmins(0), lmaxs(0),
maxScalar (std::numeric_limits<scalar_t>::max()),
_EPSILON(std::numeric_limits<scalar_t>::epsilon()),
minHashIndices(0),
maxHashIndices(0),
gridIndices(0), neighbors()
{
lmins = new scalar_t [dim];
lmaxs = new scalar_t [dim];
minHashIndices = new part_t [dim];
maxHashIndices = new part_t [dim];
gridIndices = new std::vector <part_t> ();
for (int i = 0; i < dim; ++i){
lmins[i] = lmi[i];
lmaxs[i] = lma[i];
}
}
/*! \brief Copy Constructor
* deep copy of the maximum and minimum boundaries.
*/
coordinateModelPartBox(const coordinateModelPartBox <scalar_t, part_t> &other):
pID(other.getpId()),
dim(other.getDim()),
lmins(0), lmaxs(0),
maxScalar (std::numeric_limits<scalar_t>::max()),
_EPSILON(std::numeric_limits<scalar_t>::epsilon()),
minHashIndices(0),
maxHashIndices(0),
gridIndices(0), neighbors()
{
lmins = new scalar_t [dim];
lmaxs = new scalar_t [dim];
minHashIndices = new part_t [dim];
maxHashIndices = new part_t [dim];
gridIndices = new std::vector <part_t> ();
scalar_t *othermins = other.getlmins();
scalar_t *othermaxs = other.getlmaxs();
for (int i = 0; i < dim; ++i){
lmins[i] = othermins[i];
lmaxs[i] = othermaxs[i];
}
}
/*! \brief Destructor
*/
~coordinateModelPartBox(){
delete []this->lmins;
delete [] this->lmaxs;
delete []this->minHashIndices;
delete [] this->maxHashIndices;
delete gridIndices;
}
/*! \brief function to set the part id
*/
void setpId(part_t pid){
this->pID = pid;
}
/*! \brief function to get the part id
*/
part_t getpId() const{
return this->pID;
}
/*! \brief function to set the dimension
*/
int getDim()const{
return this->dim;
}
/*! \brief function to get minimum values along all dimensions
*/
scalar_t * getlmins()const{
return this->lmins;
}
/*! \brief function to get maximum values along all dimensions
*/
scalar_t * getlmaxs()const{
return this->lmaxs;
}
/*! \brief compute the centroid of the box
*/
void computeCentroid(scalar_t *centroid)const {
for (int i = 0; i < this->dim; i++)
centroid[i] = 0.5 * (this->lmaxs[i] + this->lmins[i]);
}
/*! \brief function to get the indices of the buckets
* that the part is inserted to
*/
std::vector <part_t> * getGridIndices () {
return this->gridIndices;
}
/*! \brief function to get the indices of the neighboring parts.
*/
std::set<part_t> *getNeighbors() {
return &(this->neighbors);
}
/*! \brief function to test whether a point is in the box
*/
bool pointInBox(int pointdim, scalar_t *point) const {
if (pointdim != this->dim)
throw std::logic_error("dim of point must match dim of box");
for (int i = 0; i < pointdim; i++) {
if (point[i] < this->lmins[i]) return false;
if (point[i] > this->lmaxs[i]) return false;
}
return true;
}
/*! \brief function to test whether this box overlaps a given box
*/
bool boxesOverlap(int cdim, scalar_t *lower, scalar_t *upper) const {
if (cdim != this->dim)
throw std::logic_error("dim of given box must match dim of box");
// Check for at least partial overlap
bool found = true;
for (int i = 0; i < cdim; i++) {
if (!((lower[i] >= this->lmins[i] && lower[i] <= this->lmaxs[i])
// lower i-coordinate in the box
|| (upper[i] >= this->lmins[i] && upper[i] <= this->lmaxs[i])
// upper i-coordinate in the box
|| (lower[i] < this->lmins[i] && upper[i] > this->lmaxs[i]))) {
// i-coordinates straddle the box
found = false;
break;
}
}
return found;
}
/*! \brief function to check if two boxes are neighbors.
*/
bool isNeighborWith(
const coordinateModelPartBox <scalar_t, part_t> &other) const{
scalar_t *omins = other.getlmins();
scalar_t *omaxs = other.getlmaxs();
int equality = 0;
for (int i = 0; i < dim; ++i){
if (omins[i] - this->lmaxs[i] > _EPSILON ||
this->lmins[i] - omaxs[i] > _EPSILON ) {
return false;
}
else if (Z2_ABS(omins[i] - this->lmaxs[i]) < _EPSILON ||
Z2_ABS(this->lmins[i] - omaxs[i]) < _EPSILON ){
if (++equality > 1){
return false;
}
}
}
if (equality == 1) {
return true;
}
else {
std::cout << "something is wrong: equality:"
<< equality << std::endl;
return false;
}
}
/*! \brief function to add a new neighbor to the neighbor list.
*/
void addNeighbor(part_t nIndex){
neighbors.insert(nIndex);
}
/*! \brief function to check if a given part is already in the neighbor list.
*/
bool isAlreadyNeighbor(part_t nIndex){
if (neighbors.end() != neighbors.find(nIndex)){
return true;
}
return false;
}
/*! \brief function to obtain the min and max hash values along all dimensions.
*/
void setMinMaxHashIndices (
scalar_t *minMaxBoundaries,
scalar_t *sliceSizes,
part_t numSlicePerDim
){
for (int j = 0; j < dim; ++j){
scalar_t distance = (lmins[j] - minMaxBoundaries[j]);
part_t minInd = 0;
if (distance > _EPSILON && sliceSizes[j] > _EPSILON){
minInd = static_cast<part_t>(floor((lmins[j] - minMaxBoundaries[j])/ sliceSizes[j]));
}
if(minInd >= numSlicePerDim){
minInd = numSlicePerDim - 1;
}
part_t maxInd = 0;
distance = (lmaxs[j] - minMaxBoundaries[j]);
if (distance > _EPSILON && sliceSizes[j] > _EPSILON){
maxInd = static_cast<part_t>(ceil((lmaxs[j] - minMaxBoundaries[j])/ sliceSizes[j]));
}
if(maxInd >= numSlicePerDim){
maxInd = numSlicePerDim - 1;
}
//cout << "j:" << j << " lmins:" << lmins[j] << " lmaxs:" << lmaxs[j] << endl;
//cout << "j:" << j << " min:" << minInd << " max:" << maxInd << endl;
minHashIndices[j] = minInd;
maxHashIndices[j] = maxInd;
}
std::vector <part_t> *in = new std::vector <part_t> ();
in->push_back(0);
std::vector <part_t> *out = new std::vector <part_t> ();
for (int j = 0; j < dim; ++j){
part_t minInd = minHashIndices[j];
part_t maxInd = maxHashIndices[j];
part_t pScale = part_t(pow (float(numSlicePerDim), int(dim - j -1)));
part_t inSize = in->size();
for (part_t k = minInd; k <= maxInd; ++k){
for (part_t i = 0; i < inSize; ++i){
out->push_back((*in)[i] + k * pScale);
}
}
in->clear();
std::vector <part_t> *tmp = in;
in= out;
out= tmp;
}
std::vector <part_t> *tmp = in;
in = gridIndices;
gridIndices = tmp;
delete in;
delete out;
}
/*! \brief function to print the boundaries.
*/
void print(){
for(int i = 0; i < this->dim; ++i){
std::cout << "\tbox:" << this->pID << " dim:" << i << " min:" << lmins[i] << " max:" << lmaxs[i] << std::endl;
}
}
/*! \brief function to update the boundary of the box.
*/
void updateMinMax (scalar_t newBoundary, int isMax, int dimInd){
if (isMax){
lmaxs[dimInd] = newBoundary;
}
else {
lmins[dimInd] = newBoundary;
}
}
/*! \brief function for visualization.
*/
void writeGnuPlot(std::ofstream &file,std::ofstream &mm){
int numCorners = (int(1)<<dim);
scalar_t *corner1 = new scalar_t [dim];
scalar_t *corner2 = new scalar_t [dim];
for (int i = 0; i < dim; ++i){
/*
if (-maxScalar == lmins[i]){
if (lmaxs[i] > 0){
lmins[i] = lmaxs[i] / 2;
}
else{
lmins[i] = lmaxs[i] * 2;
}
}
*/
//std::cout << lmins[i] << " ";
mm << lmins[i] << " ";
}
//std::cout << std::endl;
mm << std::endl;
for (int i = 0; i < dim; ++i){
/*
if (maxScalar == lmaxs[i]){
if (lmins[i] < 0){
lmaxs[i] = lmins[i] / 2;
}
else{
lmaxs[i] = lmins[i] * 2;
}
}
*/
//std::cout << lmaxs[i] << " ";
mm << lmaxs[i] << " ";
}
//std::cout << std::endl;
mm << std::endl;
for (int j = 0; j < numCorners; ++j){
std::vector <int> neighborCorners;
for (int i = 0; i < dim; ++i){
if(int(j & (int(1)<<i)) == 0){
corner1[i] = lmins[i];
}
else {
corner1[i] = lmaxs[i];
}
if (j % (int(1)<<(i + 1)) >= (int(1)<<i)){
int c1 = j - (int(1)<<i);
if (c1 > 0) {
neighborCorners.push_back(c1);
}
}
else {
int c1 = j + (int(1)<<i);
if (c1 < (int(1) << dim)) {
neighborCorners.push_back(c1);
}
}
}
//std::cout << "me:" << j << " nc:" << int (neighborCorners.size()) << std::endl;
for (int m = 0; m < int (neighborCorners.size()); ++m){
int n = neighborCorners[m];
//std::cout << "me:" << j << " n:" << n << std::endl;
for (int i = 0; i < dim; ++i){
if(int(n & (int(1)<<i)) == 0){
corner2[i] = lmins[i];
}
else {
corner2[i] = lmaxs[i];
}
}
std::string arrowline = "set arrow from ";
for (int i = 0; i < dim - 1; ++i){
arrowline +=
Teuchos::toString<scalar_t>(corner1[i]) + ",";
}
arrowline +=
Teuchos::toString<scalar_t>(corner1[dim -1]) + " to ";
for (int i = 0; i < dim - 1; ++i){
arrowline +=
Teuchos::toString<scalar_t>(corner2[i]) + ",";
}
arrowline +=
Teuchos::toString<scalar_t>(corner2[dim -1]) +
" nohead\n";
file << arrowline;
}
}
delete []corner1;
delete []corner2;
}
};
/*! \brief GridHash Class,
* Hashing Class for part boxes
*/
template <typename scalar_t, typename part_t>
class GridHash{
private:
const RCP < std::vector <Zoltan2::coordinateModelPartBox <scalar_t, part_t> > > pBoxes;
//minimum of the maximum box boundaries
scalar_t *minMaxBoundaries;
//maximum of the minimum box boundaries
scalar_t *maxMinBoundaries;
//the size of each slice along dimensions
scalar_t *sliceSizes;
part_t nTasks;
int dim;
//the number of slices per dimension
part_t numSlicePerDim;
//the number of grids - buckets
part_t numGrids;
//hash vector
std::vector <std::vector <part_t> > grids;
//result communication graph.
ArrayRCP <part_t> comXAdj;
ArrayRCP <part_t> comAdj;
public:
/*! \brief GridHash Class,
* Constructor
*/
GridHash(const RCP < std::vector <Zoltan2::coordinateModelPartBox <scalar_t, part_t> > > &pBoxes_,
part_t ntasks_, int dim_):
pBoxes(pBoxes_),
minMaxBoundaries(0),
maxMinBoundaries(0), sliceSizes(0),
nTasks(ntasks_),
dim(dim_),
numSlicePerDim(part_t(pow(double(ntasks_), 1.0 / dim))),
numGrids(0),
grids(),
comXAdj(), comAdj()
{
minMaxBoundaries = new scalar_t[dim];
maxMinBoundaries = new scalar_t[dim];
sliceSizes = new scalar_t[dim];
//calculate the number of slices in each dimension.
numSlicePerDim /= 2;
if (numSlicePerDim == 0) numSlicePerDim = 1;
numGrids = part_t(pow(float(numSlicePerDim), int(dim)));
//allocate memory for buckets.
std::vector <std::vector <part_t> > grids_ (numGrids);
this->grids = grids_;
//get the boundaries of buckets.
this->getMinMaxBoundaries();
//insert boxes to buckets
this->insertToHash();
//calculate the neighbors for each bucket.
part_t nCount = this->calculateNeighbors();
//allocate memory for communication graph
ArrayRCP <part_t> tmpComXadj(ntasks_+1);
ArrayRCP <part_t> tmpComAdj(nCount);
comXAdj = tmpComXadj;
comAdj = tmpComAdj;
//fill communication graph
this->fillAdjArrays();
}
/*! \brief GridHash Class,
* Destructor
*/
~GridHash(){
delete []minMaxBoundaries;
delete []maxMinBoundaries;
delete []sliceSizes;
}
/*! \brief GridHash Class,
* Function to fill adj arrays.
*/
void fillAdjArrays(){
part_t adjIndex = 0;
comXAdj[0] = 0;
for(part_t i = 0; i < this->nTasks; ++i){
std::set<part_t> *neigbors = (*pBoxes)[i].getNeighbors();
part_t s = neigbors->size();
comXAdj[i+1] = comXAdj[i] + s;
typedef typename std::set<part_t> mySet;
typedef typename mySet::iterator myIT;
myIT it;
for (it=neigbors->begin(); it!=neigbors->end(); ++it)
comAdj[adjIndex++] = *it;
//TODO not needed anymore.
neigbors->clear();
}
}
/*! \brief GridHash Class,
* returns the adj arrays.
*/
void getAdjArrays(
ArrayRCP <part_t> &comXAdj_,
ArrayRCP <part_t> &comAdj_){
comXAdj_ = this->comXAdj;
comAdj_ = this->comAdj;
}
/*! \brief GridHash Class,
* For each box compares the adjacency against the boxes that are in the same buckets.
*/
part_t calculateNeighbors(){
part_t nCount = 0;
for(part_t i = 0; i < this->nTasks; ++i){
std::vector <part_t> *gridIndices =(*pBoxes)[i].getGridIndices();
part_t gridCount = gridIndices->size();
for (part_t j = 0; j < gridCount; ++j){
part_t grid = (*gridIndices)[j];
part_t boxCount = grids[grid].size();
for (part_t k = 0; k < boxCount; ++k){
part_t boxIndex = grids[grid][k];
if (boxIndex > i){
if((!(*pBoxes)[i].isAlreadyNeighbor(boxIndex))&& (*pBoxes)[i].isNeighborWith((*pBoxes)[boxIndex])){
//cout << "i:" << i << " n:" << boxIndex << " are neighbors."<< endl;
(*pBoxes)[i].addNeighbor(boxIndex);
(*pBoxes)[boxIndex].addNeighbor(i);
nCount += 2;
}
}
}
}
}
return nCount;
}
/*! \brief GridHash Class,
* For each box calculates the buckets which it should be inserted to.
*/
void insertToHash(){
//cout << "ntasks:" << this->nTasks << endl;
for(part_t i = 0; i < this->nTasks; ++i){
(*pBoxes)[i].setMinMaxHashIndices(minMaxBoundaries, sliceSizes, numSlicePerDim);
std::vector <part_t> *gridIndices =(*pBoxes)[i].getGridIndices();
part_t gridCount = gridIndices->size();
//cout << "i:" << i << " gridsize:" << gridCount << endl;
for (part_t j = 0; j < gridCount; ++j){
part_t grid = (*gridIndices)[j];
//cout << "i:" << i << " is being inserted to:" << grid << endl;
(grids)[grid].push_back(i);
}
}
/*
for(part_t i = 0; i < grids.size(); ++i){
cout << "grid:" << i << " gridsuze:" << (grids)[i].size() << " elements:";
for(part_t j = 0; j < (grids)[i].size(); ++j){
cout <<(grids)[i][j] << " ";
}
cout << endl;
}
*/
}
/*! \brief GridHash Class,
* calculates the minimum of maximum box boundaries, and maxium of minimum box boundaries.
*/
void getMinMaxBoundaries(){
scalar_t *mins = (*pBoxes)[0].getlmins();
scalar_t *maxs = (*pBoxes)[0].getlmaxs();
for (int j = 0; j < dim; ++j){
minMaxBoundaries[j] = maxs[j];
maxMinBoundaries[j] = mins[j];
}
for (part_t i = 1; i < nTasks; ++i){
mins = (*pBoxes)[i].getlmins();
maxs = (*pBoxes)[i].getlmaxs();
for (int j = 0; j < dim; ++j){
if (minMaxBoundaries[j] > maxs[j]){
minMaxBoundaries[j] = maxs[j];
}
if (maxMinBoundaries[j] < mins[j]){
maxMinBoundaries[j] = mins[j];
}
}
}
for (int j = 0; j < dim; ++j){
sliceSizes[j] = (maxMinBoundaries[j] - minMaxBoundaries[j]) / numSlicePerDim;
if (sliceSizes[j] < 0) sliceSizes[j] = 0;
/*
cout << "dim:" << j <<
" minMax:" << minMaxBoundaries[j] <<
" maxMin:" << maxMinBoundaries[j] <<
" sliceSizes:" << sliceSizes[j] << endl;
*/
}
}
};
/*
template <typename scalar_t,typename part_t>
class coordinatePartBox{
public:
part_t pID;
int dim;
int numCorners;
scalar_t **corners;
scalar_t *lmins, *gmins;
scalar_t *lmaxs, *gmaxs;
scalar_t maxScalar;
std::vector <part_t> hash_indices;
coordinatePartBox(part_t pid, int dim_, scalar_t *lMins, scalar_t *gMins,
scalar_t *lMaxs, scalar_t *gMaxs):
pID(pid),
dim(dim_),
numCorners(int(pow(2, dim_))),
corners(0),
lmins(lMins), gmins(gMins), lmaxs(lMaxs), gmaxs(gMaxs),
maxScalar (std::numeric_limits<scalar_t>::max()){
this->corners = new scalar_t *[dim];
for (int i = 0; i < dim; ++i){
this->corners[i] = new scalar_t[this->numCorners];
lmins[i] = this->maxScalar;
lmaxs[i] = -this->maxScalar;
}
for (int j = 0; j < this->numCorners; ++j){
for (int i = 0; i < dim; ++i){
std::cout << "j:" << j << " i:" << i << " 2^i:" << pow(2,i) << " and:" << int(j & int(pow(2,i))) << std::endl;
if(int(j & int(pow(2,i))) == 0){
corners[i][j] = gmins[i];
}
else {
corners[i][j] = gmaxs[i];
}
}
}
}
};
template <typename Adapter, typename part_t>
class CoordinateCommGraph{
private:
typedef typename Adapter::lno_t lno_t;
typedef typename Adapter::gno_t gno_t;
typedef typename Adapter::scalar_t scalar_t;
const Environment *env;
const Teuchos::Comm<int> *comm;
const Zoltan2::CoordinateModel<typename Adapter::base_adapter_t> *coords;
const Zoltan2::PartitioningSolution<Adapter> *soln;
std::vector<coordinatePartBox, part_t> cpb;
int coordDim;
part_t numParts;
public:
CoordinateCommGraph(
const Environment *env_,
const Teuchos::Comm<int> *comm_,
const Zoltan2::CoordinateModel<typename Adapter::base_adapter_t> *coords_,
const Zoltan2::PartitioningSolution<Adapter> *soln_
):
env(env_),
comm(comm_),
coords(coords_),
soln(soln_),
coordDim (coords_->getCoordinateDim()),
numParts (this->soln->getActualGlobalNumberOfParts())
{
this->create_part_boxes();
this->hash_part_boxes();
this->find_neighbors();
}
void create_part_boxes(){
size_t allocSize = numParts * coordDim;
scalar_t *lmins = new scalar_t [allocSize];
scalar_t *gmins = new scalar_t [allocSize];
scalar_t *lmaxs = new scalar_t [allocSize];
scalar_t *gmaxs = new scalar_t [allocSize];
for(part_t i = 0; i < numParts; ++i){
coordinatePartBox tmp(
i,
this->coordDim,
lmins + i * coordDim,
gmins + i * coordDim,
lmaxs + i * coordDim,
gmaxs + i * coordDim
);
cpb.push_back(tmp);
}
typedef StridedData<lno_t, scalar_t> input_t;
Teuchos::ArrayView<const gno_t> gnos;
Teuchos::ArrayView<input_t> xyz;
Teuchos::ArrayView<input_t> wgts;
coords->getCoordinates(gnos, xyz, wgts);
//local and global num coordinates.
lno_t numLocalCoords = coords->getLocalNumCoordinates();
scalar_t **pqJagged_coordinates = new scalar_t *[coordDim];
for (int dim=0; dim < coordDim; dim++){
Teuchos::ArrayRCP<const scalar_t> ar;
xyz[dim].getInputArray(ar);
//pqJagged coordinate values assignment
pqJagged_coordinates[dim] = (scalar_t *)ar.getRawPtr();
}
part_t *sol_part = soln->getPartList();
for(lno_t i = 0; i < numLocalCoords; ++i){
part_t p = sol_part[i];
cpb[p].updateMinMax(pqJagged_coordinates, i);
}
delete []pqJagged_coordinates;
reduceAll<int, gno_t>(*comm, Teuchos::REDUCE_MIN,
dim * numParts, lmins, gmins
);
reduceAll<int, gno_t>(*comm, Teuchos::REDUCE_MAX,
dim * numParts, lmaxs, gmaxs
);
}
void hash_part_boxes (){
part_t pSingleDim = pow(double(numParts), double(1.0 / coordDim));
if (pSingleDim == 0) pSingleDim = 1;
std::vector < std::vector <part_t> > hash
(
part_t ( pow ( part_t (pSingleDim),
part_t(coordDim)
)
)
);
//calculate the corners of the dataset.
scalar_t *allMins = new scalar_t [coordDim];
scalar_t *allMaxs = new scalar_t [coordDim];
part_t *hash_scales= new scalar_t [coordDim];
for (int j = 0; j < coordDim; ++j){
allMins[j] = cpb[0].gmins[j];
allMaxs[j] = cpb[0].gmaxs[j];
hash_scales[j] = part_t ( pow ( part_t (pSingleDim), part_t(coordDim - j - 1)));
}
for (part_t i = 1; i < numParts; ++i){
for (int j = 0; j < coordDim; ++j){
scalar_t minC = cpb[i].gmins[i];
scalar_t maxC = cpb[i].gmaxs[i];
if (minC < allMins[j]) allMins[j] = minC;
if (maxC > allMaxs[j]) allMaxs[j] = maxC;
}
}
//get size of each hash for each dimension
scalar_t *hash_slices_size = new scalar_t [coordDim];
for (int j = 0; j < coordDim; ++j){
hash_slices_size[j] = (allMaxs[j] - allMins[j]) / pSingleDim;
}
delete []allMaxs;
delete []allMins;
std::vector <part_t> *hashIndices = new std::vector <part_t>();
std::vector <part_t> *resultHashIndices = new std::vector <part_t>();
std::vector <part_t> *tmp_swap;
for (part_t i = 0; i < numParts; ++i){
hashIndices->clear();
resultHashIndices->clear();
hashIndices->push_back(0);
for (int j = 0; j < coordDim; ++j){
scalar_t minC = cpb[i].gmins[i];
scalar_t maxC = cpb[i].gmaxs[i];
part_t minHashIndex = part_t ((minC - allMins[j]) / hash_slices_size[j]);
part_t maxHashIndex = part_t ((maxC - allMins[j]) / hash_slices_size[j]);
part_t hashIndexSize = hashIndices->size();
for (part_t k = minHashIndex; k <= maxHashIndex; ++k ){
for (part_t i = 0; i < hashIndexSize; ++i){
resultHashIndices->push_back(hashIndices[i] + k * hash_scales[j]);
}
}
tmp_swap = hashIndices;
hashIndices = resultHashIndices;
resultHashIndices = tmp_swap;
}
part_t hashIndexSize = hashIndices->size();
for (part_t j = 0; j < hashIndexSize; ++j){
hash[(*hashIndices)[j]].push_back(i);
}
cpb[i].hash_indices = (*hashIndices);
}
delete hashIndices;
delete resultHashIndices;
}
void find_neighbors(){
}
};
*/
} // namespace Zoltan2
#endif
|