This file is indexed.

/usr/include/trilinos/Xpetra_TpetraOperator.hpp is in libtrilinos-xpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
// @HEADER
//
// ***********************************************************************
//
//             Xpetra: A linear algebra interface package
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
//                    Jonathan Hu       (jhu@sandia.gov)
//                    Andrey Prokopenko (aprokop@sandia.gov)
//                    Ray Tuminaro      (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef XPETRA_TPETRAOPERATOR_HPP
#define XPETRA_TPETRAOPERATOR_HPP

#include "Xpetra_TpetraConfigDefs.hpp"

#include <Tpetra_Operator.hpp>

#include "Xpetra_Map.hpp"
#include "Xpetra_TpetraMap.hpp"
#include "Xpetra_MultiVector.hpp"
#include "Xpetra_TpetraMultiVector.hpp"
#include "Xpetra_Operator.hpp"

#include "Xpetra_Utils.hpp"

namespace Xpetra {

  template <class Scalar        = Operator<>::scalar_type,
            class LocalOrdinal  = typename Operator<Scalar>::local_ordinal_type,
            class GlobalOrdinal = typename Operator<Scalar, LocalOrdinal>::global_ordinal_type,
            class Node          = typename Operator<Scalar, LocalOrdinal, GlobalOrdinal>::node_type>
  class TpetraOperator : public Operator< Scalar, LocalOrdinal, GlobalOrdinal, Node > {
  public:
    //@{

    //! The Map associated with the domain of this operator, which must be compatible with X.getMap().
    virtual Teuchos::RCP<const Map<LocalOrdinal,GlobalOrdinal,Node> > getDomainMap() const {
      XPETRA_MONITOR("TpetraOperator::getDomainMap()");
      return toXpetra(op_->getDomainMap());
    }

    //! The Map associated with the range of this operator, which must be compatible with Y.getMap().
    virtual Teuchos::RCP<const Map<LocalOrdinal,GlobalOrdinal,Node> > getRangeMap() const {
      XPETRA_MONITOR("TpetraOperator::getRangeMap()");
      return toXpetra(op_->getRangeMap());
    }

    //! \brief Computes the operator-multivector application.
    /*! Loosely, performs \f$Y = \alpha \cdot A^{\textrm{mode}} \cdot X + \beta \cdot Y\f$. However, the details of operation
        vary according to the values of \c alpha and \c beta. Specifically
        - if <tt>beta == 0</tt>, apply() <b>must</b> overwrite \c Y, so that any values in \c Y (including NaNs) are ignored.
        - if <tt>alpha == 0</tt>, apply() <b>may</b> short-circuit the operator, so that any values in \c X (including NaNs) are ignored.
     */
    virtual void
    apply (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &X,
           MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &Y,
           Teuchos::ETransp mode = Teuchos::NO_TRANS,
           Scalar alpha = Teuchos::ScalarTraits<Scalar>::one(),
           Scalar beta = Teuchos::ScalarTraits<Scalar>::zero()) const {
      op_->apply(toTpetra(X), toTpetra(Y), mode, alpha, beta);
    }

    /// \brief Whether this operator supports applying the transpose or conjugate transpose.
    virtual bool hasTransposeApply() const {
      return op_->hasTransposeApply();
    }

    //@}

    //! @name Overridden from Teuchos::Describable
    //@{

    //! A simple one-line description of this object.
    std::string description() const { XPETRA_MONITOR("TpetraOperator::description"); return op_->description(); }

    //! Print the object with the given verbosity level to a FancyOStream.
    void describe(Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel=Teuchos::Describable::verbLevel_default) const {
      XPETRA_MONITOR("TpetraOperator::describe"); op_->describe(out, verbLevel);
    }

    //@}

    //! @name Xpetra specific
    //@{

    //! TpetraOperator constructor to wrap a Tpetra::Operator object
    TpetraOperator(const Teuchos::RCP<Tpetra::Operator< Scalar, LocalOrdinal, GlobalOrdinal, Node> > &op) : op_(op) { } //TODO removed const

    //@}

  private:
    //! The Tpetra::Operator which this class wraps.
    RCP< Tpetra::Operator< Scalar, LocalOrdinal, GlobalOrdinal, Node> > op_;

  }; // TpetraOperator class



#if ((!defined(HAVE_TPETRA_INST_SERIAL)) && (!defined(HAVE_TPETRA_INST_INT_INT)))
  // specialization for Tpetra Map on EpetraNode and GO=int
  template <>
  class TpetraOperator<double, int, int, EpetraNode>
      : public Operator< double, int, int, EpetraNode > {
  public:
    typedef double Scalar;
    typedef int GlobalOrdinal;
    typedef int LocalOrdinal;
    typedef EpetraNode Node;

    //@{

    //! The Map associated with the domain of this operator, which must be compatible with X.getMap().
    virtual Teuchos::RCP<const Map<LocalOrdinal,GlobalOrdinal,Node> > getDomainMap() const {
      return Teuchos::null;
    }

    //! The Map associated with the range of this operator, which must be compatible with Y.getMap().
    virtual Teuchos::RCP<const Map<LocalOrdinal,GlobalOrdinal,Node> > getRangeMap() const {
      return Teuchos::null;
    }

    //! \brief Computes the operator-multivector application.
    /*! Loosely, performs \f$Y = \alpha \cdot A^{\textrm{mode}} \cdot X + \beta \cdot Y\f$. However, the details of operation
        vary according to the values of \c alpha and \c beta. Specifically
        - if <tt>beta == 0</tt>, apply() <b>must</b> overwrite \c Y, so that any values in \c Y (including NaNs) are ignored.
        - if <tt>alpha == 0</tt>, apply() <b>may</b> short-circuit the operator, so that any values in \c X (including NaNs) are ignored.
     */
    virtual void
    apply (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &X,
           MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &Y,
           Teuchos::ETransp mode = Teuchos::NO_TRANS,
           Scalar alpha = Teuchos::ScalarTraits<Scalar>::one(),
           Scalar beta = Teuchos::ScalarTraits<Scalar>::zero()) const {  }

    /// \brief Whether this operator supports applying the transpose or conjugate transpose.
    virtual bool hasTransposeApply() const {  return false;  }

    //@}

    //! @name Overridden from Teuchos::Describable
    //@{

    //! A simple one-line description of this object.
    std::string description() const { return std::string(""); }

    //! Print the object with the given verbosity level to a FancyOStream.
    void describe(Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel=Teuchos::Describable::verbLevel_default) const {   }

    //@}

    //! @name Xpetra specific
    //@{

    //! TpetraOperator constructor to wrap a Tpetra::Operator object
    TpetraOperator(const Teuchos::RCP<Tpetra::Operator< Scalar, LocalOrdinal, GlobalOrdinal, Node> > &op) { }

    //@}

  }; // TpetraOperator class
#endif


#if ((!defined(HAVE_TPETRA_INST_SERIAL)) && (!defined(HAVE_TPETRA_INST_INT_LONG_LONG)))
  // specialization for Tpetra Map on EpetraNode and GO=int
  template <>
  class TpetraOperator<double, int, long long, EpetraNode>
      : public Operator< double, int, long long, EpetraNode > {
  public:
    typedef double Scalar;
    typedef long long GlobalOrdinal;
    typedef int LocalOrdinal;
    typedef EpetraNode Node;

    //@{

    //! The Map associated with the domain of this operator, which must be compatible with X.getMap().
    virtual Teuchos::RCP<const Map<LocalOrdinal,GlobalOrdinal,Node> > getDomainMap() const {
      return Teuchos::null;
    }

    //! The Map associated with the range of this operator, which must be compatible with Y.getMap().
    virtual Teuchos::RCP<const Map<LocalOrdinal,GlobalOrdinal,Node> > getRangeMap() const {
      return Teuchos::null;
    }

    //! \brief Computes the operator-multivector application.
    /*! Loosely, performs \f$Y = \alpha \cdot A^{\textrm{mode}} \cdot X + \beta \cdot Y\f$. However, the details of operation
        vary according to the values of \c alpha and \c beta. Specifically
        - if <tt>beta == 0</tt>, apply() <b>must</b> overwrite \c Y, so that any values in \c Y (including NaNs) are ignored.
        - if <tt>alpha == 0</tt>, apply() <b>may</b> short-circuit the operator, so that any values in \c X (including NaNs) are ignored.
     */
    virtual void
    apply (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &X,
           MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &Y,
           Teuchos::ETransp mode = Teuchos::NO_TRANS,
           Scalar alpha = Teuchos::ScalarTraits<Scalar>::one(),
           Scalar beta = Teuchos::ScalarTraits<Scalar>::zero()) const {  }

    /// \brief Whether this operator supports applying the transpose or conjugate transpose.
    virtual bool hasTransposeApply() const {  return false;  }

    //@}

    //! @name Overridden from Teuchos::Describable
    //@{

    //! A simple one-line description of this object.
    std::string description() const { return std::string(""); }

    //! Print the object with the given verbosity level to a FancyOStream.
    void describe(Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel=Teuchos::Describable::verbLevel_default) const {   }

    //@}

    //! @name Xpetra specific
    //@{

    //! TpetraOperator constructor to wrap a Tpetra::Operator object
    TpetraOperator(const Teuchos::RCP<Tpetra::Operator< Scalar, LocalOrdinal, GlobalOrdinal, Node> > &op) { }

    //@}

  }; // TpetraOperator class
#endif

} // Xpetra namespace

#define XPETRA_TPETRAOPERATOR_SHORT
#endif // XPETRA_TPETRAOPERATOR_HPP