This file is indexed.

/usr/include/trilinos/trilinos_klu_version.h is in libtrilinos-trilinosss-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
#ifndef TRILINOS_KLU_VERSION_H
#define TRILINOS_KLU_VERSION_H

#ifdef DLONG
#define Int UF_long
#define Int_id UF_long_id
#define Int_MAX UF_long_max
#else
#define Int int
#define Int_id "%d"
#define Int_MAX INT_MAX
#endif

#define NPRINT  

#define BYTES(type,n) (sizeof (type) * (n))
#define CEILING(b,u)  (((b)+(u)-1) / (u))
#define UNITS(type,n) (CEILING (BYTES (type,n), sizeof (Unit)))
#define DUNITS(type,n) (ceil (BYTES (type, (double) n) / sizeof (Unit)))

#define GET_I_POINTER(LU, Xip, Xi, k) \
{ \
    Xi = (Int *) (LU + Xip [k]) ; \
}

#define GET_X_POINTER(LU, Xip, Xlen, Xx, k) \
{ \
    Xx = (Entry *) (LU + Xip [k] + UNITS (Int, Xlen [k])) ; \
}

#define GET_POINTER(LU, Xip, Xlen, Xi, Xx, k, xlen) \
{ \
    Unit *xp = LU + Xip [k] ; \
    xlen = Xlen [k] ; \
    Xi = (Int *) xp ; \
    Xx = (Entry *) (xp + UNITS (Int, xlen)) ; \
}

/* function names */
#ifdef COMPLEX 

#ifdef DLONG

#define TRILINOS_KLU_scale trilinos_klu_zl_scale
#define TRILINOS_KLU_solve trilinos_klu_zl_solve
#define TRILINOS_KLU_tsolve trilinos_klu_zl_tsolve
#define TRILINOS_KLU_free_numeric trilinos_klu_zl_free_numeric
#define TRILINOS_KLU_factor trilinos_klu_zl_factor
#define TRILINOS_KLU_refactor trilinos_klu_zl_refactor
#define TRILINOS_KLU_kernel_factor trilinos_klu_zl_kernel_factor 
#define TRILINOS_KLU_lsolve trilinos_klu_zl_lsolve
#define TRILINOS_KLU_ltsolve trilinos_klu_zl_ltsolve
#define TRILINOS_KLU_usolve trilinos_klu_zl_usolve
#define TRILINOS_KLU_utsolve trilinos_klu_zl_utsolve
#define TRILINOS_KLU_kernel trilinos_klu_zl_kernel
#define TRILINOS_KLU_valid trilinos_klu_zl_valid
#define TRILINOS_KLU_valid_LU trilinos_klu_zl_valid_LU
#define TRILINOS_KLU_sort trilinos_klu_zl_sort
#define TRILINOS_KLU_rgrowth trilinos_klu_zl_rgrowth
#define TRILINOS_KLU_rcond trilinos_klu_zl_rcond
#define TRILINOS_KLU_extract trilinos_klu_zl_extract
#define TRILINOS_KLU_condest trilinos_klu_zl_condest
#define TRILINOS_KLU_flops trilinos_klu_zl_flops

#else

#define TRILINOS_KLU_scale trilinos_klu_z_scale
#define TRILINOS_KLU_solve trilinos_klu_z_solve
#define TRILINOS_KLU_tsolve trilinos_klu_z_tsolve
#define TRILINOS_KLU_free_numeric trilinos_klu_z_free_numeric
#define TRILINOS_KLU_factor trilinos_klu_z_factor
#define TRILINOS_KLU_refactor trilinos_klu_z_refactor
#define TRILINOS_KLU_kernel_factor trilinos_klu_z_kernel_factor 
#define TRILINOS_KLU_lsolve trilinos_klu_z_lsolve
#define TRILINOS_KLU_ltsolve trilinos_klu_z_ltsolve
#define TRILINOS_KLU_usolve trilinos_klu_z_usolve
#define TRILINOS_KLU_utsolve trilinos_klu_z_utsolve
#define TRILINOS_KLU_kernel trilinos_klu_z_kernel
#define TRILINOS_KLU_valid trilinos_klu_z_valid
#define TRILINOS_KLU_valid_LU trilinos_klu_z_valid_LU
#define TRILINOS_KLU_sort trilinos_klu_z_sort
#define TRILINOS_KLU_rgrowth trilinos_klu_z_rgrowth
#define TRILINOS_KLU_rcond trilinos_klu_z_rcond
#define TRILINOS_KLU_extract trilinos_klu_z_extract
#define TRILINOS_KLU_condest trilinos_klu_z_condest
#define TRILINOS_KLU_flops trilinos_klu_z_flops

#endif

#else

#ifdef DLONG

#define TRILINOS_KLU_scale trilinos_klu_l_scale
#define TRILINOS_KLU_solve trilinos_klu_l_solve
#define TRILINOS_KLU_tsolve trilinos_klu_l_tsolve
#define TRILINOS_KLU_free_numeric trilinos_klu_l_free_numeric
#define TRILINOS_KLU_factor trilinos_klu_l_factor
#define TRILINOS_KLU_refactor trilinos_klu_l_refactor
#define TRILINOS_KLU_kernel_factor trilinos_klu_l_kernel_factor 
#define TRILINOS_KLU_lsolve trilinos_klu_l_lsolve
#define TRILINOS_KLU_ltsolve trilinos_klu_l_ltsolve
#define TRILINOS_KLU_usolve trilinos_klu_l_usolve
#define TRILINOS_KLU_utsolve trilinos_klu_l_utsolve
#define TRILINOS_KLU_kernel trilinos_klu_l_kernel
#define TRILINOS_KLU_valid trilinos_klu_l_valid
#define TRILINOS_KLU_valid_LU trilinos_klu_l_valid_LU
#define TRILINOS_KLU_sort trilinos_klu_l_sort
#define TRILINOS_KLU_rgrowth trilinos_klu_l_rgrowth
#define TRILINOS_KLU_rcond trilinos_klu_l_rcond
#define TRILINOS_KLU_extract trilinos_klu_l_extract
#define TRILINOS_KLU_condest trilinos_klu_l_condest
#define TRILINOS_KLU_flops trilinos_klu_l_flops

#else

#define TRILINOS_KLU_scale trilinos_klu_scale
#define TRILINOS_KLU_solve trilinos_klu_solve
#define TRILINOS_KLU_tsolve trilinos_klu_tsolve
#define TRILINOS_KLU_free_numeric trilinos_klu_free_numeric
#define TRILINOS_KLU_factor trilinos_klu_factor
#define TRILINOS_KLU_refactor trilinos_klu_refactor
#define TRILINOS_KLU_kernel_factor trilinos_klu_kernel_factor 
#define TRILINOS_KLU_lsolve trilinos_klu_lsolve
#define TRILINOS_KLU_ltsolve trilinos_klu_ltsolve
#define TRILINOS_KLU_usolve trilinos_klu_usolve
#define TRILINOS_KLU_utsolve trilinos_klu_utsolve
#define TRILINOS_KLU_kernel trilinos_klu_kernel
#define TRILINOS_KLU_valid trilinos_klu_valid
#define TRILINOS_KLU_valid_LU trilinos_klu_valid_LU
#define TRILINOS_KLU_sort trilinos_klu_sort
#define TRILINOS_KLU_rgrowth trilinos_klu_rgrowth
#define TRILINOS_KLU_rcond trilinos_klu_rcond
#define TRILINOS_KLU_extract trilinos_klu_extract
#define TRILINOS_KLU_condest trilinos_klu_condest
#define TRILINOS_KLU_flops trilinos_klu_flops

#endif

#endif


#ifdef DLONG

#define TRILINOS_KLU_analyze trilinos_klu_l_analyze
#define TRILINOS_KLU_analyze_given trilinos_klu_l_analyze_given
#define TRILINOS_KLU_alloc_symbolic trilinos_klu_l_alloc_symbolic
#define TRILINOS_KLU_free_symbolic trilinos_klu_l_free_symbolic
#define TRILINOS_KLU_defaults trilinos_klu_l_defaults
#define TRILINOS_KLU_free trilinos_klu_l_free
#define TRILINOS_KLU_malloc trilinos_klu_l_malloc
#define TRILINOS_KLU_realloc trilinos_klu_l_realloc
#define TRILINOS_KLU_add_size_t trilinos_klu_l_add_size_t
#define TRILINOS_KLU_mult_size_t trilinos_klu_l_mult_size_t

#define TRILINOS_KLU_symbolic trilinos_klu_l_symbolic
#define TRILINOS_KLU_numeric trilinos_klu_l_numeric
#define TRILINOS_KLU_common trilinos_klu_l_common

#define BTF_order trilinos_btf_l_order
#define BTF_strongcomp trilinos_btf_l_strongcomp

#define TRILINOS_AMD_order trilinos_amd_l_order
#define TRILINOS_COLAMD trilinos_colamd_l
#define TRILINOS_COLAMD_recommended trilinos_colamd_l_recommended

#else

#define TRILINOS_KLU_analyze trilinos_klu_analyze
#define TRILINOS_KLU_analyze_given trilinos_klu_analyze_given
#define TRILINOS_KLU_alloc_symbolic trilinos_klu_alloc_symbolic
#define TRILINOS_KLU_free_symbolic trilinos_klu_free_symbolic
#define TRILINOS_KLU_defaults trilinos_klu_defaults
#define TRILINOS_KLU_free trilinos_klu_free
#define TRILINOS_KLU_malloc trilinos_klu_malloc
#define TRILINOS_KLU_realloc trilinos_klu_realloc
#define TRILINOS_KLU_add_size_t trilinos_klu_add_size_t
#define TRILINOS_KLU_mult_size_t trilinos_klu_mult_size_t

#define TRILINOS_KLU_symbolic trilinos_klu_symbolic
#define TRILINOS_KLU_numeric trilinos_klu_numeric
#define TRILINOS_KLU_common trilinos_klu_common

#define BTF_order trilinos_btf_order
#define BTF_strongcomp trilinos_btf_strongcomp

#define TRILINOS_AMD_order trilinos_amd_order
#define TRILINOS_COLAMD trilinos_colamd
#define TRILINOS_COLAMD_recommended trilinos_colamd_recommended

#endif


/* -------------------------------------------------------------------------- */
/* Numerical relop macros for correctly handling the NaN case */
/* -------------------------------------------------------------------------- */

/*
SCALAR_IS_NAN(x):
    True if x is NaN.  False otherwise.  The commonly-existing isnan(x)
    function could be used, but it's not in Kernighan & Ritchie 2nd edition
    (ANSI C).  It may appear in <math.h>, but I'm not certain about
    portability.  The expression x != x is true if and only if x is NaN,
    according to the IEEE 754 floating-point standard.

SCALAR_IS_ZERO(x):
    True if x is zero.  False if x is nonzero, NaN, or +/- Inf.
    This is (x == 0) if the compiler is IEEE 754 compliant.

SCALAR_IS_NONZERO(x):
    True if x is nonzero, NaN, or +/- Inf.  False if x zero.
    This is (x != 0) if the compiler is IEEE 754 compliant.

SCALAR_IS_LTZERO(x):
    True if x is < zero or -Inf.  False if x is >= 0, NaN, or +Inf.
    This is (x < 0) if the compiler is IEEE 754 compliant.
*/

/* These all work properly, according to the IEEE 754 standard ... except on */
/* a PC with windows.  Works fine in Linux on the same PC... */
#define SCALAR_IS_NAN(x)	((x) != (x))
#define SCALAR_IS_ZERO(x)	((x) == 0.)
#define SCALAR_IS_NONZERO(x)	((x) != 0.)
#define SCALAR_IS_LTZERO(x)	((x) < 0.)


/* scalar absolute value macro. If x is NaN, the result is NaN: */
#define SCALAR_ABS(x) ((SCALAR_IS_LTZERO (x)) ? -(x) : (x))

/* print a scalar (avoid printing "-0" for negative zero).  */
#ifdef NPRINT
#define PRINT_SCALAR(a)
#else
#define PRINT_SCALAR(a) \
{ \
    if (SCALAR_IS_NONZERO (a)) \
    { \
	PRINTF ((" (%g)", (a))) ; \
    } \
    else \
    { \
	PRINTF ((" (0)")) ; \
    } \
}
#endif

/* -------------------------------------------------------------------------- */
/* Real floating-point arithmetic */
/* -------------------------------------------------------------------------- */

#ifndef COMPLEX

typedef double Unit ;
#define Entry double

#define SPLIT(s)    		    (1)
#define REAL(c)			    (c)
#define IMAG(c)			    (0.)
#define ASSIGN(c,s1,s2,p,split)	    { (c) = (s1)[p] ; }
#define CLEAR(c)		    { (c) = 0. ; }
#define CLEAR_AND_INCREMENT(p)	    { *p++ = 0. ; }
#define IS_NAN(a)		    SCALAR_IS_NAN (a)
#define IS_ZERO(a)		    SCALAR_IS_ZERO (a)
#define IS_NONZERO(a)		    SCALAR_IS_NONZERO (a)
#define SCALE_DIV(c,s)		    { (c) /= (s) ; }
#define SCALE_DIV_ASSIGN(a,c,s)	    { a = c / s ; }
#define SCALE(c,s)		    { (c) *= (s) ; }
#define ASSEMBLE(c,a)		    { (c) += (a) ; }
#define ASSEMBLE_AND_INCREMENT(c,p) { (c) += *p++ ; }
#define DECREMENT(c,a)		    { (c) -= (a) ; }
#define MULT(c,a,b)		    { (c) = (a) * (b) ; }
#define MULT_CONJ(c,a,b)	    { (c) = (a) * (b) ; }
#define MULT_SUB(c,a,b)		    { (c) -= (a) * (b) ; }
#define MULT_SUB_CONJ(c,a,b)	    { (c) -= (a) * (b) ; }
#define DIV(c,a,b)		    { (c) = (a) / (b) ; }
#define RECIPROCAL(c)		    { (c) = 1.0 / (c) ; }
#define DIV_CONJ(c,a,b)		    { (c) = (a) / (b) ; }
#define APPROX_ABS(s,a)		    { (s) = SCALAR_ABS (a) ; }
#define ABS(s,a)		    { (s) = SCALAR_ABS (a) ; }
#define PRINT_ENTRY(a)		    PRINT_SCALAR (a)
#define CONJ(a,x)		    a = x

/* for flop counts */
#define MULTSUB_FLOPS	2.	/* c -= a*b */
#define DIV_FLOPS	1.	/* c = a/b */
#define ABS_FLOPS	0.	/* c = abs (a) */
#define ASSEMBLE_FLOPS	1.	/* c += a */
#define DECREMENT_FLOPS	1.	/* c -= a */
#define MULT_FLOPS	1.	/* c = a*b */
#define SCALE_FLOPS	1.	/* c = a/s */

#else

/* -------------------------------------------------------------------------- */
/* Complex floating-point arithmetic */
/* -------------------------------------------------------------------------- */

/*
    Note:  An alternative to this Double_Complex type would be to use a
    struct { double r ; double i ; }.  The problem with that method
    (used by the Sun Performance Library, for example) is that ANSI C provides
    no guarantee about the layout of a struct.  It is possible that the sizeof
    the struct above would be greater than 2 * sizeof (double).  This would
    mean that the complex BLAS could not be used.  The method used here avoids
    that possibility.  ANSI C *does* guarantee that an array of structs has
    the same size as n times the size of one struct.

    The ANSI C99 version of the C language includes a "double _Complex" type.
    It should be possible in that case to do the following:

    #define Entry double _Complex

    and remove the Double_Complex struct.  The macros, below, could then be
    replaced with instrinsic operators.  Note that the #define Real and
    #define Imag should also be removed (they only appear in this file).

    For the MULT, MULT_SUB, MULT_SUB_CONJ, and MULT_CONJ macros,
    the output argument c cannot be the same as any input argument.

*/

typedef struct
{
    double component [2] ;	/* real and imaginary parts */

} Double_Complex ;

typedef Double_Complex Unit ;
#define Entry Double_Complex
#define Real component [0]
#define Imag component [1]

/* for flop counts */
#define MULTSUB_FLOPS	8.	/* c -= a*b */
#define DIV_FLOPS	9.	/* c = a/b */
#define ABS_FLOPS	6.	/* c = abs (a), count sqrt as one flop */
#define ASSEMBLE_FLOPS	2.	/* c += a */
#define DECREMENT_FLOPS	2.	/* c -= a */
#define MULT_FLOPS	6.	/* c = a*b */
#define SCALE_FLOPS	2.	/* c = a/s or c = a*s */

/* -------------------------------------------------------------------------- */

/* real part of c */
#define REAL(c) ((c).Real)

/* -------------------------------------------------------------------------- */

/* imag part of c */
#define IMAG(c) ((c).Imag)

/* -------------------------------------------------------------------------- */

/* Return TRUE if a complex number is in split form, FALSE if in packed form */
#define SPLIT(sz) ((sz) != (double *) NULL)

/* c = (s1) + (s2)*i, if s2 is null, then X is in "packed" format (compatible
 * with Entry and ANSI C99 double _Complex type).  */
/*#define ASSIGN(c,s1,s2,p,split)	\
{ \
    if (split) \
    { \
        (c).Real = (s1)[p] ; \
        (c).Imag = (s2)[p] ; \
    }  \
    else \
    { \
 	(c) = ((Entry *)(s1))[p] ; \
    }  \
}*/

/* -------------------------------------------------------------------------- */
#define CONJ(a, x) \
{ \
    a.Real = x.Real ; \
    a.Imag = -x.Imag ; \
}

/* c = 0 */
#define CLEAR(c) \
{ \
    (c).Real = 0. ; \
    (c).Imag = 0. ; \
}

/* -------------------------------------------------------------------------- */

/* *p++ = 0 */
#define CLEAR_AND_INCREMENT(p) \
{ \
    p->Real = 0. ; \
    p->Imag = 0. ; \
    p++ ; \
}

/* -------------------------------------------------------------------------- */

/* True if a == 0 */
#define IS_ZERO(a) \
    (SCALAR_IS_ZERO ((a).Real) && SCALAR_IS_ZERO ((a).Imag))

/* -------------------------------------------------------------------------- */

/* True if a is NaN */
#define IS_NAN(a) \
    (SCALAR_IS_NAN ((a).Real) || SCALAR_IS_NAN ((a).Imag))

/* -------------------------------------------------------------------------- */

/* True if a != 0 */
#define IS_NONZERO(a) \
    (SCALAR_IS_NONZERO ((a).Real) || SCALAR_IS_NONZERO ((a).Imag))

/* -------------------------------------------------------------------------- */

/* a = c/s */
#define SCALE_DIV_ASSIGN(a,c,s) \
{ \
    a.Real = c.Real / s ; \
    a.Imag = c.Imag / s ; \
}

/* c /= s */
#define SCALE_DIV(c,s) \
{ \
    (c).Real /= (s) ; \
    (c).Imag /= (s) ; \
}

/* -------------------------------------------------------------------------- */

/* c *= s */
#define SCALE(c,s) \
{ \
    (c).Real *= (s) ; \
    (c).Imag *= (s) ; \
}

/* -------------------------------------------------------------------------- */

/* c += a */
#define ASSEMBLE(c,a) \
{ \
    (c).Real += (a).Real ; \
    (c).Imag += (a).Imag ; \
}

/* -------------------------------------------------------------------------- */

/* c += *p++ */
#define ASSEMBLE_AND_INCREMENT(c,p) \
{ \
    (c).Real += p->Real ; \
    (c).Imag += p->Imag ; \
    p++ ; \
}

/* -------------------------------------------------------------------------- */

/* c -= a */
#define DECREMENT(c,a) \
{ \
    (c).Real -= (a).Real ; \
    (c).Imag -= (a).Imag ; \
}

/* -------------------------------------------------------------------------- */

/* c = a*b, assert because c cannot be the same as a or b */
#define MULT(c,a,b) \
{ \
    ASSERT (&(c) != &(a) && &(c) != &(b)) ; \
    (c).Real = (a).Real * (b).Real - (a).Imag * (b).Imag ; \
    (c).Imag = (a).Imag * (b).Real + (a).Real * (b).Imag ; \
}

/* -------------------------------------------------------------------------- */

/* c = a*conjugate(b), assert because c cannot be the same as a or b */
#define MULT_CONJ(c,a,b) \
{ \
    ASSERT (&(c) != &(a) && &(c) != &(b)) ; \
    (c).Real = (a).Real * (b).Real + (a).Imag * (b).Imag ; \
    (c).Imag = (a).Imag * (b).Real - (a).Real * (b).Imag ; \
}

/* -------------------------------------------------------------------------- */

/* c -= a*b, assert because c cannot be the same as a or b */
#define MULT_SUB(c,a,b) \
{ \
    ASSERT (&(c) != &(a) && &(c) != &(b)) ; \
    (c).Real -= (a).Real * (b).Real - (a).Imag * (b).Imag ; \
    (c).Imag -= (a).Imag * (b).Real + (a).Real * (b).Imag ; \
}

/* -------------------------------------------------------------------------- */

/* c -= a*conjugate(b), assert because c cannot be the same as a or b */
#define MULT_SUB_CONJ(c,a,b) \
{ \
    ASSERT (&(c) != &(a) && &(c) != &(b)) ; \
    (c).Real -= (a).Real * (b).Real + (a).Imag * (b).Imag ; \
    (c).Imag -= (a).Imag * (b).Real - (a).Real * (b).Imag ; \
}

/* -------------------------------------------------------------------------- */

/* c = a/b, be careful to avoid underflow and overflow */
#ifdef MATHWORKS
#define DIV(c,a,b) \
{ \
    (void) utDivideComplex ((a).Real, (a).Imag, (b).Real, (b).Imag, \
	&((c).Real), &((c).Imag)) ; \
}
#else
/* This uses ACM Algo 116, by R. L. Smith, 1962. */
/* c can be the same variable as a or b. */
/* Ignore NaN case for double relop br>=bi. */
#define DIV(c,a,b) \
{ \
    double r, den, ar, ai, br, bi ; \
    br = (b).Real ; \
    bi = (b).Imag ; \
    ar = (a).Real ; \
    ai = (a).Imag ; \
    if (SCALAR_ABS (br) >= SCALAR_ABS (bi)) \
    { \
	r = bi / br ; \
	den = br + r * bi ; \
	(c).Real = (ar + ai * r) / den ; \
	(c).Imag = (ai - ar * r) / den ; \
    } \
    else \
    { \
	r = br / bi ; \
	den = r * br + bi ; \
	(c).Real = (ar * r + ai) / den ; \
	(c).Imag = (ai * r - ar) / den ; \
    } \
}
#endif

/* -------------------------------------------------------------------------- */

/* c = 1/c, be careful to avoid underflow and overflow */
/* Not used if MATHWORKS is defined. */
/* This uses ACM Algo 116, by R. L. Smith, 1962. */
/* Ignore NaN case for double relop cr>=ci. */
#define RECIPROCAL(c) \
{ \
    double r, den, cr, ci ; \
    cr = (c).Real ; \
    ci = (c).Imag ; \
    if (SCALAR_ABS (cr) >= SCALAR_ABS (ci)) \
    { \
	r = ci / cr ; \
	den = cr + r * ci ; \
	(c).Real = 1.0 / den ; \
	(c).Imag = - r / den ; \
    } \
    else \
    { \
	r = cr / ci ; \
	den = r * cr + ci ; \
	(c).Real = r / den ; \
	(c).Imag = - 1.0 / den ; \
    } \
}


/* -------------------------------------------------------------------------- */

/* c = a/conjugate(b), be careful to avoid underflow and overflow */
#ifdef MATHWORKS
#define DIV_CONJ(c,a,b) \
{ \
    (void) utDivideComplex ((a).Real, (a).Imag, (b).Real, (-(b).Imag), \
	&((c).Real), &((c).Imag)) ; \
}
#else
/* This uses ACM Algo 116, by R. L. Smith, 1962. */
/* c can be the same variable as a or b. */
/* Ignore NaN case for double relop br>=bi. */
#define DIV_CONJ(c,a,b) \
{ \
    double r, den, ar, ai, br, bi ; \
    br = (b).Real ; \
    bi = (b).Imag ; \
    ar = (a).Real ; \
    ai = (a).Imag ; \
    if (SCALAR_ABS (br) >= SCALAR_ABS (bi)) \
    { \
	r = (-bi) / br ; \
	den = br - r * bi ; \
	(c).Real = (ar + ai * r) / den ; \
	(c).Imag = (ai - ar * r) / den ; \
    } \
    else \
    { \
	r = br / (-bi) ; \
	den =  r * br - bi; \
	(c).Real = (ar * r + ai) / den ; \
	(c).Imag = (ai * r - ar) / den ; \
    } \
}
#endif

/* -------------------------------------------------------------------------- */

/* approximate absolute value, s = |r|+|i| */
#define APPROX_ABS(s,a) \
{ \
    (s) = SCALAR_ABS ((a).Real) + SCALAR_ABS ((a).Imag) ; \
}

/* -------------------------------------------------------------------------- */

/* exact absolute value, s = sqrt (a.real^2 + amag^2) */
#ifdef MATHWORKS
#define ABS(s,a) \
{ \
    (s) = utFdlibm_hypot ((a).Real, (a).Imag) ; \
}
#else
/* Ignore NaN case for the double relops ar>=ai and ar+ai==ar. */
#define ABS(s,a) \
{ \
    double r, ar, ai ; \
    ar = SCALAR_ABS ((a).Real) ; \
    ai = SCALAR_ABS ((a).Imag) ; \
    if (ar >= ai) \
    { \
	if (ar + ai == ar) \
	{ \
	    (s) = ar ; \
	} \
	else \
	{ \
	    r = ai / ar ; \
	    (s) = ar * sqrt (1.0 + r*r) ; \
	} \
    } \
    else \
    { \
	if (ai + ar == ai) \
	{ \
	    (s) = ai ; \
	} \
	else \
	{ \
	    r = ar / ai ; \
	    (s) = ai * sqrt (1.0 + r*r) ; \
	} \
    } \
}
#endif

/* -------------------------------------------------------------------------- */

/* print an entry (avoid printing "-0" for negative zero).  */
#ifdef NPRINT
#define PRINT_ENTRY(a)
#else
#define PRINT_ENTRY(a) \
{ \
    if (SCALAR_IS_NONZERO ((a).Real)) \
    { \
	PRINTF ((" (%g", (a).Real)) ; \
    } \
    else \
    { \
	PRINTF ((" (0")) ; \
    } \
    if (SCALAR_IS_LTZERO ((a).Imag)) \
    { \
	PRINTF ((" - %gi)", -(a).Imag)) ; \
    } \
    else if (SCALAR_IS_ZERO ((a).Imag)) \
    { \
	PRINTF ((" + 0i)")) ; \
    } \
    else \
    { \
	PRINTF ((" + %gi)", (a).Imag)) ; \
    } \
}
#endif

/* -------------------------------------------------------------------------- */

#endif	/* #ifndef COMPLEX */

#endif