This file is indexed.

/usr/include/trilinos/Tsqr_Util.hpp is in libtrilinos-tpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

/// \file Tsqr_Util.hpp
/// \brief Utilities for TSQR (the Tall Skinny QR factorization)
///

#ifndef __TSQR_Tsqr_Util_hpp
#define __TSQR_Tsqr_Util_hpp

#include <Teuchos_ScalarTraits.hpp>

#ifdef HAVE_KOKKOSTSQR_COMPLEX
#  include <complex>
#endif // HAVE_KOKKOSTSQR_COMPLEX

#include <algorithm>
#include <ostream>


namespace TSQR {

  /// \class ScalarPrinter
  /// \brief Print a Scalar value to the given output stream
  ///
  /// \tparam Scalar The type of the value to print.
  /// \tparam isComplex Whether Scalar represents a complex number
  ///   type (such as std::complex<T>).
  ///
  /// C++ (before C++0x) doesn't let me do partial template
  /// specialization of functions.  Because of that, I can't use a
  /// template function; instead, I have to reify the function into a
  /// class ("function object").  This is typical Java style, where
  /// everything is a noun with a "run()" method; not my favorite, but
  /// it's the only way to do it.
  ///
  template<class Scalar, bool isComplex>
  class ScalarPrinter {
  public:
    ///
    /// Print elt to out
    void operator() (std::ostream& out, const Scalar& elt) const;
  };

  // Partial specialization for real Scalar
  template< class Scalar >
  class ScalarPrinter< Scalar, false > {
  public:
    void operator() (std::ostream& out, const Scalar& elt) const {
      out << elt;
    }
  };

  // Partial specialization for complex Scalar
  template< class Scalar >
  class ScalarPrinter< Scalar, true > {
  public:
    void operator() (std::ostream& out, const Scalar& elt) const {
      typedef Teuchos::ScalarTraits<Scalar> STS;
      typedef typename STS::magnitudeType magnitude_type;
      typedef Teuchos::ScalarTraits<magnitude_type> STM;

      const magnitude_type ZERO (0);
      const magnitude_type& realPart = std::real (elt);
      const magnitude_type& imagPart = std::imag (elt);

      out << realPart;
      if (imagPart < ZERO) {
        out << "-" << STM::magnitude (imagPart) << "*i";
      } else if (imagPart > ZERO) {
        out << "+" << imagPart << "*i";
      }
    }
  };

  template< class LocalOrdinal, class Scalar >
  void
  print_local_matrix (std::ostream& out,
                      const LocalOrdinal nrows_local,
                      const LocalOrdinal ncols,
                      const Scalar A[],
                      const LocalOrdinal lda)
  {
    typedef Teuchos::ScalarTraits<Scalar> STS;
    ScalarPrinter<Scalar, STS::isComplex> printer;
    for (LocalOrdinal i = 0; i < nrows_local; ++i) {
      for (LocalOrdinal j = 0; j < ncols; ++j) {
        const Scalar& curElt = A[i + j*lda];
        printer (out, curElt);
        if (j < ncols - 1) {
          out << ", ";
        }
      }
      out << ";" << std::endl;
    }
  }

  template< class Ordinal, class Scalar >
  void
  copy_matrix (const Ordinal nrows,
               const Ordinal ncols,
               Scalar* const A,
               const Ordinal lda,
               const Scalar* const B,
               const Ordinal ldb)
  {
    for (Ordinal j = 0; j < ncols; ++j) {
      Scalar* const A_j = &A[j*lda];
      const Scalar* const B_j = &B[j*ldb];
      std::copy (B_j, B_j + nrows, A_j);
    }
  }

  template< class Ordinal, class Scalar >
  void
  fill_matrix (const Ordinal nrows,
               const Ordinal ncols,
               Scalar* const A,
               const Ordinal lda,
               const Scalar& default_val)
  {
    for (Ordinal j = 0; j < ncols; ++j) {
      Scalar* const A_j = &A[j*lda];
      std::fill (A_j, A_j + nrows, default_val);
    }
  }


  template< class Ordinal, class Scalar, class Generator >
  void
  generate_matrix (const Ordinal nrows,
                   const Ordinal ncols,
                   Scalar* const A,
                   const Ordinal lda,
                   Generator gen)
  {
    for (Ordinal j = 0; j < ncols; ++j) {
      Scalar* const A_j = &A[j*lda];
      std::generate (A_j, A_j + nrows, gen);
    }
  }

  template< class Ordinal, class Scalar >
  void
  copy_upper_triangle (const Ordinal nrows,
                       const Ordinal ncols,
                       Scalar* const R_out,
                       const Ordinal ldr_out,
                       const Scalar* const R_in,
                       const Ordinal ldr_in)
  {
    if (nrows >= ncols) {
      for (Ordinal j = 0; j < ncols; ++j) {
        Scalar* const A_j = &R_out[j*ldr_out];
        const Scalar* const B_j = &R_in[j*ldr_in];
        for (Ordinal i = 0; i <= j; ++i) {
          A_j[i] = B_j[i];
        }
      }
    }
    else {
      copy_upper_triangle (nrows, nrows, R_out, ldr_out, R_in, ldr_in);
      for (Ordinal j = nrows; j < ncols; j++) {
        Scalar* const A_j = &R_out[j*ldr_out];
        const Scalar* const B_j = &R_in[j*ldr_in];
        for (Ordinal i = 0; i < nrows; i++)
          A_j[i] = B_j[i];
      }
    }
  }


  template< class Scalar >
  class SumSquare {
  public:
    Scalar operator() (const Scalar& result, const Scalar& x) const {
      return result + x*x;
    }
  };

#ifdef HAVE_KOKKOSTSQR_COMPLEX
  // Specialization for complex numbers
  template<class Scalar>
  class SumSquare<std::complex<Scalar> >  {
  public:
    Scalar operator() (const std::complex<Scalar>& result,
                       const std::complex<Scalar>& x) const {
      const Scalar absval = std::norm (x);
      return result + absval * absval;
    }
  };
#endif // HAVE_KOKKOSTSQR_COMPLEX

  template<class Ordinal, class Scalar>
  void
  pack_R_factor (const Ordinal nrows,
                 const Ordinal ncols,
                 const Scalar R_in[],
                 const Ordinal ldr_in,
                 Scalar buffer[])
  {
    Ordinal count = 0; // current position in output buffer
    if (nrows >= ncols) {
      for (Ordinal j = 0; j < ncols; ++j) {
        for (Ordinal i = 0; i <= j; ++i) {
          buffer[count++] = R_in[i + j*ldr_in];
        }
      }
    }
    else {
      for (Ordinal j = 0; j < nrows; ++j) {
        for (Ordinal i = 0; i <= j; ++i) {
          buffer[count++] = R_in[i + j*ldr_in];
        }
      }
    }
  }

  template< class Ordinal, class Scalar >
  void
  unpack_R_factor (const Ordinal nrows,
                   const Ordinal ncols,
                   Scalar R_out[],
                   const Ordinal ldr_out,
                   const Scalar buffer[])
  {
    Ordinal count = 0; // current position in input buffer
    if (nrows >= ncols) {
      for (Ordinal j = 0; j < ncols; ++j) {
        for (Ordinal i = 0; i <= j; ++i) {
          R_out[i + j*ldr_out] = buffer[count++];
        }
      }
    }
    else {
      for (Ordinal j = 0; j < nrows; ++j) {
        for (Ordinal i = 0; i <= j; ++i) {
          R_out[i + j*ldr_out] = buffer[count++];
        }
      }
    }
  }

} // namespace TSQR

#endif // __TSQR_Tsqr_Util_hpp