This file is indexed.

/usr/include/trilinos/Tsqr_TsqrTest.hpp is in libtrilinos-tpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_Test_TsqrTest_hpp
#define __TSQR_Test_TsqrTest_hpp

#include <Tsqr.hpp>
#ifdef HAVE_KOKKOSTSQR_TBB
#  include <TbbTsqr.hpp>
#endif // HAVE_KOKKOSTSQR_TBB
#include <Tsqr_TestSetup.hpp>
#include <Tsqr_GlobalVerify.hpp>
#include <Tsqr_printGlobalMatrix.hpp>
#include <Tsqr_verifyTimerConcept.hpp>
#include <Teuchos_ScalarTraits.hpp>

#include <cstring> // size_t
#include <iostream>
#include <stdexcept>
#include <string>


namespace TSQR {
  namespace Test {

    template<class TsqrType>
    class TsqrVerifier {
    public:
      typedef TsqrType tsqr_type;
      typedef typename tsqr_type::scalar_type scalar_type;
      typedef typename tsqr_type::ordinal_type ordinal_type;
      typedef Matrix<ordinal_type, scalar_type> matrix_type;
      typedef typename tsqr_type::FactorOutput factor_output_type;
      typedef MessengerBase<scalar_type> messenger_type;
      typedef Teuchos::RCP<messenger_type> messenger_ptr;

      static void
      verify (tsqr_type& tsqr,
              const messenger_ptr& scalarComm,
              const matrix_type& A_local,
              matrix_type& A_copy,
              matrix_type& Q_local,
              matrix_type& R,
              const bool contiguousCacheBlocks,
              const bool b_debug = false)
      {
        using std::cerr;
        using std::endl;

        const ordinal_type nrows_local = A_local.nrows();
        const ordinal_type ncols = A_local.ncols();

        // If specified, rearrange cache blocks in the copy.
        if (contiguousCacheBlocks) {
          tsqr.cache_block (nrows_local, ncols, A_copy.get(),
                            A_local.get(), A_local.lda());
          if (b_debug) {
            scalarComm->barrier ();
            if (scalarComm->rank () == 0)
              cerr << "-- Cache-blocked input matrix to factor." << endl;
          }
        }
        else {
          deep_copy (A_copy, A_local);
        }

        const bool testFactorExplicit = true;
        if (testFactorExplicit) {
          tsqr.factorExplicit (A_copy.view(), Q_local.view(), R.view(),
                               contiguousCacheBlocks);
          if (b_debug) {
            scalarComm->barrier ();
            if (scalarComm->rank () == 0)
              cerr << "-- Finished Tsqr::factorExplicit" << endl;
          }
        }
        else {
          // Factor the (copy of the) matrix.
          factor_output_type factorOutput =
            tsqr.factor (nrows_local, ncols, A_copy.get(), A_copy.lda(),
                         R.get(), R.lda(), contiguousCacheBlocks);
          if (b_debug) {
            scalarComm->barrier ();
            if (scalarComm->rank () == 0)
              cerr << "-- Finished Tsqr::factor" << endl;
          }

          // Compute the explicit Q factor in Q_local
          tsqr.explicit_Q (nrows_local,
                           ncols, A_copy.get(), A_copy.lda(), factorOutput,
                           ncols, Q_local.get(), Q_local.lda(),
                           contiguousCacheBlocks);
          if (b_debug) {
            scalarComm->barrier ();
            if (scalarComm->rank () == 0)
              cerr << "-- Finished Tsqr::explicit_Q" << endl;
          }
        }

        // "Un"-cache-block the output, if contiguous cache blocks were
        // used.  This is only necessary because global_verify() doesn't
        // currently support contiguous cache blocks.
        if (contiguousCacheBlocks) {
          // We can use A_copy as scratch space for un-cache-blocking
          // Q_local, since we're done using A_copy for other things.
          tsqr.un_cache_block (nrows_local, ncols, A_copy.get(),
                               A_copy.lda(), Q_local.get());
          // Overwrite Q_local with the un-cache-blocked Q factor.
          deep_copy (Q_local, A_copy);

          if (b_debug) {
            scalarComm->barrier ();
            if (scalarComm->rank () == 0)
              cerr << "-- Un-cache-blocked output Q factor" << endl;
          }
        }
      }
    };

    /// \function verifyTsqr
    /// \brief Test and print to stdout the accuracy of parallel TSQR
    ///
    /// \param which [in] Valid values: "MpiTbbTSQR" (for TBB-parallel
    ///   node-level TSQR underneath MPI-parallel TSQR), "MpiSeqTSQR"
    ///   (for cache-blocked sequential node-level TSQR underneath
    ///   MPI-parallel TSQR)
    ///
    /// \param scalarTypeName [in] Name of the Scalar type
    ///
    /// \param generator [in/out] Normal(0,1) (pseudo)random number
    ///   generator.  Only touched on MPI process 0.  Used to generate
    ///   random test matrices for the factorization.
    ///
    /// \param nrows_global [in] Number of rows in the entire test
    ///   matrix (over all processes) to generate.  The matrix will be
    ///   divided up in blocks of contiguous rows among the processes.
    ///
    /// \param ncols [in] Number of columns in the test matrix to
    ///   generate.
    ///
    /// \param ordinalComm [in/out] Object for communicating Ordinal
    ///   (integer index) objects among the processes
    ///
    /// \param scalarComm [in/out] Object for communicating Scalar
    ///   (matrix data) objects among the processes
    ///
    /// \param num_cores [in] Number of cores to use per MPI process
    ///   for Intel TBB parallelism within that process
    ///
    /// \param cache_size_hint [in] Cache size hint (per core) in
    ///   bytes.  If zero, a sensible default is used.
    ///
    /// \param contiguousCacheBlocks [in] Whether cache blocks
    ///   should be stored contiguously
    ///
    /// \param printFieldNames [in] Whether to print field names (only
    ///   appliable if not human_readable)
    ///
    /// \param human_readable [in] Whether output should be human
    ///   readable, or machine parseable
    ///
    /// \param b_debug [in] Whether to print debug output
    ///
    template<class Ordinal, class Scalar, class Generator>
    void
    verifyTsqr (const std::string& which,
                const std::string& scalarTypeName,
                Generator& generator,
                const Ordinal nrows_global,
                const Ordinal ncols,
                const Teuchos::RCP< MessengerBase< Ordinal > >& ordinalComm,
                const Teuchos::RCP< MessengerBase< Scalar > >& scalarComm,
                const int num_cores = 1,
                const size_t cache_size_hint = 0,
                const bool contiguousCacheBlocks,
                const bool printFieldNames,
                const bool human_readable = false,
                const bool b_debug = false)
    {
      typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType magnitude_type;
      using std::cerr;
      using std::cout;
      using std::endl;

      const bool b_extra_debug = false;
      const int nprocs = scalarComm->size();
      const int my_rank = scalarComm->rank();
      if (b_debug) {
        scalarComm->barrier ();
        if (my_rank == 0) {
          cerr << "tsqr_verify:" << endl;
        }
        scalarComm->barrier ();
      }
      const Ordinal nrows_local = numLocalRows (nrows_global, my_rank, nprocs);

      // Set up storage for the test problem.
      Matrix< Ordinal, Scalar > A_local (nrows_local, ncols);
      Matrix< Ordinal, Scalar > Q_local (nrows_local, ncols);
      if (std::numeric_limits<Scalar>::has_quiet_NaN) {
          A_local.fill (std::numeric_limits<Scalar>::quiet_NaN ());
          Q_local.fill (std::numeric_limits<Scalar>::quiet_NaN ());
      }
      Matrix<Ordinal, Scalar> R (ncols, ncols, Scalar(0));

      // Generate the test problem.
      distributedTestProblem (generator, A_local, ordinalComm.get(), scalarComm.get());
      if (b_debug) {
        scalarComm->barrier ();
        if (my_rank == 0) {
          cerr << "-- Generated test problem." << endl;
        }
      }

      // Make sure that the test problem (the matrix to factor) was
      // distributed correctly.
      if (b_extra_debug && b_debug) {
        if (my_rank == 0) {
          cerr << "Test matrix A:" << endl;
        }
        scalarComm->barrier ();
        printGlobalMatrix (cerr, A_local, scalarComm.get(), ordinalComm.get());
        scalarComm->barrier ();
      }

      // Factoring the matrix stored in A_local overwrites it, so we
      // make a copy of A_local.  Initialize with NaNs to make sure
      // that cache blocking works correctly (if applicable).
      Matrix< Ordinal, Scalar > A_copy (nrows_local, ncols);
      if (std::numeric_limits< Scalar >::has_quiet_NaN) {
        A_copy.fill (std::numeric_limits< Scalar >::quiet_NaN ());
      }

      // actual_cache_size_hint: "cache_size_hint" is just a
      // suggestion.  TSQR determines the cache size hint itself;
      // this remembers it so we can print it out later.
      size_t actual_cache_size_hint;

      if (which == "MpiTbbTSQR") {
#ifdef HAVE_KOKKOSTSQR_TBB
        using Teuchos::RCP;
        typedef TSQR::TBB::TbbTsqr< Ordinal, Scalar > node_tsqr_type;
        typedef TSQR::DistTsqr< Ordinal, Scalar > dist_tsqr_type;
        typedef Tsqr< Ordinal, Scalar, node_tsqr_type, dist_tsqr_type > tsqr_type;

        RCP< node_tsqr_type > node_tsqr (new node_tsqr_type (num_cores, cache_size_hint));
        RCP< dist_tsqr_type > dist_tsqr (new dist_tsqr_type (scalarComm));
        tsqr_type tsqr (node_tsqr, dist_tsqr);

        // Compute the factorization and explicit Q factor.
        TsqrVerifier< tsqr_type >::verify (tsqr, scalarComm, A_local, A_copy,
                                           Q_local, R, contiguousCacheBlocks,
                                           b_debug);
        // Save the "actual" cache block size
        actual_cache_size_hint = tsqr.cache_size_hint();
#else
        throw std::logic_error("TSQR not built with Intel TBB support");
#endif // HAVE_KOKKOSTSQR_TBB
      }
      else if (which == "MpiSeqTSQR") {
        using Teuchos::RCP;
        typedef SequentialTsqr< Ordinal, Scalar > node_tsqr_type;
        typedef TSQR::DistTsqr< Ordinal, Scalar > dist_tsqr_type;
        typedef Tsqr< Ordinal, Scalar, node_tsqr_type, dist_tsqr_type > tsqr_type;

        RCP< node_tsqr_type > node_tsqr (new node_tsqr_type (cache_size_hint));
        RCP< dist_tsqr_type > dist_tsqr (new dist_tsqr_type (scalarComm));
        tsqr_type tsqr (node_tsqr, dist_tsqr);

        // Compute the factorization and explicit Q factor.
        TsqrVerifier< tsqr_type >::verify (tsqr, scalarComm, A_local, A_copy,
                                           Q_local, R, contiguousCacheBlocks,
                                           b_debug);
        // Save the "actual" cache block size
        actual_cache_size_hint = tsqr.cache_size_hint();
      }
      else {
        throw std::logic_error("Unknown TSQR implementation type \"" + which + "\"");
      }

      // Print out the Q and R factors
      if (b_extra_debug && b_debug) {
        if (my_rank == 0) {
          cerr << endl << "Q factor:" << endl;
        }
        scalarComm->barrier ();
        printGlobalMatrix (cerr, Q_local, scalarComm.get (), ordinalComm.get ());
        scalarComm->barrier ();
        if (my_rank == 0) {
          cerr << endl << "R factor:" << endl;
          print_local_matrix (cerr, ncols, ncols, R.get(), R.lda());
          cerr << endl;
        }
        scalarComm->barrier ();
      }

      // Test accuracy of the resulting factorization
      std::vector< magnitude_type > results =
        global_verify (nrows_local, ncols, A_local.get(), A_local.lda(),
                       Q_local.get(), Q_local.lda(), R.get(), R.lda(),
                       scalarComm.get());
      if (b_debug) {
        scalarComm->barrier ();
        if (my_rank == 0) {
          cerr << "-- Finished global_verify" << endl;
        }
      }

      // Print the results on Proc 0.
      if (my_rank == 0) {
        if (human_readable) {
          std::string human_readable_name;

          if (which == "MpiSeqTSQR") {
            human_readable_name = "MPI parallel / cache-blocked TSQR";
          }
          else if (which == "MpiTbbTSQR") {
#ifdef HAVE_KOKKOSTSQR_TBB
            human_readable_name = "MPI parallel / TBB parallel / cache-blocked TSQR";
#else
            throw std::logic_error("TSQR not built with Intel TBB support");
#endif // HAVE_KOKKOSTSQR_TBB
          }
          else {
            throw std::logic_error("Unknown TSQR implementation type \"" + which + "\"");
          }

          cout << human_readable_name << ":" << endl
               << "Scalar type: " << scalarTypeName << endl
               << "# rows: " << nrows_global << endl
               << "# columns: " << ncols << endl
               << "# MPI processes: " << nprocs << endl;
#ifdef HAVE_KOKKOSTSQR_TBB
          if (which == "MpiTbbTSQR")
            cout << "# cores per process = " << num_cores << endl;
#endif // HAVE_KOKKOSTSQR_TBB
          cout << "Cache size hint in bytes: " << actual_cache_size_hint << endl
               << "Contiguous cache blocks? " << contiguousCacheBlocks << endl
               << "Absolute residual $\\| A - Q R \\|_2: "
               << results[0] << endl
               << "Absolute orthogonality $\\| I - Q^* Q \\|_2$: "
               << results[1] << endl
               << "Test matrix norm $\\| A \\|_F$: "
               << results[2] << endl
               << endl;
        }
        else {
          if (printFieldNames) {
            cout << "%"
                 << "method"
                 << ",scalarType"
                 << ",globalNumRows"
                 << ",numCols"
                 << ",numProcs"
                 << ",numCores"
                 << ",cacheSizeHint"
                 << ",contiguousCacheBlocks"
                 << ",absFrobResid"
                 << ",absFrobOrthog"
                 << ",frobA" << endl;
          }

          cout << which
               << "," << scalarTypeName
               << "," << nrows_global
               << "," << ncols
               << "," << nprocs;
#ifdef HAVE_KOKKOSTSQR_TBB
          if (which == "MpiTbbTSQR") {
            cout << "," << num_cores;
          } else {
            cout << ",1";
          }
#else
          cout << ",1" << endl;
#endif // HAVE_KOKKOSTSQR_TBB
          cout << "," << actual_cache_size_hint
               << "," << contiguousCacheBlocks
               << "," << results[0]
               << "," << results[1]
               << "," << results[2]
               << endl;
        }
      }
    }


    template<class TsqrBase, class TimerType>
    double
    do_tsqr_benchmark (const std::string& which,
                       TsqrBase& tsqr,
                       const Teuchos::RCP< MessengerBase< typename TsqrBase::scalar_type > >& messenger,
                       const Matrix< typename TsqrBase::ordinal_type, typename TsqrBase::scalar_type >& A_local,
                       Matrix< typename TsqrBase::ordinal_type, typename TsqrBase::scalar_type >& A_copy,
                       Matrix< typename TsqrBase::ordinal_type, typename TsqrBase::scalar_type >& Q_local,
                       Matrix< typename TsqrBase::ordinal_type, typename TsqrBase::scalar_type >& R,
                       const int ntrials,
                       const bool contiguousCacheBlocks,
                       const bool human_readable,
                       const bool b_debug = false)
    {
      typedef typename TsqrBase::FactorOutput factor_output_type;
      typedef typename TsqrBase::ordinal_type ordinal_type;
      using std::cerr;
      using std::cout;
      using std::endl;

      const ordinal_type nrows_local = A_local.nrows();
      const ordinal_type ncols = A_local.ncols();

      if (contiguousCacheBlocks) {
        tsqr.cache_block (nrows_local, ncols, A_copy.get(),
                          A_local.get(), A_local.lda());
        if (b_debug) {
          messenger->barrier ();
          if (messenger->rank () == 0) {
            cerr << "-- Cache-blocked input matrix to factor." << endl;
          }
        }
      }
      else {
        deep_copy (A_copy, A_local);
      }

      if (b_debug) {
        messenger->barrier ();
        if (messenger->rank () == 0) {
          cerr << "-- Starting timing loop" << endl;
        }
      }

      // Benchmark TSQR for ntrials trials.  The answer (the numerical
      // results of the factorization) is only valid if ntrials == 1,
      // but this is a benchmark and not a verification routine.  Call
      // tsqr_verify() if you want to determine whether TSQR computes
      // the right answer.
      //
      // Name of timer doesn't matter here; we only need the timing.
      TSQR::Test::verifyTimerConcept< TimerType >();
      TimerType timer (which);


      const bool testFactorExplicit = true;
      double tsqr_timing;
      if (testFactorExplicit)
        {
          timer.start();
          for (int trial_num = 0; trial_num < ntrials; ++trial_num)
            tsqr.factorExplicit (A_copy.view(), Q_local.view(), R.view(),
                                 contiguousCacheBlocks);
          tsqr_timing = timer.stop();
        }
      else
        {
          timer.start();
          for (int trial_num = 0; trial_num < ntrials; ++trial_num)
            {
              // Factor the matrix and compute the explicit Q factor.
              // Don't worry about the fact that we're overwriting the
              // input; this is a benchmark, not a numerical verification
              // test.  (We have the latter implemented as tsqr_verify()
              // in this file.)  For the same reason, don't worry about
              // un-cache-blocking the output (when cache blocks are
              // stored contiguously).
              factor_output_type factor_output =
                tsqr.factor (nrows_local, ncols, A_copy.get(), A_copy.lda(),
                             R.get(), R.lda(), contiguousCacheBlocks);
              tsqr.explicit_Q (nrows_local,
                               ncols, A_copy.get(), A_copy.lda(), factor_output,
                               ncols, Q_local.get(), Q_local.lda(),
                               contiguousCacheBlocks);
              // Timings in debug mode likely won't make sense, because
              // Proc 0 is outputting the debug messages to cerr.
              // Nevertheless, we don't put any "if(b_debug)" calls in the
              // timing loop.
            }
          // Compute the resulting total time (in seconds) to execute
          // ntrials runs of Tsqr::factor() and Tsqr::explicit_Q().  The
          // time may differ on different MPI processes.
          tsqr_timing = timer.stop();
        }

      if (b_debug)
        {
          messenger->barrier();
          if (messenger->rank() == 0)
            cerr << "-- Finished timing loop" << endl;
        }
      return tsqr_timing;
    }

    /// \function benchmarkTsqr
    /// \brief Benchmark parallel TSQR and report timings to stdout
    ///
    /// Benchmark the MPI-parallel TSQR implementation specified by
    /// the "which" parameter (either with cache-blocked TSQR or
    /// TBB-parallel cache-blocked TSQR as the node-level
    /// implementation), for "ntrials" trials.  Print the stdout the
    /// cumulative run time (in seconds) for all ntrials trials.
    ///
    /// \param which [in] Valid values: "MpiTbbTSQR" (for TBB-parallel
    ///   node-level TSQR underneath MPI-parallel TSQR), "MpiSeqTSQR"
    ///   (for cache-blocked sequential node-level TSQR underneath
    ///   MPI-parallel TSQR)
    ///
    /// \param scalarTypeName [in] Name of the Scalar type
    ///
    /// \param generator [in/out] Normal(0,1) (pseudo)random number
    ///   generator.  Only touched on MPI process 0.  Used to generate
    ///   random test matrices for the factorization.
    ///
    /// \param ntrials [in] Number of trials to use in the benchmark.
    ///   Reported timings are cumulative over all trials.
    ///
    /// \param nrows_global [in] Number of rows in the entire test
    ///   matrix (over all processes) to generate.  The matrix will be
    ///   divided up in blocks of contiguous rows among the processes.
    ///
    /// \param ncols [in] Number of columns in the test matrix to
    ///   generate.
    ///
    /// \param ordinalComm [in/out] Object for communicating Ordinal
    ///   (integer index) objects among the processes
    ///
    /// \param scalarComm [in/out] Object for communicating Scalar
    ///   (matrix data) objects among the processes
    ///
    /// \param num_cores [in] Number of cores to use per MPI process
    ///   for Intel TBB parallelism within that process
    ///
    /// \param cache_size_hint [in] Cache block size (per core) in
    ///   bytes.  If zero, a sensible default is used.
    ///
    /// \param contiguousCacheBlocks [in] Whether cache blocks
    ///   should be stored contiguously
    ///
    /// \param printFieldNames [in] Whether to print field names (only
    ///   appliable if not human_readable)
    ///
    /// \param human_readable [in] Whether output should be human
    ///   readable, or machine parseable
    ///
    /// \param b_debug [in] Whether to print debug output
    ///
    template<class Ordinal, class Scalar, class Generator, class TimerType>
    void
    benchmarkTsqr (const std::string& which,
                   const std::string& scalarTypeName,
                   Generator& generator,
                   const int ntrials,
                   const Ordinal nrows_global,
                   const Ordinal ncols,
                   const Teuchos::RCP< MessengerBase< Ordinal > >& ordinalComm,
                   const Teuchos::RCP< MessengerBase< Scalar > >& scalarComm,
                   const Ordinal num_cores,
                   const size_t cache_size_hint,
                   const bool contiguousCacheBlocks,
                   const bool printFieldNames,
                   const bool human_readable,
                   const bool b_debug)
    {
      using std::cerr;
      using std::cout;
      using std::endl;

      TSQR::Test::verifyTimerConcept< TimerType >();
      const bool b_extra_debug = false;
      const int nprocs = scalarComm->size();
      const int my_rank = scalarComm->rank();
      if (b_debug)
        {
          scalarComm->barrier();
          if (my_rank == 0)
            cerr << "tsqr_benchmark:" << endl;
          scalarComm->barrier();
        }
      const Ordinal nrows_local = numLocalRows (nrows_global, my_rank, nprocs);

      // Set up storage for the test problem.
      Matrix< Ordinal, Scalar > A_local (nrows_local, ncols);
      Matrix< Ordinal, Scalar > Q_local (nrows_local, ncols);
      if (std::numeric_limits< Scalar >::has_quiet_NaN)
        {
          A_local.fill (std::numeric_limits< Scalar >::quiet_NaN());
          Q_local.fill (std::numeric_limits< Scalar >::quiet_NaN());
        }
      Matrix< Ordinal, Scalar > R (ncols, ncols, Scalar(0));

      // Generate the test problem.
      distributedTestProblem (generator, A_local, ordinalComm.get(), scalarComm.get());
      if (b_debug)
        {
          scalarComm->barrier();
          if (my_rank == 0)
            cerr << "-- Generated test problem." << endl;
        }

      // Make sure that the test problem (the matrix to factor) was
      // distributed correctly.
      if (b_extra_debug && b_debug)
        {
          if (my_rank == 0)
            cerr << "Test matrix A:" << endl;
          scalarComm->barrier ();
          printGlobalMatrix (cerr, A_local, scalarComm.get(), ordinalComm.get());
          scalarComm->barrier ();
        }

      // Factoring the matrix stored in A_local overwrites it, so we
      // make a copy of A_local.  If specified, rearrange cache blocks
      // in the copy.  Initialize with NaNs to make sure that cache
      // blocking worked correctly.
      Matrix< Ordinal, Scalar > A_copy (nrows_local, ncols);
      if (std::numeric_limits< Scalar >::has_quiet_NaN)
        A_copy.fill (std::numeric_limits< Scalar >::quiet_NaN());

      // actual_cache_size_hint: "cache_size_hint" is just a
      // suggestion.  TSQR determines the cache block size itself;
      // this remembers it so we can print it out later.
      size_t actual_cache_size_hint;
      // Run time (in seconds, as a double-precision floating-point
      // value) for TSQR on this MPI node.
      double tsqr_timing;

      if (which == "MpiTbbTSQR")
        {
#ifdef HAVE_KOKKOSTSQR_TBB
          using Teuchos::RCP;
          typedef TSQR::TBB::TbbTsqr< Ordinal, Scalar > node_tsqr_type;
          typedef TSQR::DistTsqr< Ordinal, Scalar > dist_tsqr_type;
          typedef Tsqr< Ordinal, Scalar, node_tsqr_type, dist_tsqr_type > tsqr_type;

          RCP< node_tsqr_type > nodeTsqr (new node_tsqr_type (num_cores, cache_size_hint));
          RCP< dist_tsqr_type > distTsqr (new dist_tsqr_type (scalarComm));
          tsqr_type tsqr (nodeTsqr, distTsqr);

          // Run the benchmark.
          tsqr_timing =
            do_tsqr_benchmark< tsqr_type, TimerType > (which, tsqr, scalarComm, A_local,
                                                       A_copy, Q_local, R, ntrials,
                                                       contiguousCacheBlocks,
                                                       human_readable, b_debug);

          // Save the "actual" cache block size
          actual_cache_size_hint = tsqr.cache_size_hint();
#else
          throw std::logic_error("TSQR not built with Intel TBB support");
#endif // HAVE_KOKKOSTSQR_TBB
        }
      else if (which == "MpiSeqTSQR")
        {
          using Teuchos::RCP;
          typedef SequentialTsqr< Ordinal, Scalar > node_tsqr_type;
          typedef TSQR::DistTsqr< Ordinal, Scalar > dist_tsqr_type;
          typedef Tsqr< Ordinal, Scalar, node_tsqr_type, dist_tsqr_type > tsqr_type;

          // Set up TSQR.
          RCP< node_tsqr_type > nodeTsqr (new node_tsqr_type (cache_size_hint));
          RCP< dist_tsqr_type > distTsqr (new dist_tsqr_type (scalarComm));
          tsqr_type tsqr (nodeTsqr, distTsqr);

          // Run the benchmark.
          tsqr_timing =
            do_tsqr_benchmark< tsqr_type, TimerType > (which, tsqr, scalarComm, A_local,
                                                       A_copy, Q_local, R, ntrials,
                                                       contiguousCacheBlocks,
                                                       human_readable, b_debug);
          // Save the "actual" cache block size
          actual_cache_size_hint = tsqr.cache_size_hint();
        }
      else
        throw std::logic_error("Unknown TSQR implementation type \"" + which + "\"");

      // Find the min and max TSQR timing on all processors.
      const double min_tsqr_timing = scalarComm->globalMin (tsqr_timing);
      const double max_tsqr_timing = scalarComm->globalMax (tsqr_timing);

      // Print the results on Proc 0.
      if (my_rank == 0)
        {
          if (human_readable)
            {
              std::string human_readable_name;

              if (which == "MpiSeqTSQR")
                human_readable_name = "MPI parallel / cache-blocked TSQR";
              else if (which == "MpiTbbTSQR")
                {
#ifdef HAVE_KOKKOSTSQR_TBB
                  human_readable_name = "MPI parallel / TBB parallel / cache-blocked TSQR";
#else
                  throw std::logic_error("TSQR not built with Intel TBB support");
#endif // HAVE_KOKKOSTSQR_TBB
                }
              else
                throw std::logic_error("Unknown TSQR implementation type \"" + which + "\"");

              cout << human_readable_name << ":" << endl
                   << "Scalar type: " << scalarTypeName << endl
                   << "# rows: " << nrows_global << endl
                   << "# columns: " << ncols << endl
                   << "# MPI processes: " << nprocs << endl;

#ifdef HAVE_KOKKOSTSQR_TBB
              if (which == "MpiTbbTSQR")
                cout << "# cores per process: " << num_cores << endl;
#endif // HAVE_KOKKOSTSQR_TBB

              cout << "Cache size hint in bytes: " << actual_cache_size_hint << endl
                   << "contiguous cache blocks? " << contiguousCacheBlocks << endl
                   << "# trials: " << ntrials << endl
                   << "Min total time (s) over all MPI processes: "
                   << min_tsqr_timing << endl
                   << "Max total time (s) over all MPI processes: "
                   << max_tsqr_timing << endl
                   << endl;
            }
          else
            {
              if (printFieldNames)
                {
                  cout << "%"
                       << "method"
                       << ",scalarType"
                       << ",globalNumRows"
                       << ",numCols"
                       << ",numProcs"
                       << ",numCores"
                       << ",cacheSizeHint"
                       << ",contiguousCacheBlocks"
                       << ",numTrials"
                       << ",minTiming"
                       << ",maxTiming"
                       << endl;
                }
              cout << which
                   << "," << scalarTypeName
                   << "," << nrows_global
                   << "," << ncols
                   << "," << nprocs;
#ifdef HAVE_KOKKOSTSQR_TBB
              if (which == "MpiTbbTSQR")
                cout << "," << num_cores;
              else
                cout << ",1";
#else
              cout << ",1";
#endif // HAVE_KOKKOSTSQR_TBB
              cout << "," << actual_cache_size_hint
                   << "," << contiguousCacheBlocks
                   << "," << ntrials
                   << "," << min_tsqr_timing
                   << "," << max_tsqr_timing
                   << endl;
            }
        }
    }


  } // namespace Test
} // namespace TSQR

#endif // __TSQR_Test_TsqrTest_hpp