/usr/include/trilinos/Tsqr_Random_GlobalMatrix.hpp is in libtrilinos-tpetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __Tsqr_Random_GlobalMatrix_hpp
#define __Tsqr_Random_GlobalMatrix_hpp
#include "Tsqr_Matrix.hpp"
#include "Tsqr_Random_MatrixGenerator.hpp"
#include "Tsqr_RMessenger.hpp"
#include <Teuchos_BLAS.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <algorithm>
#include <functional>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <vector>
namespace TSQR {
namespace Random {
template<class MatrixViewType>
static void
scaleMatrix (MatrixViewType& A,
const typename MatrixViewType::scalar_type& denom)
{
typedef typename MatrixViewType::ordinal_type ordinal_type;
typedef typename MatrixViewType::scalar_type scalar_type;
const ordinal_type nrows = A.nrows();
const ordinal_type ncols = A.ncols();
const ordinal_type lda = A.lda();
if (nrows == lda) { // A is stored contiguously.
const ordinal_type nelts = nrows * ncols;
scalar_type* const A_ptr = A.get ();
for (ordinal_type k = 0; k < nelts; ++k) {
A_ptr[k] /= denom;
}
}
else { // Each column of A is stored contiguously.
for (ordinal_type j = 0; j < ncols; ++j) {
scalar_type* const A_j = &A(0,j);
for (ordinal_type i = 0; i < nrows; ++i) {
A_j[i] /= denom;
}
}
}
}
template< class MatrixViewType, class Generator >
void
randomGlobalMatrix (Generator* const pGenerator,
MatrixViewType& A_local,
const typename Teuchos::ScalarTraits< typename MatrixViewType::scalar_type >::magnitudeType singular_values[],
MessengerBase< typename MatrixViewType::ordinal_type >* const ordinalMessenger,
MessengerBase< typename MatrixViewType::scalar_type >* const scalarMessenger)
{
using Teuchos::NO_TRANS;
using std::vector;
typedef typename MatrixViewType::ordinal_type ordinal_type;
typedef typename MatrixViewType::scalar_type scalar_type;
const bool b_local_debug = false;
const int rootProc = 0;
const int nprocs = ordinalMessenger->size();
const int myRank = ordinalMessenger->rank();
Teuchos::BLAS<ordinal_type, scalar_type> blas;
const ordinal_type nrowsLocal = A_local.nrows();
const ordinal_type ncols = A_local.ncols();
// Theory: Suppose there are P processors. Proc q wants an m_q by n
// component of the matrix A, which we write as A_q. On Proc 0, we
// generate random m_q by n orthogonal matrices Q_q (in explicit
// form), and send Q_q to Proc q. The m by n matrix [Q_0; Q_1; ...;
// Q_{P-1}] is not itself orthogonal. However, the m by n matrix
// Q = [Q_0 / P; Q_1 / P; ...; Q_{P-1} / P] is orthogonal:
//
// \sum_{q = 0}^{P-1} (Q_q^T * Q_q) / P = I.
if (myRank == rootProc)
{
typedef Random::MatrixGenerator< ordinal_type, scalar_type, Generator > matgen_type;
matgen_type matGen (*pGenerator);
// Generate a random ncols by ncols upper triangular matrix
// R with the given singular values.
Matrix< ordinal_type, scalar_type > R (ncols, ncols, scalar_type(0));
matGen.fill_random_R (ncols, R.get(), R.lda(), singular_values);
// Broadcast R to all the processors.
scalarMessenger->broadcast (R.get(), ncols*ncols, rootProc);
// Generate (for myself) a random nrowsLocal x ncols
// orthogonal matrix, stored in explicit form.
Matrix< ordinal_type, scalar_type > Q_local (nrowsLocal, ncols);
matGen.explicit_Q (nrowsLocal, ncols, Q_local.get(), Q_local.lda());
// Scale the (local) orthogonal matrix by the number of
// processors P, to make the columns of the global matrix Q
// orthogonal. (Otherwise the norm of each column will be P
// instead of 1.)
const scalar_type P = static_cast< scalar_type > (nprocs);
// Do overflow check. If casting P back to scalar_type
// doesn't produce the same value as nprocs, the cast
// overflowed. We take the real part, because scalar_type
// might be complex.
if (nprocs != static_cast<int> (Teuchos::ScalarTraits<scalar_type>::real (P)))
throw std::runtime_error ("Casting nprocs to Scalar failed");
scaleMatrix (Q_local, P);
// A_local := Q_local * R
blas.GEMM (NO_TRANS, NO_TRANS, nrowsLocal, ncols, ncols,
scalar_type(1), Q_local.get(), Q_local.lda(),
R.get(), R.lda(),
scalar_type(0), A_local.get(), A_local.lda());
for (int recvProc = 1; recvProc < nprocs; ++recvProc)
{
// Ask the receiving processor how big (i.e., how many rows)
// its local component of the matrix is.
ordinal_type nrowsRemote = 0;
ordinalMessenger->recv (&nrowsRemote, 1, recvProc, 0);
if (b_local_debug)
{
std::ostringstream os;
os << "For Proc " << recvProc << ": local block is "
<< nrowsRemote << " by " << ncols << std::endl;
std::cerr << os.str();
}
// Make sure Q_local is big enough to hold the data for
// the current receiver proc.
Q_local.reshape (nrowsRemote, ncols);
// Compute a random nrowsRemote * ncols orthogonal
// matrix Q_local, for the current receiving processor.
matGen.explicit_Q (nrowsRemote, ncols, Q_local.get(), Q_local.lda());
// Send Q_local to the current receiving processor.
scalarMessenger->send (Q_local.get(), nrowsRemote*ncols, recvProc, 0);
}
}
else
{
// Receive the R factor from Proc 0. There's only 1 R
// factor for all the processes.
Matrix< ordinal_type, scalar_type > R (ncols, ncols, scalar_type (0));
scalarMessenger->broadcast (R.get(), ncols*ncols, rootProc);
// Q_local (nrows_local by ncols, random orthogonal matrix)
// will be received from Proc 0, where it was generated.
const ordinal_type recvSize = nrowsLocal * ncols;
Matrix< ordinal_type, scalar_type > Q_local (nrowsLocal, ncols);
// Tell Proc 0 how many rows there are in the random orthogonal
// matrix I want to receive from Proc 0.
ordinalMessenger->send (&nrowsLocal, 1, rootProc, 0);
// Receive the orthogonal matrix from Proc 0.
scalarMessenger->recv (Q_local.get(), recvSize, rootProc, 0);
// Scale the (local) orthogonal matrix by the number of
// processors, to make the global matrix Q orthogonal.
const scalar_type P = static_cast< scalar_type > (nprocs);
// Do overflow check. If casting P back to scalar_type
// doesn't produce the same value as nprocs, the cast
// overflowed. We take the real part, because scalar_type
// might be complex.
if (nprocs != static_cast<int> (Teuchos::ScalarTraits<scalar_type>::real (P)))
throw std::runtime_error ("Casting nprocs to Scalar failed");
scaleMatrix (Q_local, P);
// A_local := Q_local * R
blas.GEMM (NO_TRANS, NO_TRANS, nrowsLocal, ncols, ncols,
scalar_type(1), Q_local.get(), Q_local.lda(),
R.get(), R.lda(),
scalar_type(0), A_local.get(), A_local.lda());
}
}
} // namespace Random
} // namespace TSQR
#endif // __Tsqr_Random_GlobalMatrix_hpp
|