This file is indexed.

/usr/include/trilinos/Tsqr_Random_GlobalMatrix.hpp is in libtrilinos-tpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __Tsqr_Random_GlobalMatrix_hpp
#define __Tsqr_Random_GlobalMatrix_hpp

#include "Tsqr_Matrix.hpp"
#include "Tsqr_Random_MatrixGenerator.hpp"
#include "Tsqr_RMessenger.hpp"

#include <Teuchos_BLAS.hpp>
#include <Teuchos_ScalarTraits.hpp>

#include <algorithm>
#include <functional>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <vector>


namespace TSQR {
  namespace Random {

    template<class MatrixViewType>
    static void
    scaleMatrix (MatrixViewType& A,
                 const typename MatrixViewType::scalar_type& denom)
    {
      typedef typename MatrixViewType::ordinal_type ordinal_type;
      typedef typename MatrixViewType::scalar_type scalar_type;

      const ordinal_type nrows = A.nrows();
      const ordinal_type ncols = A.ncols();
      const ordinal_type lda = A.lda();

      if (nrows == lda) { // A is stored contiguously.
        const ordinal_type nelts = nrows * ncols;
        scalar_type* const A_ptr = A.get ();
        for (ordinal_type k = 0; k < nelts; ++k) {
          A_ptr[k] /= denom;
        }
      }
      else { // Each column of A is stored contiguously.
        for (ordinal_type j = 0; j < ncols; ++j) {
          scalar_type* const A_j = &A(0,j);
          for (ordinal_type i = 0; i < nrows; ++i) {
            A_j[i] /= denom;
          }
        }
      }
    }

    template< class MatrixViewType, class Generator >
    void
    randomGlobalMatrix (Generator* const pGenerator,
                        MatrixViewType& A_local,
                        const typename Teuchos::ScalarTraits< typename MatrixViewType::scalar_type >::magnitudeType singular_values[],
                        MessengerBase< typename MatrixViewType::ordinal_type >* const ordinalMessenger,
                        MessengerBase< typename MatrixViewType::scalar_type >* const scalarMessenger)
    {
      using Teuchos::NO_TRANS;
      using std::vector;
      typedef typename MatrixViewType::ordinal_type ordinal_type;
      typedef typename MatrixViewType::scalar_type scalar_type;


      const bool b_local_debug = false;

      const int rootProc = 0;
      const int nprocs = ordinalMessenger->size();
      const int myRank = ordinalMessenger->rank();
      Teuchos::BLAS<ordinal_type, scalar_type> blas;

      const ordinal_type nrowsLocal = A_local.nrows();
      const ordinal_type ncols = A_local.ncols();

      // Theory: Suppose there are P processors.  Proc q wants an m_q by n
      // component of the matrix A, which we write as A_q.  On Proc 0, we
      // generate random m_q by n orthogonal matrices Q_q (in explicit
      // form), and send Q_q to Proc q.  The m by n matrix [Q_0; Q_1; ...;
      // Q_{P-1}] is not itself orthogonal.  However, the m by n matrix
      // Q = [Q_0 / P; Q_1 / P; ...; Q_{P-1} / P] is orthogonal:
      //
      // \sum_{q = 0}^{P-1} (Q_q^T * Q_q) / P = I.

      if (myRank == rootProc)
        {
          typedef Random::MatrixGenerator< ordinal_type, scalar_type, Generator > matgen_type;
          matgen_type matGen (*pGenerator);

          // Generate a random ncols by ncols upper triangular matrix
          // R with the given singular values.
          Matrix< ordinal_type, scalar_type > R (ncols, ncols, scalar_type(0));
          matGen.fill_random_R (ncols, R.get(), R.lda(), singular_values);

          // Broadcast R to all the processors.
          scalarMessenger->broadcast (R.get(), ncols*ncols, rootProc);

          // Generate (for myself) a random nrowsLocal x ncols
          // orthogonal matrix, stored in explicit form.
          Matrix< ordinal_type, scalar_type > Q_local (nrowsLocal, ncols);
          matGen.explicit_Q (nrowsLocal, ncols, Q_local.get(), Q_local.lda());

          // Scale the (local) orthogonal matrix by the number of
          // processors P, to make the columns of the global matrix Q
          // orthogonal.  (Otherwise the norm of each column will be P
          // instead of 1.)
          const scalar_type P = static_cast< scalar_type > (nprocs);
          // Do overflow check.  If casting P back to scalar_type
          // doesn't produce the same value as nprocs, the cast
          // overflowed.  We take the real part, because scalar_type
          // might be complex.
          if (nprocs != static_cast<int> (Teuchos::ScalarTraits<scalar_type>::real (P)))
            throw std::runtime_error ("Casting nprocs to Scalar failed");

          scaleMatrix (Q_local, P);

          // A_local := Q_local * R
          blas.GEMM (NO_TRANS, NO_TRANS, nrowsLocal, ncols, ncols,
                     scalar_type(1), Q_local.get(), Q_local.lda(),
                     R.get(), R.lda(),
                     scalar_type(0), A_local.get(), A_local.lda());

          for (int recvProc = 1; recvProc < nprocs; ++recvProc)
            {
              // Ask the receiving processor how big (i.e., how many rows)
              // its local component of the matrix is.
              ordinal_type nrowsRemote = 0;
              ordinalMessenger->recv (&nrowsRemote, 1, recvProc, 0);

              if (b_local_debug)
                {
                  std::ostringstream os;
                  os << "For Proc " << recvProc << ": local block is "
                     << nrowsRemote << " by " << ncols << std::endl;
                  std::cerr << os.str();
                }

              // Make sure Q_local is big enough to hold the data for
              // the current receiver proc.
              Q_local.reshape (nrowsRemote, ncols);

              // Compute a random nrowsRemote * ncols orthogonal
              // matrix Q_local, for the current receiving processor.
              matGen.explicit_Q (nrowsRemote, ncols, Q_local.get(), Q_local.lda());

              // Send Q_local to the current receiving processor.
              scalarMessenger->send (Q_local.get(), nrowsRemote*ncols, recvProc, 0);
            }
        }
      else
        {
          // Receive the R factor from Proc 0.  There's only 1 R
          // factor for all the processes.
          Matrix< ordinal_type, scalar_type > R (ncols, ncols, scalar_type (0));
          scalarMessenger->broadcast (R.get(), ncols*ncols, rootProc);

          // Q_local (nrows_local by ncols, random orthogonal matrix)
          // will be received from Proc 0, where it was generated.
          const ordinal_type recvSize = nrowsLocal * ncols;
          Matrix< ordinal_type, scalar_type > Q_local (nrowsLocal, ncols);

          // Tell Proc 0 how many rows there are in the random orthogonal
          // matrix I want to receive from Proc 0.
          ordinalMessenger->send (&nrowsLocal, 1, rootProc, 0);

          // Receive the orthogonal matrix from Proc 0.
          scalarMessenger->recv (Q_local.get(), recvSize, rootProc, 0);

          // Scale the (local) orthogonal matrix by the number of
          // processors, to make the global matrix Q orthogonal.
          const scalar_type P = static_cast< scalar_type > (nprocs);
          // Do overflow check.  If casting P back to scalar_type
          // doesn't produce the same value as nprocs, the cast
          // overflowed.  We take the real part, because scalar_type
          // might be complex.
          if (nprocs != static_cast<int> (Teuchos::ScalarTraits<scalar_type>::real (P)))
            throw std::runtime_error ("Casting nprocs to Scalar failed");
          scaleMatrix (Q_local, P);

          // A_local := Q_local * R
          blas.GEMM (NO_TRANS, NO_TRANS, nrowsLocal, ncols, ncols,
                     scalar_type(1), Q_local.get(), Q_local.lda(),
                     R.get(), R.lda(),
                     scalar_type(0), A_local.get(), A_local.lda());
        }
    }
  } // namespace Random
} // namespace TSQR

#endif // __Tsqr_Random_GlobalMatrix_hpp