/usr/include/trilinos/Tsqr_MgsTest.hpp is in libtrilinos-tpetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_Test_MgsTest_hpp
#define __TSQR_Test_MgsTest_hpp
#include <Tsqr_ConfigDefs.hpp>
#include <Tsqr_Mgs.hpp>
#ifdef HAVE_KOKKOSTSQR_TBB
# include <TbbTsqr_TbbMgs.hpp>
#endif // HAVE_KOKKOSTSQR_TBB
#include <Tsqr_TestSetup.hpp>
#include <Tsqr_GlobalVerify.hpp>
#include <Tsqr_printGlobalMatrix.hpp>
#include <Tsqr_verifyTimerConcept.hpp>
#include <Teuchos_RCP.hpp>
#include <algorithm>
#include <sstream>
#include <limits>
#include <iostream>
#include <stdexcept>
#include <utility>
namespace TSQR {
namespace Test {
static std::string
mgs_human_readable_name (const std::string& which)
{
if (which == "MpiSeqMGS")
return std::string ("MPI parallel / sequential MGS");
else if (which == "MpiTbbMGS")
{
#ifdef HAVE_KOKKOSTSQR_TBB
return std::string ("MPI parallel / TBB parallel MGS");
#else
throw std::logic_error("MGS not built with Intel TBB support");
#endif // HAVE_KOKKOSTSQR_TBB
}
else
throw std::logic_error("Unknown MGS implementation type \"" + which + "\"");
}
template< class MgsType >
class MgsVerifier {
public:
typedef MgsType mgs_type;
typedef typename MgsType::ordinal_type ordinal_type;
typedef typename MgsType::scalar_type scalar_type;
typedef Matrix< ordinal_type, scalar_type > matrix_type;
typedef MessengerBase< scalar_type > messenger_type;
typedef Teuchos::RCP< messenger_type > messenger_ptr;
static void
verify (mgs_type& orthogonalizer,
const messenger_ptr& messenger,
matrix_type& Q_local,
matrix_type& R,
const bool b_debug = false)
{
using std::cerr;
using std::endl;
// Factor the (copy of the) matrix. On output, the explicit Q
// factor (of A_local) is in Q_local and the R factor is in R.
orthogonalizer.mgs (Q_local.nrows(), Q_local.ncols(),
Q_local.get(), Q_local.lda(),
R.get(), R.lda());
if (b_debug)
{
messenger->barrier();
if (messenger->rank() == 0)
cerr << "-- Finished MGS::mgs" << endl;
}
}
};
template< class Ordinal, class Scalar, class Generator >
void
verifyMgs (const std::string& which,
Generator& generator,
const Ordinal nrows_global,
const Ordinal ncols,
const Teuchos::RCP< MessengerBase< Ordinal > >& ordinalComm,
const Teuchos::RCP< MessengerBase< Scalar > >& scalarComm,
const int num_cores,
const bool human_readable,
const bool b_debug)
{
typedef typename Teuchos::ScalarTraits< Scalar >::magnitudeType magnitude_type;
using std::cerr;
using std::cout;
using std::endl;
const bool b_extra_debug = false;
const int nprocs = scalarComm->size();
const int my_rank = scalarComm->rank();
if (b_debug)
{
scalarComm->barrier();
if (my_rank == 0)
cerr << "mgs_verify:" << endl;
scalarComm->barrier();
}
const Ordinal nrows_local = numLocalRows (nrows_global, my_rank, nprocs);
// Set up storage for the test problem
Matrix< Ordinal, Scalar > A_local (nrows_local, ncols);
if (std::numeric_limits< Scalar >::has_quiet_NaN)
A_local.fill (std::numeric_limits< Scalar >::quiet_NaN());
Matrix< Ordinal, Scalar > R (ncols, ncols, Scalar(0));
// Generate the test problem.
distributedTestProblem (generator, A_local, ordinalComm.get(), scalarComm.get());
if (b_debug)
{
scalarComm->barrier();
if (my_rank == 0)
cerr << "-- Generated test problem." << endl;
}
// Make sure that the test problem (the matrix to factor) was
// distributed correctly.
if (b_extra_debug && b_debug)
{
if (my_rank == 0)
cerr << "Test matrix A:" << endl;
scalarComm->barrier();
printGlobalMatrix (cerr, A_local, scalarComm.get(), ordinalComm.get());
scalarComm->barrier();
}
// Factoring the matrix stored in A_local overwrites it, so we
// copy A_local into Q_local. MGS orthogonalization does not
// support contiguously stored cache blocks, unlike TSQR, so we
// don't have to consider whether or not to rearrange cache
// blocks here (unlike with TSQR).
Matrix< Ordinal, Scalar > Q_local (A_local);
if (b_debug)
{
scalarComm->barrier();
if (my_rank == 0)
cerr << "-- Starting verification" << endl;
}
if (which == "MpiTbbMGS")
{
#ifdef HAVE_KOKKOSTSQR_TBB
typedef TSQR::TBB::TbbMgs< Ordinal, Scalar > mgs_type;
mgs_type mgser (scalarComm);
MgsVerifier< mgs_type >::verify (mgser, scalarComm, Q_local, R, b_debug);
#else
throw std::logic_error("MGS not built with Intel TBB support");
#endif // HAVE_KOKKOSTSQR_TBB
}
else if (which == "MpiSeqMGS")
{
typedef MGS< Ordinal, Scalar > mgs_type;
mgs_type mgser (scalarComm);
MgsVerifier< mgs_type >::verify (mgser, scalarComm, Q_local, R, b_debug);
}
else
throw std::logic_error ("Invalid MGS implementation type \"" + which + "\"");
// Print out the Q and R factors
if (b_extra_debug && b_debug)
{
if (my_rank == 0)
cerr << endl << "Q factor:" << endl;
scalarComm->barrier ();
printGlobalMatrix (cerr, A_local, scalarComm.get(), ordinalComm.get());
scalarComm->barrier ();
if (my_rank == 0)
{
cerr << endl << "R factor:" << endl;
print_local_matrix (cerr, ncols, ncols, R.get(), R.lda());
cerr << endl;
}
scalarComm->barrier ();
}
// Test accuracy of the resulting factorization
std::vector< magnitude_type > results =
global_verify (nrows_local, ncols, A_local.get(), A_local.lda(),
Q_local.get(), Q_local.lda(), R.get(), R.lda(),
scalarComm.get());
if (b_debug)
{
scalarComm->barrier();
if (my_rank == 0)
cerr << "-- Finished global_verify" << endl;
scalarComm->barrier();
}
// Print the results on Proc 0.
if (my_rank == 0)
{
if (human_readable)
{
cout << mgs_human_readable_name(which) << endl
<< "# rows = " << nrows_global << endl
<< "# columns = " << ncols << endl
<< "# MPI processes = " << nprocs << endl;
if (which == "MpiTbbTSQR")
cout << "# cores per process = " << num_cores << endl;
cout << "Absolute residual $\\|A - Q*R\\|_2: "
<< results[0] << endl
<< "Absolute orthogonality $\\|I - Q^T*Q\\|_2$: "
<< results[1] << endl
<< "Test matrix norm $\\| A \\|_F$: "
<< results[2] << endl
<< endl;
}
else
{
cout << which
<< "," << nrows_global
<< "," << ncols
<< "," << nprocs;
if (which == "MpiTbbTSQR")
cout << "," << num_cores << endl;
cout << "," << results[0]
<< "," << results[1]
<< "," << results[2]
<< endl;
}
}
}
template< class MgsBase, class TimerType >
static double // returns timing in s
do_mgs_benchmark (MgsBase& orthogonalizer,
Matrix< typename MgsBase::ordinal_type, typename MgsBase::scalar_type >& Q_local,
Matrix< typename MgsBase::ordinal_type, typename MgsBase::scalar_type >& R,
const int num_trials,
const bool human_readable)
{
typedef typename MgsBase::ordinal_type ordinal_type;
using std::cout;
TSQR::Test::verifyTimerConcept< TimerType >();
const ordinal_type nrows_local = Q_local.nrows();
const ordinal_type ncols = Q_local.ncols();
// Benchmark MGS for ntrials trials. The answer (the numerical
// results of the factorization) is only valid if ntrials == 1,
// but this is a benchmark and not a verification routine. Call
// mgs_verify() if you want to determine whether MGS computes
// the right answer.
//
// Name of timer doesn't matter here; we only need the timing.
TimerType timer("MGS");
timer.start();
for (int trial_num = 0; trial_num < num_trials; ++trial_num)
{
// Orthogonalize the columns of A using MGS. Don't worry about
// the fact that we're overwriting the input; this is a
// benchmark, not a numerical verification test. (We have the
// latter implemented as mgs_verify() in this file.)
orthogonalizer.mgs (nrows_local, ncols, Q_local.get(),
Q_local.lda(), R.get(), R.lda());
// Timings in debug mode likely won't make sense, because
// Proc 0 is outputting the debug messages to cerr.
// Nevertheless, we don't put any "if(b_debug)" calls in the
// timing loop.
}
// Compute the resulting total time (in seconds) to execute
// num_trials runs of :mgs(). The time may differ on different
// MPI processes.
const double mgs_timing = timer.stop();
return mgs_timing;
}
template< class Ordinal, class Scalar, class Generator, class TimerType >
void
benchmarkMgs (const std::string& which,
Generator& generator,
const int ntrials,
const Ordinal nrows_global,
const Ordinal ncols,
const Teuchos::RCP< MessengerBase< Ordinal > >& ordinalComm,
const Teuchos::RCP< MessengerBase< Scalar > >& scalarComm,
const int num_cores,
const bool human_readable,
const bool b_debug)
{
typedef typename Teuchos::ScalarTraits< Scalar >::magnitudeType magnitude_type;
using std::cerr;
using std::cout;
using std::endl;
TSQR::Test::verifyTimerConcept< TimerType >();
const bool b_extra_debug = false;
const int nprocs = scalarComm->size();
const int my_rank = scalarComm->rank();
if (b_debug)
{
scalarComm->barrier();
if (my_rank == 0)
cerr << "mgs_benchmark:" << endl;
scalarComm->barrier();
}
const Ordinal nrows_local = numLocalRows (nrows_global, my_rank, nprocs);
// Set up storage for the test problem.
Matrix<Ordinal, Scalar> A_local (nrows_local, ncols);
if (std::numeric_limits< Scalar >::has_quiet_NaN)
A_local.fill (std::numeric_limits< Scalar >::quiet_NaN());
Matrix<Ordinal, Scalar> R (ncols, ncols, Scalar(0));
// Generate the test problem.
distributedTestProblem (generator, A_local, ordinalComm.get(), scalarComm.get());
if (b_debug)
{
scalarComm->barrier();
if (my_rank == 0)
cerr << "-- Generated test problem." << endl;
}
// Make sure that the test problem (the matrix to factor) was
// distributed correctly.
if (b_extra_debug && b_debug)
{
if (my_rank == 0)
cerr << "Test matrix A:" << endl;
scalarComm->barrier ();
printGlobalMatrix (cerr, A_local, scalarComm.get(), ordinalComm.get());
scalarComm->barrier ();
}
// Factoring the matrix stored in A_local overwrites it, so we
// make a copy of A_local. MGS orthogonalization does not
// support contiguously stored cache blocks, unlike TSQR, so we
// don't have to consider whether or not to rearrange cache
// blocks here (unlike with TSQR).
Matrix< Ordinal, Scalar > Q_local (A_local);
if (b_debug)
{
scalarComm->barrier();
if (my_rank == 0)
cerr << "-- Starting timing loop" << endl;
}
// Set up MGS and run the benchmark.
double mgs_timing; // Total run time in seconds of all ntrials trials
if (which == "MpiTbbMGS")
{
#ifdef HAVE_KOKKOSTSQR_TBB
typedef TSQR::TBB::TbbMgs< Ordinal, Scalar > mgs_type;
mgs_type mgser (scalarComm);
mgs_timing = do_mgs_benchmark< mgs_type, TimerType > (mgser, Q_local, R,
ntrials, human_readable);
#else
throw std::logic_error("MGS not built with Intel TBB support");
#endif // HAVE_KOKKOSTSQR_TBB
}
else if (which == "MpiSeqMGS")
{
typedef MGS< Ordinal, Scalar > mgs_type;
mgs_type mgser (scalarComm);
mgs_timing = do_mgs_benchmark< mgs_type, TimerType > (mgser, Q_local, R,
ntrials, human_readable);
}
else
throw std::logic_error ("Invalid MGS implementation type \"" + which + "\"");
if (b_debug)
{
scalarComm->barrier();
if (my_rank == 0)
cerr << "-- Finished timing loop" << endl;
}
// Find the min and max MGS timing on all processors.
const double min_mgs_timing = scalarComm->globalMin (mgs_timing);
const double max_mgs_timing = scalarComm->globalMax (mgs_timing);
if (b_debug)
{
scalarComm->barrier();
if (my_rank == 0)
cerr << "-- Computed min and max timings" << endl;
}
// Print the results on Proc 0.
if (my_rank == 0)
{
if (human_readable)
{
cout << mgs_human_readable_name(which) << ":" << endl
<< "# rows = " << nrows_global << endl
<< "# columns = " << ncols << endl
<< "# MPI processes = " << nprocs << endl;
if (which == "MpiTbbTSQR")
cout << "# cores per process = " << num_cores << endl;
cout << "# trials = " << ntrials << endl
<< "Min total time (s) over all MPI processes = "
<< min_mgs_timing << endl
<< "Max total time (s) over all MPI processes = "
<< max_mgs_timing << endl
<< endl;
}
else
{
cout << which
<< "," << nrows_global
<< "," << ncols
<< "," << nprocs;
if (which == "MpiTbbTSQR")
cout << "," << num_cores << endl;
cout << "," << ntrials
<< "," << min_mgs_timing
<< "," << max_mgs_timing
<< endl;
}
}
}
} // namespace Test
} // namespace TSQR
#endif // __TSQR_Test_MgsTest_hpp
|