This file is indexed.

/usr/include/trilinos/Tsqr_KokkosNodeTsqrTest.hpp is in libtrilinos-tpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_Test_KokkosNodeTsqrTest_hpp
#define __TSQR_Test_KokkosNodeTsqrTest_hpp

#include <Tsqr_nodeTestProblem.hpp>
#include <Tsqr_verifyTimerConcept.hpp>
#include <Tsqr_Random_NormalGenerator.hpp>
#include <Tsqr_LocalVerify.hpp>
#include <Tsqr_Matrix.hpp>
#include <Tsqr_KokkosNodeTsqr.hpp>

#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_Time.hpp>
#include <Teuchos_TypeNameTraits.hpp>

#include <algorithm>
#include <iostream>
#include <limits>
#include <stdexcept>

namespace TSQR {
  namespace Test {

    /// \fn verifyKokkosNodeTsqr
    /// \brief Test accuracy of KokkosNodeTsqr's QR factorization.
    ///
    /// Test the accuracy of KokkosNodeTsqr's QR factorization on a
    /// numRows by numCols matrix, and print results to stdout.
    ///
    /// \param node [in] The Kokkos Node instance on which to execute
    ///   in parallel.
    /// \param gen [in/out] Pseudorandom number generator for the
    ///   normal(0,1) distribution.
    /// \param numRows [in] Number of rows in the test matrix.
    /// \param numCols [in] Number of columns in the test matrix.
    /// \param numPartitions [in] Number of parallel partitions (must
    ///   be a positive integer).
    /// \param cacheSizeHint [in] Cache size hint, in bytes.  Zero
    ///   means pick a reasonable default.
    /// \param contiguousCacheBlocks [in] Whether cache blocks in the
    ///   matrix to factor should be stored contiguously.
    /// \param printFieldNames [in] If humanReadable is true, this is
    ///   ignored; otherwise, whether to print a line of field names
    ///   before the line of output.
    /// \param humanReadable [in] Whether to print output that is easy
    ///   for humans to read, or instead to print output that is easy
    ///   for a script to parse.
    /// \param debug [in] Whether to print extra debugging output to
    ///   stderr.
    ///
    template<class Ordinal, class Scalar, class NodeType>
    void
    verifyKokkosNodeTsqr (const Teuchos::RCP<NodeType>& node,
                          TSQR::Random::NormalGenerator<Ordinal, Scalar>& gen,
                          const Ordinal numRows,
                          const Ordinal numCols,
                          const int numPartitions,
                          const size_t cacheSizeHint,
                          const bool contiguousCacheBlocks,
                          const bool printFieldNames,
                          const bool humanReadable,
                          const bool debug)
    {
      using Teuchos::ParameterList;
      using Teuchos::parameterList;
      using Teuchos::RCP;
      using Teuchos::TypeNameTraits;
      using std::cerr;
      using std::cout;
      using std::endl;
      typedef TSQR::KokkosNodeTsqr<Ordinal, Scalar, NodeType> node_tsqr_type;
      typedef typename node_tsqr_type::FactorOutput factor_output_type;
      typedef Teuchos::ScalarTraits<Scalar> STS;
      typedef typename STS::magnitudeType magnitude_type;
      // typedef Teuchos::Time timer_type;
      typedef Matrix<Ordinal, Scalar> matrix_type;
      typedef MatView<Ordinal, Scalar> mat_view_type;

      const std::string scalarTypeName = TypeNameTraits<Scalar>::name();

      // Set up TSQR implementation.
      RCP<ParameterList> params = parameterList ("Intranode TSQR");
      params->set ("Cache Size Hint", cacheSizeHint);
      params->set ("Num Tasks", numPartitions);
      node_tsqr_type actor (params);
      actor.setNode (node);
      if (debug)
        {
          cerr << actor.description() << endl;
          if (contiguousCacheBlocks)
            cerr << "-- Test with contiguous cache blocks" << endl;
        }

      // Allocate space for test problem.
      matrix_type A (numRows, numCols);
      matrix_type A_copy (numRows, numCols);
      matrix_type Q (numRows, numCols);
      matrix_type R (numCols, numCols);
      if (std::numeric_limits<Scalar>::has_quiet_NaN)
        {
          A.fill (std::numeric_limits<Scalar>::quiet_NaN());
          A_copy.fill (std::numeric_limits<Scalar>::quiet_NaN());
          Q.fill (std::numeric_limits<Scalar>::quiet_NaN());
          R.fill (std::numeric_limits<Scalar>::quiet_NaN());
        }
      else
        {
          A.fill (STS::zero());
          A_copy.fill (STS::zero());
          Q.fill (STS::zero());
          R.fill (STS::zero());
        }
      const Ordinal lda = numRows;
      const Ordinal ldq = numRows;
      const Ordinal ldr = numCols;

      // Create a test problem
      nodeTestProblem (gen, numRows, numCols, A.get(), A.lda(), true);

      if (debug)
        {
          cerr << "-- Generated test problem" << endl;
          // Don't print the matrix if it's too big.
          if (A.nrows() <= 30)
            {
              cerr << "A = " << endl;
              print_local_matrix (cerr, A.nrows(), A.ncols(),
                                  A.get(), A.lda());
              cerr << endl << endl;
            }
        }

      // Copy A into A_copy, since TSQR overwrites the input.  If
      // specified, rearrange the data in A_copy so that the data in
      // each cache block is contiguously stored.
      if (! contiguousCacheBlocks) {
        deep_copy (A_copy, A);
        if (debug) {
          cerr << "-- Copied test problem from A into A_copy" << endl;
          // Don't print the matrix if it's too big.
          if (A_copy.nrows() <= 30) {
            cerr << "A_copy = " << endl;
            print_local_matrix (cerr, A_copy.nrows(), A_copy.ncols(),
                                A_copy.get(), A_copy.lda());
            cerr << endl << endl;
          }
        }
      }
      else {
        actor.cache_block (numRows, numCols, A_copy.get(), A.get(), A.lda());
        if (debug) {
          cerr << "-- Reorganized test matrix to have contiguous "
            "cache blocks" << endl;
          // Don't print the matrix if it's too big.
          if (A_copy.nrows() <= 30) {
            cerr << "A_copy = " << endl;
            print_local_matrix (cerr, A_copy.nrows(), A_copy.ncols(),
                                A_copy.get(), A_copy.lda());
            cerr << endl << endl;
          }
        }

        // Verify cache blocking, when in debug mode.
        if (debug) {
          matrix_type A2 (numRows, numCols);
          if (std::numeric_limits<Scalar>::has_quiet_NaN) {
            A2.fill (std::numeric_limits<Scalar>::quiet_NaN());
          }

          actor.un_cache_block (numRows, numCols, A2.get(), A2.lda(), A_copy.get());
          if (matrix_equal (A, A2)) {
            if (debug)
              cerr << "-- Cache blocking test succeeded!" << endl;
          }
          else {
            if (debug) {
              cerr << "*** Cache blocking test failed! A != A2 ***"
                   << endl << endl;
              // Don't print the matrices if they are too big.
              if (A.nrows() <= 30 && A2.nrows() <= 30) {
                cerr << "A = " << endl;
                print_local_matrix (cerr, A.nrows(), A.ncols(),
                                    A.get(), A.lda());
                cerr << endl << "A2 = " << endl;
                print_local_matrix (cerr, A2.nrows(), A2.ncols(),
                                    A2.get(), A2.lda());
                cerr << endl;
              }
            }
            throw std::logic_error ("Cache blocking failed");
          }
        }
      }

      // Fill R with zeros, since the factorization may not
      // necessarily overwrite the strict lower triangle of R.
      if (debug) {
        cerr << "-- Filling R with zeros" << endl;
      }
      R.fill (STS::zero());

      if (debug) {
        cerr << "-- Calling factor()" << endl;
      }

      // Factor the matrix and compute the explicit Q factor
      factor_output_type factor_output =
        actor.factor (numRows, numCols, A_copy.get(), A_copy.lda(),
                      R.get(), R.lda(), contiguousCacheBlocks);
      if (debug) {
        cerr << "-- Finished factor()" << endl;
        cerr << "-- Calling explicit_Q()" << endl;
      }

      // KokkosNodeTsqr isn't designed to be used by itself, so we
      // have to help it along by filling the top ncols x ncols
      // entries with the first ncols columns of the identity matrix.
      {
        mat_view_type Q_top =
          actor.top_block (Q.view (), contiguousCacheBlocks);
        mat_view_type Q_top_square (Q_top.ncols(), Q_top.ncols(),
                                    Q_top.get(), Q_top.lda());
        Q_top_square.fill (STS::zero ());
        for (Ordinal j = 0; j < Q_top_square.ncols(); ++j) {
          Q_top_square(j,j) = STS::one ();
        }
      }
      actor.explicit_Q (numRows, numCols, A_copy.get(), A_copy.lda(),
                        factor_output, numCols, Q.get(), Q.lda(),
                        contiguousCacheBlocks);
      if (debug) {
        cerr << "-- Finished explicit_Q()" << endl;
      }

      // "Un"-cache-block the output Q (the explicit Q factor), if
      // contiguous cache blocks were used.  This is only necessary
      // because local_verify() doesn't currently support contiguous
      // cache blocks.
      if (contiguousCacheBlocks) {
        // Use A_copy as temporary storage for un-cache-blocking Q.
        actor.un_cache_block (numRows, numCols, A_copy.get(),
                              A_copy.lda(), Q.get());
        deep_copy (Q, A_copy);
        if (debug) {
          cerr << "-- Un-cache-blocked output Q factor" << endl;
        }
      }

      // Print out the Q and R factors in debug mode.
      if (debug) {
        // Don't print the matrix if it's too big.
        if (Q.nrows() <= 30) {
          cerr << endl << "-- Q factor:" << endl;
          print_local_matrix (cerr, Q.nrows(), Q.ncols(),
                              Q.get(), Q.lda());
          cerr << endl << endl;
        }
        cerr << endl << "-- R factor:" << endl;
        print_local_matrix (cerr, numCols, numCols, R.get(), R.lda());
        cerr << endl;
      }

      // Validate the factorization
      std::vector<magnitude_type> results =
        local_verify (numRows, numCols, A.get(), lda,
                      Q.get(), ldq, R.get(), ldr);
      if (debug)
        cerr << "-- Finished local_verify" << endl;

      // Print the results
      if (humanReadable) {
        cout << "KokkosNodeTsqr:" << endl
             << "Scalar type: " << scalarTypeName << endl
             << "# rows: " << numRows << endl
             << "# columns: " << numCols << endl
             << "# partitions: " << numPartitions << endl
             << "cache size hint (revised) in bytes: " << actor.cache_size_hint() << endl
             << "contiguous cache blocks? " << contiguousCacheBlocks << endl
             << "Absolute residual $\\|A - Q*R\\|_2$: "
             << results[0] << endl
             << "Absolute orthogonality $\\|I - Q^T*Q\\|_2$: "
             << results[1] << endl
             << "Test matrix norm $\\| A \\|_F$: "
             << results[2] << endl
             << endl;
      }
      else {
        if (printFieldNames) {
          const char prefix[] = "%";
          cout << prefix
               << "method"
               << ",scalarType"
               << ",numRows"
               << ",numCols"
               << ",numPartitions"
               << ",cacheSizeHint"
               << ",contiguousCacheBlocks"
               << ",absFrobResid"
               << ",absFrobOrthog"
               << ",frobA"
               << endl;
        }
        cout << "KokkosNodeTsqr"
             << "," << scalarTypeName
             << "," << numRows
             << "," << numCols
             << "," << numPartitions
             << "," << actor.cache_size_hint()
             << "," << contiguousCacheBlocks
             << "," << results[0]
             << "," << results[1]
             << "," << results[2]
             << endl;
      }
    }

    /// \fn benchmarkKokkosNodeTsqr
    /// \brief Test performance of KokkosNodeTsqr's QR factorization.
    ///
    /// Compare the performance of KokkosNodeTsqr's QR factorization
    /// to that of LAPACK's QR factorization.  Print results to
    /// stdout.
    ///
    /// \param node [in] The Kokkos Node instance on which to execute
    ///   in parallel.
    /// \param numTrials [in] Number of times to run the benchmark;
    ///   the timing result is cumulative over all trials.  Timing
    ///   over larger numbers of trials improves certainty of the
    ///   result.
    /// \param numRows [in] Number of rows in the test matrix.
    /// \param numCols [in] Number of columns in the test matrix.
    /// \param numPartitions [in] Number of parallel partitions (must
    ///   be a positive integer).
    /// \param cacheSizeHint [in] Cache size hint, in bytes.  Zero
    ///   means pick a reasonable default.
    /// \param contiguousCacheBlocks [in] Whether cache blocks in the
    ///   matrix to factor should be stored contiguously.
    /// \param printFieldNames [in] If humanReadable is true, this is
    ///   ignored; otherwise, whether to print a line of field names
    ///   before the line of output.
    /// \param humanReadable [in] Whether to print output that is easy
    ///   for humans to read, or instead to print output that is easy
    ///   for a script to parse.
    ///
    template<class Ordinal, class Scalar, class NodeType>
    void
    benchmarkKokkosNodeTsqr (const Teuchos::RCP<NodeType>& node,
                             const int numTrials,
                             const Ordinal numRows,
                             const Ordinal numCols,
                             const int numPartitions,
                             const size_t cacheSizeHint,
                             const bool contiguousCacheBlocks,
                             const bool printFieldNames,
                             const bool humanReadable)
    {
      using Teuchos::ParameterList;
      using Teuchos::parameterList;
      using Teuchos::RCP;
      using Teuchos::TypeNameTraits;
      using std::cerr;
      using std::cout;
      using std::endl;
      typedef TSQR::KokkosNodeTsqr<Ordinal, Scalar, NodeType> node_tsqr_type;
      typedef typename node_tsqr_type::FactorOutput factor_output_type;
      typedef Teuchos::ScalarTraits<Scalar> STS;
      // typedef typename STS::magnitudeType magnitude_type;
      typedef Teuchos::Time timer_type;
      typedef Matrix<Ordinal, Scalar> matrix_type;

      const std::string scalarTypeName = TypeNameTraits<Scalar>::name();

      // Pseudorandom normal(0,1) generator.  Default seed is OK,
      // because this is a benchmark, not an accuracy test.
      TSQR::Random::NormalGenerator<Ordinal, Scalar> gen;

      // Set up TSQR implementation.
      RCP<ParameterList> params = parameterList ("Intranode TSQR");
      params->set ("Cache Size Hint", cacheSizeHint);
      params->set ("Num Tasks", numPartitions);
      node_tsqr_type actor (params);
      actor.setNode (node);

      // Allocate space for test problem.
      matrix_type A (numRows, numCols);
      matrix_type A_copy (numRows, numCols);
      matrix_type Q (numRows, numCols);
      matrix_type R (numCols, numCols);

      // Fill R with zeros, since the factorization may not overwrite
      // the strict lower triangle of R.
      R.fill (STS::zero());

      // Create a test problem
      nodeTestProblem (gen, numRows, numCols, A.get(), A.lda(), false);

      // Copy A into A_copy, since TSQR overwrites the input.  If
      // specified, rearrange the data in A_copy so that the data in
      // each cache block is contiguously stored.
      if (contiguousCacheBlocks) {
        actor.cache_block (numRows, numCols, A_copy.get(), A.get(), A.lda());
      } else {
        deep_copy (A_copy, A);
      }

      // Do a few timing runs and throw away the results, just to warm
      // up any libraries that do autotuning.
      const int numWarmupRuns = 5;
      for (int warmupRun = 0; warmupRun < numWarmupRuns; ++warmupRun) {
        // Factor the matrix in-place in A_copy, and extract the
        // resulting R factor into R.
        factor_output_type factor_output =
          actor.factor (numRows, numCols, A_copy.get(), A_copy.lda(),
                        R.get(), R.lda(), contiguousCacheBlocks);
        // Compute the explicit Q factor (which was stored
        // implicitly in A_copy and factor_output) and store in Q.
        // We don't need to un-cache-block the output, because we
        // aren't verifying it here.
        actor.explicit_Q (numRows, numCols, A_copy.get(), A_copy.lda(),
                          factor_output, numCols, Q.get(), Q.lda(),
                          contiguousCacheBlocks);
      }

      // Benchmark intranode TSQR for numTrials trials.
      //
      // Name of timer doesn't matter here; we only need the timing.
      timer_type timer("KokkosNodeTsqr");
      timer.start();
      for (int trialNum = 0; trialNum < numTrials; ++trialNum) {
        // Factor the matrix in-place in A_copy, and extract the
        // resulting R factor into R.
        factor_output_type factor_output =
          actor.factor (numRows, numCols, A_copy.get(), A_copy.lda(),
                        R.get(), R.lda(), contiguousCacheBlocks);
        // Compute the explicit Q factor (which was stored
        // implicitly in A_copy and factor_output) and store in Q.
        // We don't need to un-cache-block the output, because we
        // aren't verifying it here.
        actor.explicit_Q (numRows, numCols, A_copy.get(), A_copy.lda(),
                          factor_output, numCols, Q.get(), Q.lda(),
                          contiguousCacheBlocks);
      }
      const double timing = timer.stop();

      // Print the results
      if (humanReadable) {
        cout << "KokkosNodeTsqr cumulative timings:" << endl
             << "Scalar type: " << scalarTypeName << endl
             << "# rows = " << numRows << endl
             << "# columns = " << numCols << endl
             << "# partitions: " << numPartitions << endl
             << "Cache size hint (in bytes) = " << actor.cache_size_hint() << endl
             << "Contiguous cache blocks? " << contiguousCacheBlocks << endl
             << "# trials = " << numTrials << endl
             << "Total time (s) = " << timing << endl;
      }
      else {
        if (printFieldNames) {
          const char prefix[] = "%";
          cout << prefix
               << "method"
               << ",scalarType"
               << ",numRows"
               << ",numCols"
               << ",numPartitions"
               << ",cacheSizeHint"
               << ",contiguousCacheBlocks"
               << ",numTrials"
               << ",timing"
               << endl;
        }

        // We don't include {min,max}_seq_apply_timing() here, because
        // those times don't benefit from the accuracy of benchmarking
        // for numTrials > 1.  Thus, it's misleading to include them
        // with tbb_tsqr_timing, the total time over numTrials trials.
        cout << "KokkosNodeTsqr"
             << "," << scalarTypeName
             << "," << numRows
             << "," << numCols
             << "," << numPartitions
             << "," << actor.cache_size_hint()
             << "," << contiguousCacheBlocks
             << "," << numTrials
             << "," << timing
             << endl;
      }
    }
  } // namespace Test
} // namespace TSQR

#endif // __TSQR_Test_KokkosNodeTsqrTest_hpp