This file is indexed.

/usr/include/trilinos/Tsqr_GlobalVerify.hpp is in libtrilinos-tpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_Tsqr_GlobalVerify_hpp
#define __TSQR_Tsqr_GlobalVerify_hpp

#include <Tsqr_LocalVerify.hpp>
#include <Tsqr_MessengerBase.hpp>
#include <Tsqr_Util.hpp>

#include <Teuchos_BLAS.hpp>
#include <Teuchos_ScalarTraits.hpp>

#include <utility> // std::pair
#include <vector>


namespace TSQR {

  /// \class GlobalSummer
  ///
  /// Compute a global sum of (magnitudes of) Scalar values, returning
  /// a magnitude_type.
  ///
  /// \note Unfortunately, you need C++11 support to have default
  ///   template arguments of template functions.  Otherwise we would
  ///   make this a template function and set the default value of
  ///   isComplex to Teuchos::ScalarTraits<Scalar>::isComplex.  Also,
  ///   C++ (before C++11) doesn't like partial specialization of
  ///   template functions.  So, we had to make this a class.
  template<class Scalar, bool isComplex = Teuchos::ScalarTraits< Scalar >::isComplex>
  class GlobalSummer {
  public:
    typedef Scalar scalar_type;
    typedef Teuchos::ScalarTraits< Scalar > STS;
    typedef typename STS::magnitudeType magnitude_type;

    static magnitude_type
    sum (const Scalar& localSum,
         MessengerBase<Scalar>* const messenger);
  };

  // Complex-arithmetic "forward declaration"
  template<class Scalar>
  class GlobalSummer<Scalar, true> {
  public:
    typedef Scalar scalar_type;
    typedef Teuchos::ScalarTraits<Scalar> STS;
    typedef typename STS::magnitudeType magnitude_type;

    static magnitude_type
    sum (const Scalar& localSum,
         MessengerBase<Scalar>* const messenger);
  };

  // Real-arithmetic "forward declaration"
  template<class Scalar>
  class GlobalSummer<Scalar, false> {
  public:
    typedef Scalar scalar_type;
    typedef Teuchos::ScalarTraits<Scalar> STS;
    typedef typename STS::magnitudeType magnitude_type;

    static magnitude_type
    sum (const Scalar& localSum,
         MessengerBase<Scalar>* const messenger);
  };

  // Complex-arithmetic case
  template<class Scalar>
  typename GlobalSummer<Scalar, true>::magnitude_type
  GlobalSummer<Scalar, true>::sum (const Scalar& localSum,
                                   MessengerBase<Scalar>* const messenger)
  {
    // In order to use a MessengerBase<Scalar> on magnitude_type
    // values, we have to convert local_result to a Scalar, and then
    // convert back the result.  We convert by setting the real
    // component of the Scalar to the magnitude_type.  This isn't
    // guaranteed to work if magnitude_type has a greater dynamic
    // range than Scalar.  That's possible, but that's not how we do
    // things with ScalarTraits< std::complex< T > >, and that's not
    // how LAPACK does it either, so it's fair to assume that
    // magnitude_type and the individual components of Scalar have the
    // same dynamic range.
    const magnitude_type localSumAbs = STS::magnitude (localSum);
    const Scalar localSumAsScalar (localSumAbs, magnitude_type(0));
    const Scalar globalSumAsScalar = messenger->globalSum (localSumAsScalar);
    const magnitude_type globalSum = STS::magnitude (globalSumAsScalar);
    return globalSum;
  }

  // Real-arithmetic case
  template<class Scalar>
  typename GlobalSummer<Scalar, false>::magnitude_type
  GlobalSummer<Scalar, false>::sum (const Scalar& localSum,
                                    MessengerBase<Scalar>* const messenger)
  {
    const Scalar localSumAsScalar (localSum);
    const Scalar globalSumAsScalar = messenger->globalSum (localSumAsScalar);
    const magnitude_type globalSum = STS::magnitude (globalSumAsScalar);
    return globalSum;
  }

  template<class LocalOrdinal, class Scalar>
  typename Teuchos::ScalarTraits<Scalar>::magnitudeType
  global_frobenius_norm (const LocalOrdinal nrows_local,
                         const LocalOrdinal ncols,
                         const Scalar A_local[],
                         const LocalOrdinal lda_local,
                         MessengerBase<Scalar>* const messenger)
  {
    typedef Teuchos::ScalarTraits<Scalar> STS;
    typedef typename STS::magnitudeType magnitude_type;

    // FIXME (mfh 20 Apr 2010) This is currently implemented using an
    // all-reduction.  This may result in different processors getting
    // slightly different answers, due to floating-point arithmetic
    // roundoff.  We might not want this if we are using this function
    // to test a routine.

    magnitude_type localResult (0);
    for (LocalOrdinal j = 0; j < ncols; j++)
      {
        const Scalar* const cur_col = &A_local[j*lda_local];
        for (LocalOrdinal i = 0; i < nrows_local; ++i)
          {
            const magnitude_type abs_xi = STS::magnitude (cur_col[i]);
            localResult = localResult + abs_xi * abs_xi;
          }
      }
    // GlobalSummmer() is a hack to let us use a Scalar - type
    // MessengerBase with magnitude_type inputs and outputs.
    // Otherwise we would need to carry around a
    // MessengerBase<magnitude_type> object as well.
    const magnitude_type globalResult =
      GlobalSummer<Scalar, STS::isComplex>::sum (localResult, messenger);
    return sqrt (globalResult);
  }

  template<class LocalOrdinal, class Scalar>
  std::vector<typename Teuchos::ScalarTraits<Scalar>::magnitudeType>
  global_verify (const LocalOrdinal nrows_local,
                 const LocalOrdinal ncols,
                 const Scalar A_local[],
                 const LocalOrdinal lda_local,
                 const Scalar Q_local[],
                 const LocalOrdinal ldq_local,
                 const Scalar R[],
                 const LocalOrdinal ldr,
                 MessengerBase<Scalar>* const messenger)
  {
    typedef Teuchos::ScalarTraits<Scalar> STS;
    typedef typename STS::magnitudeType magnitude_type;
    using Teuchos::CONJ_TRANS;
    using Teuchos::NO_TRANS;
    using Teuchos::TRANS;
    using std::make_pair;
    using std::pair;
    using std::vector;

    const magnitude_type ZERO (0);
    const magnitude_type ONE (1);
    Teuchos::BLAS<LocalOrdinal, Scalar> blas;

    //
    // Compute $\| I - Q^T * Q \|_F$
    //

    // Compute Q_local^T * Q_local (this node's component of Q^T*Q)
    vector<Scalar> Temp (ncols*ncols, STS::nan());
    const LocalOrdinal ld_temp = ncols;

    if (STS::isComplex)
      blas.GEMM (CONJ_TRANS, NO_TRANS, ncols, ncols, nrows_local,
                 ONE, Q_local, ldq_local, Q_local, ldq_local,
                 ZERO, &Temp[0], ld_temp);
    else
      blas.GEMM (TRANS, NO_TRANS, ncols, ncols, nrows_local,
                 ONE, Q_local, ldq_local, Q_local, ldq_local,
                 ZERO, &Temp[0], ld_temp);

    // Reduce over all the processors to get the global Q^T*Q in Temp2.
    vector<Scalar> Temp2 (ncols*ncols, STS::nan());
    messenger->globalVectorSum (&Temp[0], &Temp2[0], ncols*ncols);

    // Compute I-(Q^T*Q) redundantly on all processors
    for (LocalOrdinal j = 0; j < ncols; j++)
      Temp2[j + j*ld_temp] = ONE - Temp2[j + j*ld_temp];

    // Compute the Frobenius norm of I - Q^T*Q, redundantly on all processors.
    const magnitude_type Orthog_F =
      local_frobenius_norm (ncols, ncols, &Temp2[0], ld_temp);

    // Compute the Frobenius norm of A.
    const magnitude_type A_F =
      global_frobenius_norm (nrows_local, ncols, &A_local[0], lda_local, messenger);

    //
    // Compute $\| A - Q*R \|_F$
    //

    vector<Scalar> Resid (nrows_local * ncols, STS::nan());
    const LocalOrdinal ld_resid = nrows_local;

    // Resid := A (deep copy)
    copy_matrix (nrows_local, ncols, &Resid[0], ld_resid, A_local, lda_local);

    // Resid := Resid - Q*R
    blas.GEMM (NO_TRANS, NO_TRANS, nrows_local, ncols, ncols,
               -ONE, Q_local, ldq_local, R, ldr,
               ONE, &Resid[0], ld_resid);

    const magnitude_type Resid_F =
      global_frobenius_norm (nrows_local, ncols, &Resid[0], ld_resid, messenger);

    vector<magnitude_type> results (3);
    results[0] = Resid_F;
    results[1] = Orthog_F;
    results[2] = A_F;
    return results;
  }

} // namespace TSQR

#endif // __TSQR_Tsqr_GlobalVerify_hpp