/usr/include/trilinos/Tsqr_CombineDefault.hpp is in libtrilinos-tpetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
/// \file Tsqr_CombineDefault.hpp
/// \brief Default copy-in, copy-out implementation of \c TSQR::Combine.
///
#ifndef __TSQR_CombineDefault_hpp
#define __TSQR_CombineDefault_hpp
#include <Teuchos_ScalarTraits.hpp>
#include <Tsqr_ApplyType.hpp>
#include <Teuchos_LAPACK.hpp>
#include <Tsqr_Matrix.hpp>
#include <algorithm>
#include <sstream>
#include <stdexcept>
namespace TSQR {
/// \class CombineDefault
/// \brief Default copy-in, copy-out implementation of \c TSQR::Combine.
///
/// This is a default implementation of TSQR::Combine, which
/// TSQR::Combine may use (via a "has-a" relationship) if it doesn't
/// have a specialized, faster implementation. This default
/// implementation copies the inputs into a contiguous matrix
/// buffer, operates on them there via standard LAPACK calls, and
/// copies out the results again. It truncates to zero any values
/// that should be zero because of the input's structure (e.g.,
/// upper triangular).
template<class Ordinal, class Scalar>
class CombineDefault {
private:
typedef Teuchos::LAPACK<Ordinal, Scalar> lapack_type;
public:
typedef Ordinal ordinal_type;
typedef Scalar scalar_type;
typedef typename Teuchos::ScalarTraits< Scalar >::magnitudeType magnitude_type;
typedef ConstMatView<Ordinal, Scalar> const_mat_view_type;
typedef MatView<Ordinal, Scalar> mat_view_type;
CombineDefault () {}
/// \brief Does the R factor have a nonnegative diagonal?
///
/// CombineDefault implements a QR factorization (of a matrix with
/// a special structure). Some, but not all, QR factorizations
/// produce an R factor whose diagonal may include negative
/// entries. This Boolean tells you whether CombineDefault
/// promises to compute an R factor whose diagonal entries are all
/// nonnegative.
static bool QR_produces_R_factor_with_nonnegative_diagonal()
{
return false; // lapack_type::QR_produces_R_factor_with_nonnegative_diagonal();
}
void
factor_first (const Ordinal nrows,
const Ordinal ncols,
Scalar A[],
const Ordinal lda,
Scalar tau[],
Scalar work[])
{
// info must be an int, not a LocalOrdinal, since LAPACK
// routines always (???) use int for the INFO output argument,
// whether or not they were built with 64-bit integer index
// support.
int info = 0;
lapack_.GEQR2 (nrows, ncols, A, lda, tau, work, &info);
if (info != 0)
{
std::ostringstream os;
os << "TSQR::CombineDefault::factor_first(): LAPACK\'s "
<< "GEQR2 failed with INFO = " << info;
throw std::logic_error (os.str());
}
}
void
apply_first (const ApplyType& applyType,
const Ordinal nrows,
const Ordinal ncols_C,
const Ordinal ncols_A,
const Scalar A[],
const Ordinal lda,
const Scalar tau[],
Scalar C[],
const Ordinal ldc,
Scalar work[])
{
int info = 0;
// LAPACK has the nice feature that it only reads the first
// letter of input strings that specify things like which side
// to which to apply the operator, or whether to apply the
// transpose. That means we can make the strings more verbose,
// as in "Left" here for the SIDE parameter.
lapack_.UNM2R ('L', (applyType.toString ().c_str ())[0],
nrows, ncols_C, ncols_A,
A, lda, tau,
C, ldc, work, &info);
if (info != 0) {
std::ostringstream os;
os << "TSQR::CombineDefault::apply_first(): LAPACK\'s "
<< "UNM2R failed with INFO = " << info;
throw std::logic_error (os.str());
}
}
void
apply_inner (const ApplyType& apply_type,
const Ordinal m,
const Ordinal ncols_C,
const Ordinal ncols_Q,
const Scalar A[],
const Ordinal lda,
const Scalar tau[],
Scalar C_top[],
const Ordinal ldc_top,
Scalar C_bot[],
const Ordinal ldc_bot,
Scalar work[])
{
const Ordinal numRows = m + ncols_Q;
A_buf_.reshape (numRows, ncols_Q);
A_buf_.fill (Scalar(0));
const_mat_view_type A_bot (m, ncols_Q, A, lda);
mat_view_type A_buf_bot (m, ncols_Q, &A_buf_(ncols_Q, 0), A_buf_.lda());
deep_copy (A_buf_bot, A_bot);
C_buf_.reshape (numRows, ncols_C);
C_buf_.fill (Scalar(0));
mat_view_type C_buf_top (ncols_Q, ncols_C, &C_buf_(0, 0), C_buf_.lda());
mat_view_type C_buf_bot (m, ncols_C, &C_buf_(ncols_Q, 0), C_buf_.lda());
mat_view_type C_top_view (ncols_Q, ncols_C, C_top, ldc_top);
mat_view_type C_bot_view (m, ncols_C, C_bot, ldc_bot);
deep_copy (C_buf_top, C_top_view);
deep_copy (C_buf_bot, C_bot_view);
int info = 0;
lapack_.UNM2R ('L', (apply_type.toString ().c_str ())[0],
numRows, ncols_C, ncols_Q,
A_buf_.get(), A_buf_.lda(), tau,
C_buf_.get(), C_buf_.lda(),
work, &info);
if (info != 0) {
std::ostringstream os;
os << "TSQR::CombineDefault::apply_inner(): LAPACK\'s "
<< "UNM2R failed with INFO = " << info;
throw std::logic_error (os.str());
}
// Copy back the results.
deep_copy (C_top_view, C_buf_top);
deep_copy (C_bot_view, C_buf_bot);
}
void
factor_inner (const Ordinal m,
const Ordinal n,
Scalar R[],
const Ordinal ldr,
Scalar A[],
const Ordinal lda,
Scalar tau[],
Scalar work[])
{
const Ordinal numRows = m + n;
A_buf_.reshape (numRows, n);
A_buf_.fill (Scalar(0));
// R might be a view of the upper triangle of a cache block, but
// we only want to include the upper triangle in the
// factorization. Thus, only copy the upper triangle of R into
// the appropriate place in the buffer.
copy_upper_triangle (n, n, &A_buf_(0, 0), A_buf_.lda(), R, ldr);
copy_matrix (m, n, &A_buf_(n, 0), A_buf_.lda(), A, lda);
int info = 0;
lapack_.GEQR2 (numRows, n, A_buf_.get(), A_buf_.lda(), tau, work, &info);
if (info != 0)
throw std::logic_error ("TSQR::CombineDefault: GEQR2 failed");
// Copy back the results. R might be a view of the upper
// triangle of a cache block, so only copy into the upper
// triangle of R.
copy_upper_triangle (n, n, R, ldr, &A_buf_(0, 0), A_buf_.lda());
copy_matrix (m, n, A, lda, &A_buf_(n, 0), A_buf_.lda());
}
void
factor_pair (const Ordinal n,
Scalar R_top[],
const Ordinal ldr_top,
Scalar R_bot[],
const Ordinal ldr_bot,
Scalar tau[],
Scalar work[])
{
const Ordinal numRows = Ordinal(2) * n;
A_buf_.reshape (numRows, n);
A_buf_.fill (Scalar(0));
// Copy the inputs into the compute buffer. Only touch the
// upper triangles of R_top and R_bot, since they each may be
// views of some cache block (where the strict lower triangle
// contains things we don't want to include in the
// factorization).
copy_upper_triangle (n, n, &A_buf_(0, 0), A_buf_.lda(), R_top, ldr_top);
copy_upper_triangle (n, n, &A_buf_(n, 0), A_buf_.lda(), R_bot, ldr_bot);
int info = 0;
lapack_.GEQR2 (numRows, n, A_buf_.get(), A_buf_.lda(), tau, work, &info);
if (info != 0)
{
std::ostringstream os;
os << "TSQR::CombineDefault::factor_pair(): "
<< "GEQR2 failed with INFO = " << info;
throw std::logic_error (os.str());
}
// Copy back the results. Only read the upper triangles of the
// two n by n row blocks of A_buf_ (this means we don't have to
// zero out the strict lower triangles), and only touch the
// upper triangles of R_top and R_bot.
copy_upper_triangle (n, n, R_top, ldr_top, &A_buf_(0, 0), A_buf_.lda());
copy_upper_triangle (n, n, R_bot, ldr_bot, &A_buf_(n, 0), A_buf_.lda());
}
void
apply_pair (const ApplyType& apply_type,
const Ordinal ncols_C,
const Ordinal ncols_Q,
const Scalar R_bot[],
const Ordinal ldr_bot,
const Scalar tau[],
Scalar C_top[],
const Ordinal ldc_top,
Scalar C_bot[],
const Ordinal ldc_bot,
Scalar work[])
{
const Ordinal numRows = Ordinal(2) * ncols_Q;
A_buf_.reshape (numRows, ncols_Q);
A_buf_.fill (Scalar(0));
copy_upper_triangle (ncols_Q, ncols_Q,
&A_buf_(ncols_Q, 0), A_buf_.lda(),
R_bot, ldr_bot);
C_buf_.reshape (numRows, ncols_C);
copy_matrix (ncols_Q, ncols_C, &C_buf_(0, 0), C_buf_.lda(), C_top, ldc_top);
copy_matrix (ncols_Q, ncols_C, &C_buf_(ncols_Q, 0), C_buf_.lda(), C_bot, ldc_bot);
int info = 0;
lapack_.UNM2R ('L', (apply_type.toString ().c_str ())[0],
numRows, ncols_C, ncols_Q,
A_buf_.get(), A_buf_.lda(), tau,
C_buf_.get(), C_buf_.lda(),
work, &info);
if (info != 0) {
std::ostringstream os;
os << "TSQR::CombineDefault: UNM2R failed with INFO = " << info;
throw std::logic_error (os.str ());
}
// Copy back the results.
copy_matrix (ncols_Q, ncols_C, C_top, ldc_top, &C_buf_(0, 0), C_buf_.lda());
copy_matrix (ncols_Q, ncols_C, C_bot, ldc_bot, &C_buf_(ncols_Q, 0), C_buf_.lda());
}
private:
lapack_type lapack_;
Matrix<Ordinal, Scalar> A_buf_;
Matrix<Ordinal, Scalar> C_buf_;
};
} // namespace TSQR
#endif // __TSQR_CombineDefault_hpp
|