This file is indexed.

/usr/include/trilinos/Tsqr_CacheBlockingStrategy.hpp is in libtrilinos-tpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_CacheBlockingStrategy_hpp
#define __TSQR_CacheBlockingStrategy_hpp

#include <algorithm>
#include <limits>
#include <sstream>
#include <stdexcept>
#include <utility> // std::pair


namespace TSQR {

  /// \class CacheBlockingStrategy
  /// \brief Tells CacheBlocker how to block up a tall skinny matrix.
  /// \author Mark Hoemmen
  ///
  /// This "strategy object" helps CacheBlocker decide how to block up
  /// a given tall skinny matrix by row into cache blocks.  It knows
  /// how to find the location (row index) and number of rows of any
  /// cache block in the matrix.  You can use this either for
  /// parallelization (e.g., partitioning the matrix among processors
  /// in a way that respects cache blocks) or for \c SequentialTsqr
  /// (whose factor() routine iterates top-down through cache blocks,
  /// and whose apply() and explicit_Q() routines iterate bottom-up
  /// through cache blocks).
  ///
  /// The cache blocking strategy is formulated in terms of \c
  /// SequentialTsqr.  All intranode parallel TSQR implementations use
  /// either SequentialTsqr or an algorithm like it, so this
  /// formulation is general enough for our needs.
  template<class LocalOrdinal, class Scalar>
  class CacheBlockingStrategy {
  public:
    /// \brief Constructor
    ///
    /// The cache blocking strategy asks for a cache size hint.  The
    /// appropriate cache level to use depends on the bandwidth of
    /// each cache level, whether it is shared among cores, and other
    /// hardware-specific features that are hard for us to model or
    /// measure.  In general, though, if each CPU core has its own L2
    /// cache, it would be appropriate to use that cache's size.
    ///
    /// The cache size need not be exact, but picking too small or too
    /// large a value will make TSQR slower.  In practice, TSQR is not
    /// sensitive to this value.  The sizeOfScalar parameter affects
    /// performance, not correctness (more or less -- it should never
    /// be zero, for example).  It's OK for it to be a slight
    /// overestimate.  Being much too big may affect performance in
    /// the same way as an excessively small cache size hint, and
    /// being much too small may affect performance in the same way as
    /// an excessively big cache size hint.
    ///
    /// \param cacheSizeHint [in] Cache size hint in bytes.  This is
    ///   used to pick the number of rows in a cache block.  If zero,
    ///   we guess a reasonable value.  This is a hint only, not a
    ///   command; the strategy may revise this, but it will not
    ///   change the revised value (that is, \c cache_size_hint() is a
    ///   constant for this instance's lifetime).
    ///
    /// \param sizeOfScalar [in] The number of bytes required to store
    ///   a Scalar value.  This is used to compute the dimensions of
    ///   cache blocks.  If sizeof(Scalar) correctly reports the size
    ///   of the representation of Scalar in memory, you can use the
    ///   default.  The default is correct for float, double, and any
    ///   of various fixed-length structs (like double-double and
    ///   quad-double).  It should also work for std::complex<T> where
    ///   T is anything in the previous sentence's list.  It does
    ///   <it>not</it> work for arbitrary-precision types whose
    ///   storage is dynamically allocated, even if the amount of
    ///   storage is a constant.  In the latter case, you should
    ///   specify a nondefault value.
    ///
    /// \note If Scalar is an arbitrary-precision type whose
    ///   representation length can change at runtime, you should
    ///   construct a new CacheBlockingStrategy object whenever the
    ///   representation length changes.
    CacheBlockingStrategy (const size_t cacheSizeHint = 0,
                           const size_t sizeOfScalar = sizeof(Scalar)) :
      size_of_scalar_ (sizeOfScalar),
      cache_size_hint_ (default_cache_size_hint (cacheSizeHint, sizeOfScalar))
    {}

    //! Copy constructor
    CacheBlockingStrategy (const CacheBlockingStrategy& rhs) :
      size_of_scalar_ (rhs.size_of_scalar_),
      cache_size_hint_ (rhs.cache_size_hint())
    {}

    //! Assignment operator
    CacheBlockingStrategy& operator= (const CacheBlockingStrategy& rhs) {
      size_of_scalar_ = rhs.size_of_scalar_;
      cache_size_hint_ = rhs.cache_size_hint();
      return *this;
    }

    /// \brief The cache size hint in bytes.
    ///
    /// This may not necessarily equal the suggested cache size (input
    /// to the constructor).  We treat that as a hint rather than a
    /// command.
    ///
    /// \note It may make sense to vary the cache size hint at run
    ///   time, for automatic performance tuning (trying to guess the
    ///   optimal value) or adaptivity to varying load.  However, the
    ///   cache blocking strategy object must not change the cache
    ///   size hint during the object's lifetime, since that would
    ///   prevent correct manipulation of matrices with contiguously
    ///   stored cache blocks.  This is because cache block parameters
    ///   depend on the cache size hint.  Thus, client code may assume
    ///   that this method always returns the same value for the
    ///   lifetime of the strategy object.
    size_t cache_size_hint () const { return cache_size_hint_; }

    /// \brief Size of a Scalar object in bytes.
    ///
    /// See the constructor documentation for an explanation of why
    /// this may not necessarily be sizeof(Scalar).  It should be in
    /// most cases, however.
    size_t size_of_scalar () const { return size_of_scalar_; }

    //! True if and only if the two strategies are the same.
    bool operator== (const CacheBlockingStrategy& rhs) const {
      return cache_size_hint() == rhs.cache_size_hint() &&
        size_of_scalar() == rhs.size_of_scalar();
    }

    //! True if and only if the two strategies are not the same.
    bool operator!= (const CacheBlockingStrategy& rhs) const {
      return cache_size_hint() != rhs.cache_size_hint() ||
        size_of_scalar() != rhs.size_of_scalar();
    }

    /// \brief Pointer offset for the cache block with the given index.
    ///
    /// The pointer offset depends on whether cache blocks are stored
    /// contiguously in the matrix.  If the cache block index is out
    /// of range, the returned result is undefined.
    ///
    /// \param index [in] Zero-based index of the cache block.
    /// \param nrows [in] Number of rows in the matrix.
    /// \param ncols [in] Number of columns in the matrix.
    /// \param nrows_cache_block [in] The value returned by
    ///   \c cache_block_num_rows().
    /// \param contiguous_cache_blocks [in] Whether the cache
    ///   blocks in the matrix are stored contiguously.
    LocalOrdinal
    cache_block_offset (const LocalOrdinal index,
                        const LocalOrdinal nrows,
                        const LocalOrdinal ncols,
                        const LocalOrdinal nrows_cache_block,
                        const bool contiguous_cache_blocks) const
    {
      // Suppress compiler warning for the unused argument.
      (void) nrows;

      const LocalOrdinal my_row_start = index * nrows_cache_block;
      if (contiguous_cache_blocks)
        return my_row_start * ncols;
      else // the common case
        return my_row_start;
    }

    /// \brief Leading dimension (a.k.a. stride) of the cache block.
    ///
    /// If cache blocks are stored contiguously, their leading
    /// dimension may vary.  Otherwise, their leading dimension is
    /// just that of the whole matrix.
    ///
    /// \param index [in] Zero-based index of the cache block.
    /// \param nrows [in] Number of rows in the matrix.
    /// \param ncols [in] Number of columns in the matrix.
    /// \param lda [in] Leading dimension (a.k.a. stride) of
    ///   the matrix.
    /// \param nrows_cache_block [in] The value returned by
    ///   \c cache_block_num_rows().
    /// \param contiguous_cache_blocks [in] Whether the cache
    ///   blocks in the matrix are stored contiguously.
    LocalOrdinal
    cache_block_stride (const LocalOrdinal index,
                        const LocalOrdinal nrows,
                        const LocalOrdinal ncols,
                        const LocalOrdinal lda,
                        const LocalOrdinal nrows_cache_block,
                        const bool contiguous_cache_blocks) const
    {
      if (contiguous_cache_blocks)
        {
          std::pair<LocalOrdinal, LocalOrdinal> result =
            cache_block (index, nrows, ncols, nrows_cache_block);
          return result.second; // Number of rows in the cache block
        }
      else
        return lda;
    }

    /// \brief Start and size of cache block number \c index.
    ///
    /// \param index [in] Zero-based index of the cache block.
    /// \param nrows [in] Number of rows in the whole matrix.
    /// \param ncols [in] Number of columns in the whole matrix.
    /// \param nrows_cache_block [in] The value returned by
    ///   \c cache_block_num_rows().
    ///
    /// \return If the input \c index is in range: The starting row
    ///   index (zero-based) of the cache block, and the number of
    ///   rows in the cache block.  If the input \c index is out of
    ///   range, then (nrows, 0).
    std::pair<LocalOrdinal, LocalOrdinal>
    cache_block (const LocalOrdinal index,
                 const LocalOrdinal nrows,
                 const LocalOrdinal ncols,
                 const LocalOrdinal nrows_cache_block) const
    {
      // See the comments in num_cache_blocks() for an explanation how
      // the number of cache blocks is computed, so that no cache
      // block has fewer than ncols rows.
      const LocalOrdinal quotient = nrows / nrows_cache_block;
      const LocalOrdinal remainder = nrows - nrows_cache_block * quotient;
      LocalOrdinal my_row_start, my_nrows;

      my_row_start = index * nrows_cache_block;
      if (quotient == 0)
        { // There is only one cache block.
          if (index == 0)
            my_nrows = remainder;
          else
            my_nrows = 0; // Out-of-range block, therefore empty
        }
      else if (remainder < ncols)
        { // There are quotient cache blocks.
          if (index < 0)
            my_nrows = 0; // Out-of-range block, therefore empty
          else if (index < quotient - 1)
            my_nrows = nrows_cache_block;
          else if (index == quotient - 1)
            // The last cache block gets the leftover rows, so that no
            // cache block has fewer than ncols rows.
            my_nrows = nrows_cache_block + remainder;
          else
            my_nrows = 0; // Out-of-range block, therefore empty
        }
      else
        { // There are quotient+1 cache blocks.
          if (index < 0)
            my_nrows = 0; // Out-of-range block, therefore empty
          else if (index < quotient)
            my_nrows = nrows_cache_block;
          else if (index == quotient)
            // The last cache block has the leftover rows, which are
            // >= ncols and < nrows_cache_block.
            my_nrows = remainder;
          else
            my_nrows = 0; // Out-of-range block, therefore empty
        }
      return std::make_pair (my_row_start, my_nrows);
    }

    /// \brief Complete description of the cache block.
    ///
    /// "Complete" means that it includes the location as well as the
    /// layout of the cache block.  This lets you construct a view of
    /// the cache block right away, given a view of the whole matrix.
    ///
    /// \param index [in] Zero-based index of the cache block.
    /// \param nrows [in] Number of rows in the whole matrix.
    /// \param ncols [in] Number of columns in the whole matrix.
    /// \param lda [in] Leading dimension (a.k.a. stride) of
    ///   the whole matrix.
    /// \param nrows_cache_block [in] The value returned by
    ///   \c cache_block_num_rows().
    /// \param contiguous_cache_blocks [in] Whether the cache
    ///   blocks in the matrix are stored contiguously.
    ///
    /// \return Four LocalOrdinals: The starting row index, the number
    ///   of rows in the cache block, the pointer offset of the cache
    ///   block, and leading dimension of the cache block.
    ///
    /// \note This method has an \f$O(1)\f$ cost, so that
    ///   parallelization by calling this method repeatedly for a
    ///   sequence of cache block indices is not expensive.
    ///
    std::vector<LocalOrdinal>
    cache_block_details (const LocalOrdinal index,
                         const LocalOrdinal nrows,
                         const LocalOrdinal ncols,
                         const LocalOrdinal lda,
                         const LocalOrdinal nrows_cache_block,
                         const bool contiguous_cache_blocks) const
    {
      const std::pair<LocalOrdinal, LocalOrdinal> result =
        cache_block (index, nrows, ncols, nrows_cache_block);
      const LocalOrdinal my_row_start = result.first;
      const LocalOrdinal my_nrows = result.second;

      const LocalOrdinal offset =
        contiguous_cache_blocks ? my_row_start * ncols : my_row_start;
      const LocalOrdinal stride =
        contiguous_cache_blocks ? my_nrows : lda;

      std::vector<LocalOrdinal> retval (4);
      retval[0] = my_row_start;
      retval[1] = my_nrows;
      retval[2] = offset;
      retval[3] = stride;
      return retval;
    }

    /// \brief Total number of cache blocks in the matrix.
    ///
    /// The input matrix is nrows by ncols.  The suggested number of
    /// rows per cache block is nrows_cache_block, but some cache
    /// blocks may have more or less rows.  However, no cache block
    /// may have fewer than ncols rows.
    ///
    /// \param nrows [in] Number of rows in the matrix.
    /// \param ncols [in] Number of columns in the matrix.
    /// \param nrows_cache_block [in] The value returned by
    ///   \c cache_block_num_rows().
    ///
    /// \return Total number of cache blocks in the matrix.
    ///
    LocalOrdinal
    num_cache_blocks (const LocalOrdinal nrows,
                      const LocalOrdinal ncols,
                      const LocalOrdinal nrows_cache_block) const
    {
      const LocalOrdinal quotient = nrows / nrows_cache_block;
      const LocalOrdinal remainder = nrows - nrows_cache_block * quotient;

      if (quotient == 0)
        // If nrows < nrows_cache_block, then there is only one cache
        // block, which gets all the rows.
        return static_cast<LocalOrdinal>(1);
      else if (remainder < ncols)
        // Don't let the last cache block have fewer than ncols rows.
        // If it would, merge it with the cache block above it.
        return quotient;
      else
        // The last cache block has the leftover rows, which are >=
        // ncols and < nrows_cache_block.
        return quotient + 1;
    }

    /// \brief Number of rows in the top cache block.
    ///
    /// If we partition the nrows by ncols matrix A into [A_top;
    /// A_bot] with A_top being a cache block and A_bot being the rest
    /// of the matrix, return the number of rows that A_top should
    /// have.
    ///
    /// \param nrows [in] "Current" number of rows in the matrix.  We
    ///   write "current" because this method is meant to be called
    ///   recursively over the "rest" of the matrix, until the "rest"
    ///   of the matrix has no more rows (is "empty").
    ///
    /// \param ncols [in] Number of columns in the matrix.
    ///
    /// \param nrows_cache_block [in] The value returned by
    ///   \c cache_block_num_rows().
    ///
    /// \return # of rows in top cache block A_top
    LocalOrdinal
    top_block_split_nrows (const LocalOrdinal nrows,
                           const LocalOrdinal ncols,
                           const LocalOrdinal nrows_cache_block) const
    {
      // We want to partition the nrows by ncols matrix A into [A_top;
      // A_bot], where A_top has nrows_cache_block rows.  However, we
      // don't want A_bot to have less than ncols rows.  If it would,
      // then we partition A so that A_top has nrows rows and A_bot is
      // empty.
      if (nrows < nrows_cache_block + ncols)
        return nrows;
      else
        // Don't ask for a bigger cache block than there are rows in
        // the matrix left to process.
        return std::min (nrows_cache_block, nrows);
    }

    /// \brief Number of rows in the bottom cache block.
    ///
    /// If we partition the nrows by ncols matrix A into [A_top;
    /// A_bot] with A_bot being a cache block and A_top being the rest
    /// of the matrix, return the number of rows that A_bot should
    /// have.
    ///
    /// \param nrows [in] "Current" number of rows in the matrix.  We
    ///   write "current" because this method is meant to be called
    ///   recursively over the "rest" of the matrix, until the "rest"
    ///   of the matrix has no more rows (is "empty").
    /// \param ncols [in] Number of columns in the matrix.
    /// \param nrows_cache_block [in] The value returned by
    ///   \c cache_block_num_rows().
    ///
    /// \return # of rows in top cache block A_bot
    LocalOrdinal
    bottom_block_split_nrows (const LocalOrdinal nrows,
                              const LocalOrdinal ncols,
                              const LocalOrdinal nrows_cache_block) const
    {
      // We split off the bottom block using the same splitting as if
      // we had split off as many top blocks of nrows_cache_block rows
      // as permissible.  The last block may have fewer than
      // nrows_cache_block rows, but it may not have fewer than ncols
      // rows (since we don't want any cache block to have fewer rows
      // than columns).
      const LocalOrdinal quotient = nrows / nrows_cache_block;
      const LocalOrdinal remainder = nrows - quotient * nrows_cache_block;

      LocalOrdinal nrows_bottom;
      if (quotient == 0)
        nrows_bottom = remainder;
      else if (remainder < ncols)
        nrows_bottom = nrows_cache_block + remainder;
      else if (remainder >= ncols)
        nrows_bottom = remainder;
      else
        throw std::logic_error("Should never get here!");
      return nrows_bottom;
    }

    /// \brief Default or revised cache size hint in bytes.
    ///
    /// If the input is zero, return a default cache size in bytes.
    /// Otherwise, revise the given suggestion based on the size of
    /// the Scalar type.  The result need not equal the suggested
    /// cache size, even if the latter is nonzero.  Call \c
    /// cache_size_hint() after calling this method, in order to get
    /// the actual cache size that the cache blocking strategy will
    /// use.
    ///
    /// \param suggested_cache_size [in] Suggested size of the cache
    ///   in bytes.  A hint, not a command.
    /// \param sizeOfScalar [in] Size of the Scalar type in bytes.
    ///
    /// \return Default or revised cache size hint in bytes.
    size_t
    default_cache_size_hint (const size_t suggested_cache_size,
                             const size_t sizeOfScalar) const
    {
      // This is a somewhat arbitrary minimum.  However, our TSQR
      // implementation was optimized for matrices with 20 or fewer
      // columns, and we expect matrices with 10 columns.  Thus, it's
      // reasonable to base the minimum on requiring that the cache
      // blocks for a matrix with 10 columns have no fewer rows than
      // columns.  We base the minimum on explicit_Q() with such a
      // matrix: a cache block of Q (10 x 10), a cache block of C (10
      // x 10), a TAU array (length 10), and the top block of C
      // (C_top) (10 x 10 in this case, and n x n in general for a
      // matrix with n columns).  In this bound, the cache blocks are
      // only square because of the requirement that they have no
      // fewer rows than columns; normally, cache blocks have many
      // more rows than columns.
      const size_t min_cache_size = sizeOfScalar * (3*10*10 + 10);

      // 64 KB is a reasonable guess for the L2 cache size.  If Scalar
      // is huge, min_cache_size above might be bigger, so we account
      // for that with a max.  The type cast is necessary so that the
      // compiler can decide which specialization of std::max to use
      // (the one for size_t, in this case, rather than the one for
      // int, which is the implicit type of the integer constant).
      const size_t default_cache_size =
        std::max (min_cache_size, static_cast<size_t> (65536));

      // If the suggested cache size is less than the minimum, ignore
      // the suggestion and pick the minimum.
      return (suggested_cache_size == 0) ?
        default_cache_size : std::max (suggested_cache_size, min_cache_size);
    }

    /// \brief "Typical" number of rows per cache block.
    ///
    /// This is a function of the cache block size and the number of
    /// columns in the matrix.  Not all cache blocks (in particular,
    /// the last one) will have this number of rows, but "most" will
    /// (hence "typical").  The returned value applies to \c
    /// SequentialTsqr::factor(), \c SequentialTsqr::apply(), and \c
    /// SequentialTsqr::explicit_Q().  In particular, we choose the
    /// number of rows per cache block so that when applying the
    /// implicitly stored Q factor (returned by \c factor()) to a
    /// matrix C with the same number of columns as Q was on input to
    /// \c factor(), then two cache blocks (one of Q and the other of
    /// C) will fit in cache.  This is the typical case when using
    /// TSQR to orthogonalize vectors.
    ///
    /// \param ncols [in] Number of columns in the matrix whose QR
    ///   factorization is to be computed using an intranode TSQR
    ///   implementation.
    LocalOrdinal
    cache_block_num_rows (const LocalOrdinal ncols) const
    {
      // Suppose the cache can hold W words (of size size_of_scalar_
      // bytes each).  We have to use the same number of rows per
      // cache block for both the factorization and applying the Q
      // factor.
      //
      // The factorization requires a working set of
      // ncols*(nrows_cache_block + ncols) + 2*ncols words:
      //
      // 1. One ncols by ncols R factor (not packed)
      // 2. One nrows_cache_block by ncols cache block
      // 3. tau array of length ncols
      // 4. workspace array of length ncols
      //
      // That means nrows_cache_block should be <= W/ncols - ncols - 2.
      //
      // Applying the Q factor to a matrix C with the same number of
      // columns as Q requires a working set of
      // 2*nrows_cache_block*ncols + ncols*ncols + 2*ncols
      //
      // 1. Cache block of Q: nrows_cache_block by ncols
      // 2. C_top block: ncols by ncols
      // 3. C_cur block: nrows_cache_block by ncols
      // 4. tau array of length ncols
      // 5. workspace array of length ncols
      //
      // That means nrows_cache_block should be <= (W/(2*N) - N/2 -
      // 1).  Obviously this is smaller than for the factorization, so
      // we use this formula to pick nrows_cache_block.  It should also
      // be at least ncols.

      const size_t W = cache_size_hint() / size_of_scalar_;

      // Compute everything in size_t first, and cast to LocalOrdinal
      // at the end.  This may avoid overflow if the cache is very
      // large and/or LocalOrdinal is very small (say a short int).
      //
      // Also, since size_t is unsigned, make sure that the
      // subtractions don't make it negative.  If it does, then either
      // ncols is too big or the cache is too small.

      const size_t term1 = W / (2*ncols);
      const size_t term2 = ncols / 2 + 1;

      if (term1 <= term2)
        {
          // The cache must be very small.  Just make the cache blocks
          // square.  That will be inefficient, but wil result in
          // correct behavior.
          return ncols;
        }
      else
        {
          // The compiler can easily prove that term1 - term2 > 0,
          // since we've gotten to this point.  Of course that's
          // assuming that C++ compilers are smart...
          const size_t nrows_cache_block =
            std::max (term1 - term2, static_cast<size_t>(ncols));

          // Make sure that nrows_cache_block fits in a LocalOrdinal
          // type.  We do so by casting the size_t to a LocalOrdinal
          // and then back into a size_t.  This should work in the
          // typical case of LocalOrdinal=int, and also whenever
          // LocalOrdinal's binary representation has no more bits
          // than that of size_t.
          const LocalOrdinal nrows_cache_block_as_lo =
            static_cast<LocalOrdinal> (nrows_cache_block);
          if (static_cast<size_t>(nrows_cache_block_as_lo) != nrows_cache_block)
            {
              std::ostringstream os;
              os << "Error:  While deciding on the number of rows in a cache "
                "block for sequential TSQR, the decided-upon number of rows "
                 << nrows_cache_block << " does not fit in a LocalOrdinal "
                "type, whose max value is "
                 << std::numeric_limits<LocalOrdinal>::max() << ".";
              throw std::range_error (os.str());
            }
          else
            return static_cast<LocalOrdinal> (nrows_cache_block);
        }
    }

  private:
    /// \brief Size in bytes required to store one Scalar object.
    ///
    /// This comes first, before \c cache_size_hint_, because
    /// computing a default value for the latter requires knowing the
    /// size of the Scalar type.
    size_t size_of_scalar_;

    /// \brief Cache size (hint) in bytes.
    ///
    /// This should only be set as the return value of \c
    /// default_cache_size_hint(), since that method revises the input
    /// for reasonableness (in particular so that it is not too
    /// small).
    size_t cache_size_hint_;

  };
} // namespace TSQR

#endif // __TSQR_CacheBlockingStrategy_hpp