This file is indexed.

/usr/include/trilinos/Tpetra_idot.hpp is in libtrilinos-tpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
// @HEADER
// ***********************************************************************
//
//          Tpetra: Templated Linear Algebra Services Package
//                 Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef TPETRA_DETAILS_IDOT_HPP
#define TPETRA_DETAILS_IDOT_HPP

/// \file Tpetra_idot.hpp
/// \brief Declaration of Tpetra::idot, a nonblocking dot product.
///
/// Tpetra::idot implements a nonblocking dot product.  It takes two
/// Tpetra::Vector or Tpetra::MultiVector inputs, and computes their
/// vector-wise dot product(s).
///
/// The overloads of Tpetra::idot in this file are the only contents
/// of this file upon which users should rely.  Users should not rely
/// on anything else in this file.  In particular, anything in the
/// Tpetra::Details namespace is an implementation detail and is NOT
/// for users.
///
/// If you want to find the only functions in this file that you are
/// supposed to use, search for "SKIP DOWN TO HERE" (omit the quotes).

#include "Tpetra_Details_iallreduce.hpp"
#include "Tpetra_Details_isInterComm.hpp"
#include "Tpetra_MultiVector.hpp"
#include "Tpetra_Vector.hpp"
#include "Kokkos_Blas1_MV.hpp"
#include <stdexcept>
#include <sstream>

namespace Tpetra {
namespace Details {

/// \brief Compute the local dot product(s), columnwise, of X and Y.
///
/// \warning This is an implementation detail of Tpetra::idot.
///   Users should never call this function.
///
/// This implements the following cases:
/// <ul>
/// <li> If X and Y have the same number of columns (zero or more),
///      compute the dot products of corresponding columns of X and
///      Y.  That is, resultRaw[j] = dot(X(:,j), Y(:,j)). </li>
/// <li> If X has one column and Y has more than one column, compute
///      the dot products of X and each column of Y in turn.
///      That is, resultRaw[j] = dot(X(:,0), Y(:,j)). </li>
/// <li> If X has more than one column and Y has one column, compute
///      the dot products of each column of X in turn with X.
///      That is, resultRaw[j] = dot(X(:,j), Y(:,0)). </li>
/// </ul>
///
/// \tparam SC Same as the first template parameter of Tpetra::MultiVector.
/// \tparam LO Same as the second template parameter of Tpetra::MultiVector.
/// \tparam GO Same as the third template parameter of Tpetra::MultiVector.
/// \tparam NT Same as the fourth template parameter of Tpetra::MultiVector.
///
/// \param resultRaw [out] Raw pointer to output array of dot products.
/// \param X [in] First input MultiVector.
/// \param Y [in] Second input MultiVector.
/// \param resultOnDevice [in] Whether \c resultRaw points to memory
///   accessible from device.  If not, it may only be accessed from a
///   host execution space.
template<class SC, class LO, class GO, class NT>
void
lclDotRaw (typename ::Tpetra::MultiVector<SC, LO, GO, NT>::dot_type* const resultRaw,
           const ::Tpetra::MultiVector<SC, LO, GO, NT>& X,
           const ::Tpetra::MultiVector<SC, LO, GO, NT>& Y,
           const bool resultOnDevice)
{
  using ::Kokkos::Impl::MemorySpaceAccess;
  using ::Kokkos::deep_copy;
  using ::Kokkos::HostSpace;
  using ::Kokkos::subview;
  using ::Kokkos::View;
  typedef ::Kokkos::pair<size_t, size_t> pair_type;
  typedef ::Tpetra::MultiVector<SC, LO, GO, NT> MV;
  typedef typename MV::dot_type dot_type;
  typedef typename MV::device_type device_type;
  typedef typename MV::dual_view_type::t_dev::memory_space dev_memory_space;
  typedef typename MV::dual_view_type::t_host::memory_space host_memory_space;
  typedef View<dot_type*, device_type> result_dev_view_type;
  typedef typename result_dev_view_type::HostMirror result_host_view_type;

  const size_t numRows = X.getLocalLength ();
  const pair_type rowRange (0, numRows);
  const size_t X_numVecs = X.getNumVectors ();
  const size_t Y_numVecs = Y.getNumVectors ();
  const size_t numVecs = X_numVecs > Y_numVecs ? X_numVecs : Y_numVecs;

  // Check compatibility of number of columns; allow special cases of
  // a multivector dot a single vector, or vice versa.
  if (X_numVecs != Y_numVecs &&
      X_numVecs != size_t (1) &&
      Y_numVecs != size_t (1)) {
    std::ostringstream os;
    os << "Tpetra::idot: X.getNumVectors() = " << X_numVecs
       << " != Y.getNumVectors() = " << Y_numVecs
       << ", but neither is 1.";
    throw std::invalid_argument (os.str ());
  }

  const bool X_latestOnHost = X.template need_sync<dev_memory_space> () &&
    ! X.template need_sync<host_memory_space> ();
  const bool Y_latestOnHost = Y.template need_sync<dev_memory_space> () &&
    ! Y.template need_sync<host_memory_space> ();
  // Let X guide whether to execute on device or host.
  const bool runOnHost = X_latestOnHost;
  // Assume that we have to copy Y to where we need to run.  idot()
  // takes the input MultiVectors as const, so it can't sync them.  We
  // just have to copy their data, if needed, to the memory space
  // where we want to run.
  const bool Y_copyToHost = (X_latestOnHost && ! Y_latestOnHost);
  const bool Y_copyToDev = (! X_latestOnHost && Y_latestOnHost);

  result_dev_view_type result;
  result_host_view_type result_h;
  if (resultOnDevice) {
    result = result_dev_view_type (resultRaw, numVecs);
    if (runOnHost) {
      // create_mirror_view doesn't promise to create a deep copy, so we
      // can't rely on this case to avoid an extra buffer if the input
      // communicator is an intercomm.
      result_h = ::Kokkos::create_mirror_view (result);
    }
    // If running on device, not host, then we don't use result_h.
  }
  else {
    result_h = result_host_view_type (resultRaw, numVecs);
    if (! runOnHost) { // running on device, not host
      // We have to do a separate allocation here, since resultRaw is
      // not accessible from device.
      result = result_dev_view_type ("result", numVecs);
    }
    // If running on host, not device, then we don't use result.
  }

  const bool X_or_Y_have_nonconstant_stride =
    ! X.isConstantStride () || ! Y.isConstantStride ();
  if (X_or_Y_have_nonconstant_stride && numVecs > size_t (1)) {
    // The "nonconstant stride" case relates to the ability of a
    // Tpetra::MultiVector to view multiple, noncontiguous columns of
    // another Tpetra::MultiVector.  In this case, we can't just get
    // the Kokkos::View out of X and Y, since the Kokkos::View has all
    // the columns, not just the columns that X or Y view.  The
    // Kokkos::View of X or Y would view a contiguous subset of
    // columns of the latter, "parent" MultiVector, not of the former,
    // "child" MultiVector.  (Kokkos::View doesn't have a layout to
    // cover this case where consecutive entries within a column are
    // contiguous, but consecutive entries within a row may have
    // varying strides.)  Instead, we work one column at a time.
    for (size_t j = 0; j < numVecs; ++j) {
      // numVecs = max(X_numVecs, Y_numVecs).  Allow special case of
      // X_numVecs != Y_numVecs && (X_numVecs == 1 || Y_numVecs == 1).
      const size_t X_col = (X_numVecs == size_t (1)) ? size_t (0) : j;
      const size_t Y_col = (Y_numVecs == size_t (1)) ? size_t (0) : j;
      auto X_j = X.getVector (X_col);
      auto Y_j = Y.getVector (Y_col);

      if (runOnHost) {
        auto X_j_2d_h = X_j->template getLocalView<host_memory_space> ();
        auto X_j_1d_h = subview (X_j_2d_h, rowRange, 0);
        decltype (X_j_1d_h) Y_j_1d_h;

        if (Y_copyToHost) {
          auto Y_j_2d = Y_j->template getLocalView<dev_memory_space> ();
          auto Y_j_1d = subview (Y_j_2d, rowRange, 0);
          typename decltype (Y_j_1d_h)::non_const_type
            Y_j_1d_h_nc ("Y_j_1d_h", Y_j_1d.dimension_0 ());
          deep_copy (Y_j_1d_h_nc, Y_j_1d);
          Y_j_1d_h = Y_j_1d_h_nc;
        }
        else { // Y already sync'd to host; just use its host view
          auto Y_j_2d_h = Y_j->template getLocalView<host_memory_space> ();
          Y_j_1d_h = subview (Y_j_2d_h, rowRange, 0);
        }
        auto result_h_j = subview (result_h, j);
        KokkosBlas::dot (result_h_j, X_j_1d_h, Y_j_1d_h);
      }
      else { // run on device
        auto X_j_2d = X_j->template getLocalView<dev_memory_space> ();
        auto X_j_1d = subview (X_j_2d, rowRange, 0);
        decltype (X_j_1d) Y_j_1d;

        if (Y_copyToDev) {
          auto Y_j_2d_h = Y_j->template getLocalView<host_memory_space> ();
          auto Y_j_1d_h = subview (Y_j_2d_h, rowRange, 0);
          typename decltype (Y_j_1d)::non_const_type
            Y_j_1d_nc ("Y_j_1d", Y_j_1d_h.dimension_0 ());
          deep_copy (Y_j_1d_nc, Y_j_1d_h);
          Y_j_1d = Y_j_1d_nc;
        }
        else { // Y already sync'd to dev; just use its dev view
          auto Y_j_2d = Y_j->template getLocalView<dev_memory_space> ();
          Y_j_1d = subview (Y_j_2d, rowRange, 0);
        }
        auto result_j = subview (result, j);
        KokkosBlas::dot (result_j, X_j_1d, Y_j_1d);
      }
    } // for each column j of X and Y
  }
  else { // numVecs == 1 || ! X_or_Y_have_nonconstant_stride
    if (runOnHost) {
      auto X_lcl_h = X.template getLocalView<host_memory_space> ();
      decltype (X_lcl_h) Y_lcl_h;

      if (Y_copyToHost) {
        auto Y_lcl = Y.template getLocalView<dev_memory_space> ();
        typename decltype (Y_lcl_h)::non_const_type
          Y_lcl_h_nc ("Y_lcl_h", Y_lcl.dimension_0 (), Y_numVecs);
        deep_copy (Y_lcl_h_nc, Y_lcl);
        Y_lcl_h = Y_lcl_h_nc;
      }
      else { // Y already sync'd to host; just use its host view
        Y_lcl_h = Y.template getLocalView<host_memory_space> ();
      }

      if (numVecs == size_t (1)) {
        auto X_lcl_h_1d = subview (X_lcl_h, rowRange, 0);
        auto Y_lcl_h_1d = subview (Y_lcl_h, rowRange, 0);
        auto result_h_0d = subview (result_h, 0);
        KokkosBlas::dot (result_h_0d, X_lcl_h_1d, Y_lcl_h_1d);
      }
      else {
        auto X_lcl_h_2d = subview (X_lcl_h, rowRange,
                                   pair_type (0, X_numVecs));
        auto Y_lcl_h_2d = subview (Y_lcl_h, rowRange,
                                   pair_type (0, Y_numVecs));
        KokkosBlas::dot (result_h, X_lcl_h_2d, Y_lcl_h_2d);
      }
    }
    else { // run on device
      auto X_lcl = X.template getLocalView<dev_memory_space> ();
      decltype (X_lcl) Y_lcl;

      if (Y_copyToDev) {
        auto Y_lcl_h = Y.template getLocalView<host_memory_space> ();
        typename decltype (Y_lcl)::non_const_type
          Y_lcl_nc ("Y_lcl", Y_lcl_h.dimension_0 (), Y_numVecs);
        deep_copy (Y_lcl_nc, Y_lcl_h);
        Y_lcl = Y_lcl_nc;
      }
      else { // Y already sync'd to dev; just use its dev view
        Y_lcl = Y.template getLocalView<dev_memory_space> ();
      }

      if (numVecs == size_t (1)) {
        auto X_lcl_1d = subview (X_lcl, rowRange, 0);
        auto Y_lcl_1d = subview (Y_lcl, rowRange, 0);
        auto result_0d = subview (result, 0);
        KokkosBlas::dot (result_0d, X_lcl_1d, Y_lcl_1d);
      }
      else {
        auto X_lcl_2d = subview (X_lcl, rowRange,
                                 pair_type (0, X_numVecs));
        auto Y_lcl_2d = subview (Y_lcl, rowRange,
                                 pair_type (0, Y_numVecs));
        KokkosBlas::dot (result, X_lcl_2d, Y_lcl_2d);
      }
    } // host or device?
  } // multivector with nonconstant stride?

  if (runOnHost && resultOnDevice) {
    // Copy result from host to device, where the user wanted it.
    deep_copy (result, result_h);
  }
  else if (! runOnHost && ! resultOnDevice) {
    // Copy result from device to host, where the user wanted it.
    deep_copy (result_h, result);
  }
}

} // namespace Details

//
// SKIP DOWN TO HERE
//

/// \brief Nonblocking dot product, with either Tpetra::MultiVector or
///   Tpetra::Vector inputs, and raw pointer or raw array output.
///
/// This implements the following cases:
/// <ul>
/// <li> If X and Y have the same number of columns (zero or more),
///      compute the dot products of corresponding columns of X and
///      Y.  That is, resultRaw[j] = dot(X(:,j), Y(:,j)). </li>
/// <li> If X has one column and Y has more than one column, compute
///      the dot products of X and each column of Y in turn.
///      That is, resultRaw[j] = dot(X(:,0), Y(:,j)). </li>
/// <li> If X has more than one column and Y has one column, compute
///      the dot products of each column of X in turn with X.
///      That is, resultRaw[j] = dot(X(:,j), Y(:,0)). </li>
/// </ul>
///
/// \param resultRaw [out] Output; raw pointer or raw array to the
///   return value(s).  It is only valid to read this after calling
///   wait() on the return value.  It must be legal to write to the
///   first <tt>std::max(X.getNumVectors(), Y.getNumVectors())</tt>
///   entries of this array.  This memory must be accessible from the
///   host CPU.
///
/// \param X [in] First input Tpetra::MultiVector or Tpetra::Vector.
///   This must have same number of rows (globally, and on each (MPI)
///   process) as Y.  If this is a Tpetra::MultiVector, then this must
///   either have the same number of columns as Y, or have one column.
///
/// \param Y [in] Second input Tpetra::MultiVector or Tpetra::Vector.
///   This must have same number of rows (globally, and on each (MPI)
///   process) as X.  If this is a Tpetra::MultiVector, then this must
///   either have the same number of columns as X, or have one column.
///
/// \return Pointer to an object representing the nonblocking
///   collective (communication operation).  Call wait() on this
///   object to complete the collective.  After calling wait(), you
///   may read the result.
///
/// \tparam SC Same as the first template parameter of Tpetra::Vector.
/// \tparam LO Same as the second template parameter of Tpetra::Vector.
/// \tparam GO Same as the third template parameter of Tpetra::Vector.
/// \tparam NT Same as the fourth template parameter of Tpetra::Vector.
///
/// In this version of the function, the dot product result goes into
/// an array (just a raw pointer).  The \c dot_type typedef is the
/// type of a dot product result, for a Tpetra::Vector whose entries
/// have type \c SC (the "Scalar" type).  For most \c SC types,
/// <tt>dot_type == SC</tt>.  However, once you start dipping into
/// more interesting Scalar types, such as those found in the Sacado
/// or Stokhos packages, \c dot_type may be a different type.  Most
/// users should not have to worry about this, but Tpetra developers
/// may need to worry about this.
template<class SC, class LO, class GO, class NT>
std::shared_ptr< ::Tpetra::Details::CommRequest>
idot (typename ::Tpetra::MultiVector<SC, LO, GO, NT>::dot_type* resultRaw,
      const ::Tpetra::MultiVector<SC, LO, GO, NT>& X,
      const ::Tpetra::MultiVector<SC, LO, GO, NT>& Y)
{
  using ::Kokkos::Impl::MemorySpaceAccess;
  using ::Kokkos::HostSpace;
  using ::Kokkos::View;
  using ::Tpetra::Details::iallreduce;
  typedef ::Tpetra::MultiVector<SC, LO, GO, NT> MV;
  typedef typename MV::dot_type dot_type;
  typedef typename MV::device_type device_type;
  typedef View<dot_type*, device_type> result_dev_view_type;
  typedef typename result_dev_view_type::HostMirror result_host_view_type;
  typedef typename device_type::memory_space dev_memory_space;

  auto map = X.getMap ();
  auto comm = map.is_null () ? Teuchos::null : map->getComm ();
  if (comm.is_null ()) { // calling process does not participate
    return std::shared_ptr< ::Tpetra::Details::CommRequest> (NULL);
  }

  const size_t X_numVecs = X.getNumVectors ();
  const size_t Y_numVecs = Y.getNumVectors ();
  const size_t numVecs = (X_numVecs > Y_numVecs) ? X_numVecs : Y_numVecs;

  // Check compatibility of number of columns; allow special cases of
  // a multivector dot a single vector, or vice versa.
  if (X_numVecs != Y_numVecs &&
      X_numVecs != size_t (1) &&
      Y_numVecs != size_t (1)) {
    std::ostringstream os;
    os << "Tpetra::idot: X.getNumVectors() = " << X_numVecs
       << " != Y.getNumVectors() = " << Y_numVecs
       << ", but neither is 1.";
    throw std::invalid_argument (os.str ());
  }

  // If the input communicator is an intercomm, then the input and
  // output buffers of iallreduce may not alias one another, so we
  // must allocate a temporary buffer for the local dot product(s).
  const bool needCopy = Details::isInterComm (*comm);

  // We know that resultRaw is host memory.  Can the device access it?
  // If so, lclDotRaw may be able to avoid a copy.
  const bool resultOnDevice =
    MemorySpaceAccess<dev_memory_space, HostSpace>::accessible;
  if (resultOnDevice) {
    result_dev_view_type gblResult (resultRaw, numVecs);
    result_dev_view_type lclResult = needCopy ?
      result_dev_view_type ("lclResult", numVecs) :
      gblResult;
    Details::lclDotRaw (lclResult.ptr_on_device (), X, Y, resultOnDevice);
    return iallreduce (lclResult, gblResult, ::Teuchos::REDUCE_SUM, *comm);
  }
  else {
    result_host_view_type gblResult (resultRaw, numVecs);
    result_host_view_type lclResult = needCopy ?
      result_host_view_type ("lclResult", numVecs) :
      gblResult;
    Details::lclDotRaw (lclResult.ptr_on_device (), X, Y, resultOnDevice);
    return iallreduce (lclResult, gblResult, ::Teuchos::REDUCE_SUM, *comm);
  }
}

/// \brief Nonblocking dot product, with Tpetra::Vector inputs, and
///   rank-0 (single value) Kokkos::View output.
///
/// This function computes result() = dot(X,Y).
///
/// \param result [out] Output; rank-0 Kokkos::View of the return
///   value.  It is only valid to read this after calling wait() on
///   the return value.
///
/// \param X [in] First input Tpetra::Vector.  This must have same
///   number of rows (globally, and on each (MPI) process) as Y.
///
/// \param Y [in] Second input Tpetra::Vector.  This must have same
///   number of rows (globally, and on each (MPI) process) as X.
///
/// \return Pointer to an object representing the nonblocking
///   collective (communication operation).  Call wait() on this
///   object to complete the collective.  After calling wait(), you
///   may read the result.
///
/// \tparam SC Same as the first template parameter of Tpetra::Vector.
/// \tparam LO Same as the second template parameter of Tpetra::Vector.
/// \tparam GO Same as the third template parameter of Tpetra::Vector.
/// \tparam NT Same as the fourth template parameter of Tpetra::Vector.
///
/// In this version of the function, the dot product result goes into
/// a rank-0 ("zero-dimensional") Kokkos::View.  Rank-0 Views just
/// view a single value.  We prefer that you use the versions of
/// idot() that take a Kokkos::View as their output argument, because
/// this ensures that the output will still exist (not be deallocated
/// or fall out of scope).  The versions of idot() that take a raw
/// pointer cannot promise that the memory will continue to exist
/// until the dot product is done.
///
/// The \c dot_type typedef is the type of a dot product result, for a
/// Tpetra::Vector whose entries have type \c SC (the "Scalar" type).
/// For most \c SC types, <tt>dot_type == SC</tt>.  However, once you
/// start dipping into more interesting Scalar types, such as those
/// found in the Sacado or Stokhos packages, \c dot_type may be a
/// different type.  Most users should not have to worry about this,
/// but Tpetra developers may need to worry about this.
template<class SC, class LO, class GO, class NT>
std::shared_ptr< ::Tpetra::Details::CommRequest>
idot (const Kokkos::View<typename ::Tpetra::Vector<SC, LO, GO, NT>::dot_type,
        typename ::Tpetra::Vector<SC, LO, GO, NT>::device_type>& result,
      const ::Tpetra::Vector<SC, LO, GO, NT>& X,
      const ::Tpetra::Vector<SC, LO, GO, NT>& Y)
{
  using ::Kokkos::Impl::MemorySpaceAccess;
  using ::Kokkos::HostSpace;
  using ::Kokkos::View;
  using ::Tpetra::Details::iallreduce;
  typedef ::Tpetra::MultiVector<SC, LO, GO, NT> MV;
  typedef typename MV::dot_type dot_type;
  typedef typename MV::device_type device_type;
  typedef View<dot_type, device_type> result_view_type;

  auto map = X.getMap ();
  auto comm = map.is_null () ? Teuchos::null : map->getComm ();
  if (comm.is_null ()) { // calling process does not participate
    return std::shared_ptr< ::Tpetra::Details::CommRequest> (NULL);
  }

  // If the input communicator is an intercomm, then the input and
  // output buffers of iallreduce may not alias one another, so we
  // must allocate a temporary buffer for the local dot product.
  const bool needCopy = Details::isInterComm (*comm);

  constexpr bool resultOnDevice = true; // 'result' is a device View
  result_view_type gblResult = result;
  result_view_type lclResult = needCopy ?
    result_view_type ("lclResult") :
    gblResult;
  Details::lclDotRaw (lclResult.ptr_on_device (), X, Y, resultOnDevice);
  return iallreduce (lclResult, gblResult, ::Teuchos::REDUCE_SUM, *comm);
}

/// \brief Nonblocking dot product, with Tpetra::MultiVector inputs,
///   and rank-1 (one-dimensional array) Kokkos::View output.
///
/// This implements the following cases:
/// <ul>
/// <li> If X and Y have the same number of columns (zero or more),
///      compute the dot products of corresponding columns of X and
///      Y.  That is, result[j] = dot(X(:,j), Y(:,j)). </li>
/// <li> If X has one column and Y has more than one column, compute
///      the dot products of X and each column of Y in turn.
///      That is, result[j] = dot(X(:,0), Y(:,j)). </li>
/// <li> If X has more than one column and Y has one column, compute
///      the dot products of each column of X in turn with X.
///      That is, result[j] = dot(X(:,j), Y(:,0)). </li>
/// </ul>
///
/// \param result [out] Output; rank-1 Kokkos::View.  It is only valid
///   to read the entries of this after calling wait() on the return
///   value.  This must have length
///   <tt>std::max(X.getNumVectors(), Y.getNumVectors())</tt>.
///
/// \param X [in] First input Tpetra::MultiVector or Tpetra::Vector.
///   This must have same number of rows (globally, and on each (MPI)
///   process) as Y.  If this is a Tpetra::MultiVector, then this must
///   either have the same number of columns as Y, or have one column.
///
/// \param Y [in] Second input Tpetra::MultiVector or Tpetra::Vector.
///   This must have same number of rows (globally, and on each (MPI)
///   process) as X.  If this is a Tpetra::MultiVector, then this must
///   either have the same number of columns as X, or have one column.
///
/// \return Pointer to an object representing the nonblocking
///   collective (communication operation).  Call wait() on this
///   object to complete the collective.  After calling wait(), you
///   may read the results.
///
/// \tparam SC Same as the first template parameter of Tpetra::MultiVector.
/// \tparam LO Same as the second template parameter of Tpetra::MultiVector.
/// \tparam GO Same as the third template parameter of Tpetra::MultiVector.
/// \tparam NT Same as the fourth template parameter of Tpetra::MultiVector.
///
/// Compute the dot product of each column of X, with each
/// corresponding column of Y.  If X has a single column, then compute
/// the dot product of X with each column of Y in turn.  If Y has a
/// single column, then compute the dot product of each column of X in
/// turn with Y.
///
/// In this version of the function, the dot product results go into a
/// rank-1 (one-dimensional) Kokkos::View.  We prefer that you use the
/// versions of idot() that take a Kokkos::View as their output
/// argument, because this ensures that the output will still exist
/// (not be deallocated or fall out of scope).  The versions of idot()
/// that take a raw pointer cannot promise that the memory will
/// continue to exist until the dot product is done.
///
/// The \c dot_type typedef is the type of a dot product result, for a
/// Tpetra::Vector whose entries have type \c SC (the "Scalar" type).
/// For most \c SC types, <tt>dot_type == SC</tt>.  However, once you
/// start dipping into more interesting Scalar types, such as those
/// found in the Sacado or Stokhos packages, \c dot_type may be a
/// different type.  Most users should not have to worry about this,
/// but Tpetra developers may need to worry about this.
template<class SC, class LO, class GO, class NT>
std::shared_ptr< ::Tpetra::Details::CommRequest>
idot (const Kokkos::View<typename ::Tpetra::MultiVector<SC, LO, GO, NT>::dot_type*,
        typename ::Tpetra::MultiVector<SC, LO, GO, NT>::device_type>& result,
      const ::Tpetra::MultiVector<SC, LO, GO, NT>& X,
      const ::Tpetra::MultiVector<SC, LO, GO, NT>& Y)
{
  using ::Kokkos::Impl::MemorySpaceAccess;
  using ::Kokkos::HostSpace;
  using ::Kokkos::View;
  using ::Tpetra::Details::iallreduce;
  typedef ::Tpetra::MultiVector<SC, LO, GO, NT> MV;
  typedef typename MV::dot_type dot_type;
  typedef typename MV::device_type device_type;
  typedef View<dot_type*, device_type> result_view_type;

  auto map = X.getMap ();
  auto comm = map.is_null () ? ::Teuchos::null : map->getComm ();
  if (comm.is_null ()) { // calling process does not participate
    return std::shared_ptr< ::Tpetra::Details::CommRequest> (NULL);
  }

  // Check compatibility of number of columns; allow special cases of
  // a multivector dot a single vector, or vice versa.  It's OK to
  // throw without MPI communication, since the number of columns of a
  // Tpetra::MultiVector must be the same on all processes of its
  // communicator.
  const size_t X_numVecs = X.getNumVectors ();
  const size_t Y_numVecs = Y.getNumVectors ();
  if (X_numVecs != Y_numVecs &&
      X_numVecs != size_t (1) &&
      Y_numVecs != size_t (1)) {
    std::ostringstream os;
    os << "Tpetra::idot: X.getNumVectors() = " << X_numVecs
       << " != Y.getNumVectors() = " << Y_numVecs
       << ", but neither is 1.";
    throw std::invalid_argument (os.str ());
  }

  // If the input communicator is an intercomm, then the input and
  // output buffers of iallreduce may not alias one another, so we
  // must allocate a temporary buffer for the local dot product(s).
  const bool needCopy = Details::isInterComm (*comm);

  constexpr bool resultOnDevice = true; // 'result' is a device View
  result_view_type gblResult = result;
  result_view_type lclResult = needCopy ?
    result_view_type ("lclResult", result.dimension_0 ()) :
    gblResult;
  Details::lclDotRaw (lclResult.ptr_on_device (), X, Y, resultOnDevice);
  return iallreduce (lclResult, gblResult, ::Teuchos::REDUCE_SUM, *comm);
}

} // namespace Tpetra

#endif // TPETRA_DETAILS_IDOT_HPP