/usr/include/trilinos/Tpetra_Details_packCrsMatrix.hpp is in libtrilinos-tpetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 | // @HEADER
// ***********************************************************************
//
// Tpetra: Templated Linear Algebra Services Package
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef TPETRA_DETAILS_PACKCRSMATRIX_HPP
#define TPETRA_DETAILS_PACKCRSMATRIX_HPP
#include "TpetraCore_config.h"
#include "Teuchos_Array.hpp"
#include "Teuchos_ArrayView.hpp"
#include "Tpetra_Details_OrdinalTraits.hpp"
#include "Tpetra_Details_computeOffsets.hpp"
#include "Tpetra_Details_createMirrorView.hpp"
#include "Kokkos_Core.hpp"
#include <memory>
#include <string>
/// \file Tpetra_Details_packCrsMatrix.hpp
/// \brief Functions for packing the entries of a Tpetra::CrsMatrix
/// for communication, in the case where it is valid to go to the
/// KokkosSparse::CrsMatrix (local sparse matrix data structure)
/// directly.
/// \warning This file, and its contents, are implementation details
/// of Tpetra. The file itself or its contents may disappear or
/// change at any time.
namespace Tpetra {
#ifndef DOXYGEN_SHOULD_SKIP_THIS
// Forward declaration of Distributor
class Distributor;
#endif // DOXYGEN_SHOULD_SKIP_THIS
//
// Users must never rely on anything in the Details namespace.
//
namespace Details {
template<class OutputOffsetsViewType,
class CountsViewType,
class InputOffsetsViewType,
class InputLocalRowIndicesViewType,
const bool debug =
#ifdef HAVE_TPETRA_DEBUG
true
#else
false
#endif // HAVE_TPETRA_DEBUG
>
class NumPacketsAndOffsetsFunctor {
public:
typedef typename OutputOffsetsViewType::non_const_value_type output_offset_type;
typedef typename CountsViewType::non_const_value_type count_type;
typedef typename InputOffsetsViewType::non_const_value_type input_offset_type;
typedef typename InputLocalRowIndicesViewType::non_const_value_type local_row_index_type;
// output Views drive where execution happens.
typedef typename OutputOffsetsViewType::device_type device_type;
static_assert (std::is_same<typename CountsViewType::device_type::execution_space,
typename device_type::execution_space>::value,
"OutputOffsetsViewType and CountsViewType must have the same execution space.");
static_assert (Kokkos::Impl::is_view<OutputOffsetsViewType>::value,
"OutputOffsetsViewType must be a Kokkos::View.");
static_assert (std::is_same<typename OutputOffsetsViewType::value_type, output_offset_type>::value,
"OutputOffsetsViewType must be a nonconst Kokkos::View.");
static_assert (std::is_integral<output_offset_type>::value,
"The type of each entry of OutputOffsetsViewType must be a built-in integer type.");
static_assert (Kokkos::Impl::is_view<CountsViewType>::value,
"CountsViewType must be a Kokkos::View.");
static_assert (std::is_same<typename CountsViewType::value_type, output_offset_type>::value,
"CountsViewType must be a nonconst Kokkos::View.");
static_assert (std::is_integral<count_type>::value,
"The type of each entry of CountsViewType must be a built-in integer type.");
static_assert (Kokkos::Impl::is_view<InputOffsetsViewType>::value,
"InputOffsetsViewType must be a Kokkos::View.");
static_assert (std::is_integral<input_offset_type>::value,
"The type of each entry of InputOffsetsViewType must be a built-in integer type.");
static_assert (Kokkos::Impl::is_view<InputLocalRowIndicesViewType>::value,
"InputLocalRowIndicesViewType must be a Kokkos::View.");
static_assert (std::is_integral<local_row_index_type>::value,
"The type of each entry of InputLocalRowIndicesViewType must be a built-in integer type.");
NumPacketsAndOffsetsFunctor (const OutputOffsetsViewType& outputOffsets,
const CountsViewType& counts,
const InputOffsetsViewType& rowOffsets,
const InputLocalRowIndicesViewType& lclRowInds,
const count_type sizeOfLclCount,
const count_type sizeOfValue,
const count_type sizeOfGblColInd) :
outputOffsets_ (outputOffsets),
counts_ (counts),
rowOffsets_ (rowOffsets),
lclRowInds_ (lclRowInds),
sizeOfLclCount_ (sizeOfLclCount),
sizeOfValue_ (sizeOfValue),
sizeOfGblColInd_ (sizeOfGblColInd),
error_ ("error") // don't forget this, or you'll get segfaults!
{
if (debug) {
const size_t numRowsToPack = static_cast<size_t> (lclRowInds_.dimension_0 ());
if (numRowsToPack != static_cast<size_t> (counts_.dimension_0 ())) {
std::ostringstream os;
os << "lclRowInds.dimension_0() = " << numRowsToPack
<< " != counts.dimension_0() = " << counts_.dimension_0 ()
<< ".";
throw std::invalid_argument (os.str ());
}
if (static_cast<size_t> (numRowsToPack + 1) != static_cast<size_t> (outputOffsets_.dimension_0 ())) {
std::ostringstream os;
os << "lclRowInds.dimension_0() + 1 = " << (numRowsToPack + 1)
<< " != outputOffsets.dimension_0() = " << outputOffsets_.dimension_0 ()
<< ".";
throw std::invalid_argument (os.str ());
}
}
}
KOKKOS_INLINE_FUNCTION void
operator() (const local_row_index_type& curInd,
output_offset_type& update,
const bool final) const
{
if (debug) {
if (curInd < static_cast<local_row_index_type> (0)) {
error_ () = 1;
return;
}
}
if (final) {
if (debug) {
if (curInd >= static_cast<local_row_index_type> (outputOffsets_.dimension_0 ())) {
error_ () = 2;
return;
}
}
outputOffsets_(curInd) = update;
}
if (curInd < static_cast<local_row_index_type> (counts_.dimension_0 ())) {
const auto lclRow = lclRowInds_(curInd);
if (static_cast<size_t> (lclRow + 1) >= static_cast<size_t> (rowOffsets_.dimension_0 ()) ||
static_cast<local_row_index_type> (lclRow) < static_cast<local_row_index_type> (0)) {
error_ () = 3;
return;
}
// count_type could differ from the type of each row offset.
// For example, row offsets might each be 64 bits, but if their
// difference always fits in 32 bits, we may then safely use a
// 32-bit count_type.
const count_type count =
static_cast<count_type> (rowOffsets_(lclRow+1) - rowOffsets_(lclRow));
// We pack first the number of entries in the row, then that many
// global column indices, then that many values. However, if the
// number of entries in the row is zero, we pack nothing.
const count_type numBytes = (count == 0) ?
static_cast<count_type> (0) :
sizeOfLclCount_ + count * (sizeOfGblColInd_ + sizeOfValue_);
if (final) {
counts_(curInd) = numBytes;
}
update += numBytes;
}
}
// mfh 31 May 2017: Don't need init or join. If you have join, MUST
// have join both with and without volatile! Otherwise intrawarp
// joins are really slow on GPUs.
//! Host function for getting the error.
int getError () const {
auto error_h = Kokkos::create_mirror_view (error_);
Kokkos::deep_copy (error_h, error_);
return error_h ();
}
private:
OutputOffsetsViewType outputOffsets_;
CountsViewType counts_;
typename InputOffsetsViewType::const_type rowOffsets_;
typename InputLocalRowIndicesViewType::const_type lclRowInds_;
count_type sizeOfLclCount_;
count_type sizeOfValue_;
count_type sizeOfGblColInd_;
Kokkos::View<int, device_type> error_;
};
template<class OutputOffsetsViewType,
class CountsViewType,
class InputOffsetsViewType,
class InputLocalRowIndicesViewType>
std::pair<typename CountsViewType::non_const_value_type, bool>
computeNumPacketsAndOffsets (std::unique_ptr<std::ostringstream>& errStr,
const OutputOffsetsViewType& outputOffsets,
const CountsViewType& counts,
const InputOffsetsViewType& rowOffsets,
const InputLocalRowIndicesViewType& lclRowInds,
const typename CountsViewType::non_const_value_type sizeOfLclCount,
const typename CountsViewType::non_const_value_type sizeOfValue,
const typename CountsViewType::non_const_value_type sizeOfGblColInd)
{
typedef NumPacketsAndOffsetsFunctor<OutputOffsetsViewType,
CountsViewType, typename InputOffsetsViewType::const_type,
typename InputLocalRowIndicesViewType::const_type> functor_type;
typedef typename CountsViewType::non_const_value_type count_type;
typedef typename OutputOffsetsViewType::size_type size_type;
typedef typename OutputOffsetsViewType::execution_space execution_space;
typedef typename functor_type::local_row_index_type LO;
typedef Kokkos::RangePolicy<execution_space, LO> range_type;
const char prefix[] = "computeNumPacketsAndOffsets: ";
const count_type numRowsToPack = lclRowInds.dimension_0 ();
if (numRowsToPack == 0) {
return {static_cast<count_type> (0), true}; // nothing to pack, but no error
}
else {
if (rowOffsets.dimension_0 () <= static_cast<size_type> (1)) {
if (errStr.get () == NULL) {
errStr = std::unique_ptr<std::ostringstream> (new std::ostringstream ());
}
std::ostringstream& os = *errStr;
os << prefix
<< "There is at least one row to pack, but the matrix has no rows. "
"lclRowInds.dimension_0() = " << numRowsToPack << ", but "
"rowOffsets.dimension_0() = " << rowOffsets.dimension_0 () << " <= 1."
<< std::endl;
return {static_cast<count_type> (0), false};
}
if (outputOffsets.dimension_0 () != static_cast<size_type> (numRowsToPack + 1)) {
if (errStr.get () == NULL) {
errStr = std::unique_ptr<std::ostringstream> (new std::ostringstream ());
}
std::ostringstream& os = *errStr;
os << prefix
<< "Output dimension does not match number of rows to pack. "
<< "outputOffsets.dimension_0() = " << outputOffsets.dimension_0 ()
<< " != lclRowInds.dimension_0() + 1 = "
<< static_cast<size_type> (numRowsToPack + 1) << "." << std::endl;
return {static_cast<count_type> (0), false};
}
functor_type f (outputOffsets, counts, rowOffsets,
lclRowInds, sizeOfLclCount,
sizeOfValue, sizeOfGblColInd);
#ifdef HAVE_TPETRA_DEBUG
TEUCHOS_TEST_FOR_EXCEPT(static_cast<size_t> (outputOffsets.dimension_0 ()) !=
static_cast<size_t> (numRowsToPack + 1));
TEUCHOS_TEST_FOR_EXCEPT(static_cast<size_t> (counts.dimension_0 ()) !=
static_cast<size_t> (numRowsToPack));
TEUCHOS_TEST_FOR_EXCEPT(static_cast<size_t> (outputOffsets.dimension_0 ()) !=
static_cast<size_t> (numRowsToPack + 1));
#endif // HAVE_TPETRA_DEBUG
Kokkos::parallel_scan (range_type (0, numRowsToPack+1), f);
// At least in debug mode, this functor checks for errors.
const int errCode = f.getError ();
if (errCode != 0) {
if (errStr.get () == NULL) {
errStr = std::unique_ptr<std::ostringstream> (new std::ostringstream ());
}
std::ostringstream& os = *errStr;
os << prefix
<< "NumPacketsAndOffsetsFunctor reported error code " << errCode
<< " != 0." << std::endl;
return {0, false};
}
#if 0
size_t total = 0;
for (LO k = 0; k < numRowsToPack; ++k) {
total += counts[k];
}
if (outputOffsets(numRowsToPack) != total) {
if (errStr.get () == NULL) {
errStr = std::unique_ptr<std::ostringstream> (new std::ostringstream ());
}
std::ostringstream& os = *errStr;
os << prefix
<< "outputOffsets(numRowsToPack=" << numRowsToPack << ") "
<< outputOffsets(numRowsToPack) << " != sum of counts = "
<< total << "." << std::endl;
if (numRowsToPack != 0) {
// Only print the array if it's not too long.
if (numRowsToPack < static_cast<LO> (10)) {
os << "outputOffsets: [";
for (LO i = 0; i <= numRowsToPack; ++i) {
os << outputOffsets(i);
if (static_cast<LO> (i + 1) <= numRowsToPack) {
os << ",";
}
}
os << "]" << std::endl;
os << "counts: [";
for (LO i = 0; i < numRowsToPack; ++i) {
os << counts(i);
if (static_cast<LO> (i + 1) < numRowsToPack) {
os << ",";
}
}
os << "]" << std::endl;
}
else {
os << "outputOffsets(" << (numRowsToPack-1) << ") = "
<< outputOffsets(numRowsToPack-1) << "." << std::endl;
}
}
return {outputOffsets(numRowsToPack), false};
}
#endif // HAVE_TPETRA_DEBUG
// Get last entry of outputOffsets, which is the sum of the entries
// of counts. Don't assume UVM.
auto outputOffsets_last = Kokkos::subview (outputOffsets, numRowsToPack);
auto outputOffsets_last_h = Kokkos::create_mirror_view (outputOffsets_last);
return {static_cast<count_type> (outputOffsets_last_h ()), true};
}
}
/// \brief Reduction result for PackCrsMatrixFunctor below.
///
/// The reduction result finds the offset and number of bytes associated with
/// the first out of bounds error or packing error occurs.
template<class LO>
struct PackCrsMatrixError {
LO bad_index; // only valid if outOfBounds == true.
size_t bad_offset; // only valid if outOfBounds == true.
size_t bad_num_bytes; // only valid if outOfBounds == true.
bool out_of_bounds_error;
bool packing_error;
KOKKOS_INLINE_FUNCTION PackCrsMatrixError () :
bad_index (Tpetra::Details::OrdinalTraits<LO>::invalid ()),
bad_offset (0),
bad_num_bytes (0),
out_of_bounds_error (false),
packing_error (false)
{}
bool success() const
{
// Any possible error would result in bad_index being changed from
// `invalid` to the index associated with the error.
return bad_index == Tpetra::Details::OrdinalTraits<LO>::invalid();
}
std::string summary() const
{
std::ostringstream os;
os << "First bad index: " << bad_index
<< ", first bad offset: " << bad_offset
<< ", first bad number of bytes: " << bad_num_bytes
<< ", out of bounds error?: " << (out_of_bounds_error ? "true" : "false");
return os.str();
}
};
template<class NumPacketsPerLidViewType,
class OffsetsViewType,
class ExportsViewType,
class ExportLidsViewType,
class LocalMatrixType,
class LocalMapType>
struct PackCrsMatrixFunctor {
typedef NumPacketsPerLidViewType num_packets_per_lid_view_type;
typedef OffsetsViewType offsets_view_type;
typedef ExportsViewType exports_view_type;
typedef ExportLidsViewType export_lids_view_type;
typedef typename num_packets_per_lid_view_type::non_const_value_type count_type;
typedef typename offsets_view_type::non_const_value_type offset_type;
typedef typename LocalMatrixType::value_type IST;
typedef typename LocalMatrixType::ordinal_type LO;
typedef typename LocalMapType::global_ordinal_type GO;
typedef PackCrsMatrixError<LO> value_type;
static_assert (std::is_same<LO, typename LocalMatrixType::ordinal_type>::value,
"LocalMapType::local_ordinal_type and "
"LocalMatrixType::ordinal_type must be the same.");
num_packets_per_lid_view_type num_packets_per_lid_;
offsets_view_type offsets_;
exports_view_type exports_;
export_lids_view_type export_lids_;
LocalMatrixType local_matrix_;
LocalMapType local_col_map_;
PackCrsMatrixFunctor (const num_packets_per_lid_view_type& num_packets_per_lid,
const offsets_view_type& offsets,
const exports_view_type& exports,
const export_lids_view_type& export_lids,
const LocalMatrixType& local_matrix,
const LocalMapType& local_col_map) :
num_packets_per_lid_ (num_packets_per_lid),
offsets_ (offsets),
exports_ (exports),
export_lids_ (export_lids),
local_matrix_ (local_matrix),
local_col_map_ (local_col_map)
{}
KOKKOS_INLINE_FUNCTION void init(value_type& dst) const
{
dst.bad_index = Tpetra::Details::OrdinalTraits<LO>::invalid();
dst.bad_offset = 0;
dst.bad_num_bytes = 0;
dst.out_of_bounds_error = false;
dst.packing_error = false;
}
KOKKOS_INLINE_FUNCTION void
join (volatile value_type& dst, const volatile value_type& src) const
{
// The dst object should reflect the first (least) bad index and
// all other associated error codes and data. Thus, we need only
// check if the src object shows an error and if its associated
// `bad_index` is less than the dst.bad_index (if dst shows
// errors).
LO invalid = Tpetra::Details::OrdinalTraits<LO>::invalid();
if (src.bad_index != invalid) {
// An error in the src; check if
// 1. The dst shows errors
// 2. If dst does show errors, if src bad_index is less than
// its bad index
if (dst.bad_index == invalid || src.bad_index < dst.bad_index) {
dst.bad_index = src.bad_index;
dst.bad_offset = src.bad_offset;
dst.bad_num_bytes = src.bad_num_bytes;
dst.out_of_bounds_error = src.out_of_bounds_error;
dst.packing_error = src.packing_error;
}
}
}
KOKKOS_INLINE_FUNCTION
void operator() (const LO i, value_type& dst) const
{
const LO export_lid = export_lids_[i];
const size_t buf_size = exports_.size();
const size_t num_ent =
static_cast<size_t> (local_matrix_.graph.row_map[export_lid+1]
- local_matrix_.graph.row_map[export_lid]);
// Only pack this row's data if it has a nonzero number of
// entries. We can do this because receiving processes get the
// number of packets, and will know that zero packets means zero
// entries.
if (num_ent != 0) {
char* const num_ent_beg = exports_.ptr_on_device() + offsets_(i);
char* const num_ent_end = num_ent_beg + sizeof (LO);
char* const val_beg = num_ent_end;
char* const val_end = val_beg + num_ent * sizeof (IST);
char* const ind_beg = val_end;
const size_t num_bytes = num_packets_per_lid_(i);
if ((offsets_(i) > buf_size || offsets_(i) + num_bytes > buf_size)) {
dst.out_of_bounds_error = true;
}
else {
dst.packing_error = ! packCrsMatrixRow(local_matrix_, local_col_map_,
num_ent_beg, val_beg, ind_beg, num_ent, export_lid);
}
if (dst.out_of_bounds_error || dst.packing_error) {
dst.bad_index = i;
dst.bad_offset = offsets_(i);
dst.bad_num_bytes = num_bytes;
}
}
}
};
/// \brief Packs a single row of the CrsMatrix.
///
/// Data (bytes) describing the row of the CRS matrix are "packed"
/// (concatenated) in to a single char* as
///
/// LO number of entries |
/// GO column indices > -- number of entries | column indices | values --
/// SC values |
///
/// \tparam LocalMatrixType the specialization of the KokkosSparse::CrsMatrix
/// local matrix
/// \tparam LocalMapType the type of the local column map
template<class LocalMatrixType, class LocalMapType>
KOKKOS_FUNCTION bool
packCrsMatrixRow (const LocalMatrixType& lclMatrix,
const LocalMapType& lclColMap,
char* const numEntOut,
char* const valOut,
char* const indOut,
const size_t numEnt, // number of entries in row
const typename LocalMatrixType::ordinal_type lclRow)
{
using Kokkos::subview;
typedef LocalMatrixType local_matrix_type;
typedef LocalMapType local_map_type;
typedef typename local_matrix_type::value_type IST;
typedef typename local_matrix_type::ordinal_type LO;
typedef typename local_matrix_type::size_type offset_type;
typedef typename local_map_type::global_ordinal_type GO;
typedef Kokkos::pair<offset_type, offset_type> pair_type;
const LO numEntLO = static_cast<LO> (numEnt);
// As of CUDA 6, it's totally fine to use memcpy in a CUDA device
// function. It does what one would expect.
memcpy (numEntOut, &numEntLO, sizeof (LO));
if (numEnt == 0) {
return true; // nothing more to pack
}
#ifdef HAVE_TPETRA_DEBUG
if (lclRow >= lclMatrix.numRows () ||
(static_cast<size_t> (lclRow + 1) >=
static_cast<size_t> (lclMatrix.graph.row_map.dimension_0 ()))) {
#else // NOT HAVE_TPETRA_DEBUG
if (lclRow >= lclMatrix.numRows ()) {
#endif // HAVE_TPETRA_DEBUG
// It's bad if this is not a valid local row index. One thing
// we can do is just pack the flag invalid value for the column
// indices. That makes sure that the receiving process knows
// something went wrong.
const GO flagInd = Tpetra::Details::OrdinalTraits<GO>::invalid ();
for (size_t k = 0; k < numEnt; ++k) {
// As of CUDA 6, it's totally fine to use memcpy in a CUDA
// device function. It does what one would expect.
memcpy (indOut + k * sizeof (GO), &flagInd, sizeof (GO));
}
// The values don't actually matter, but we might as well pack
// something here.
const IST zero = Kokkos::ArithTraits<IST>::zero ();
for (size_t k = 0; k < numEnt; ++k) {
// As of CUDA 6, it's totally fine to use memcpy in a CUDA
// device function. It does what one would expect.
memcpy (valOut + k * sizeof (IST), &zero, sizeof (IST));
}
return false;
}
// Since the matrix is locally indexed on the calling process, we
// have to use its column Map (which it _must_ have in this case)
// to convert to global indices.
const offset_type rowBeg = lclMatrix.graph.row_map[lclRow];
const offset_type rowEnd = lclMatrix.graph.row_map[lclRow + 1];
auto indIn = subview (lclMatrix.graph.entries, pair_type (rowBeg, rowEnd));
auto valIn = subview (lclMatrix.values, pair_type (rowBeg, rowEnd));
// Copy column indices one at a time, so that we don't need
// temporary storage.
for (size_t k = 0; k < numEnt; ++k) {
const GO gblIndIn = lclColMap.getGlobalElement (indIn[k]);
// As of CUDA 6, it's totally fine to use memcpy in a CUDA
// device function. It does what one would expect.
memcpy (indOut + k * sizeof (GO), &gblIndIn, sizeof (GO));
}
// As of CUDA 6, it's totally fine to use memcpy in a CUDA device
// function. It does what one would expect.
memcpy (valOut, valIn.ptr_on_device (), numEnt * sizeof (IST));
return true;
}
/// \brief Pack specified entries of the given local sparse matrix for
/// communication.
///
/// \warning This is an implementation detail of Tpetra::CrsMatrix.
///
/// \param errStr [in/out] If an error occurs on any participating
/// process, allocate this if it is null, then fill the string with
/// local error reporting. This is purely local to the process that
/// reports the error. The caller is responsible for synchronizing
/// across processes.
///
/// \param exports [in/out] Output pack buffer; resized if needed.
///
/// \param numPacketsPerLID [out] Entry k gives the number of bytes
/// packed for row exportLIDs[k] of the local matrix.
///
/// \param exportLIDs [in] Local indices of the rows to pack.
///
/// \param lclMatrix [in] The local sparse matrix to pack.
///
/// \return true if no errors occurred on the calling process, else
/// false. This is purely local to the process that discovered the
/// error. The caller is responsible for synchronizing across
/// processes.
template<class LocalMatrixType, class LocalMapType>
bool
packCrsMatrix (const LocalMatrixType& lclMatrix,
const LocalMapType& lclColMap,
std::unique_ptr<std::string>& errStr,
Teuchos::Array<char>& exports,
const Teuchos::ArrayView<size_t>& numPacketsPerLID,
size_t& constantNumPackets,
const Teuchos::ArrayView<const typename LocalMatrixType::ordinal_type>& exportLIDs,
const int myRank,
Distributor& /* dist */)
{
using Kokkos::View;
using Kokkos::HostSpace;
using Kokkos::MemoryUnmanaged;
using ::Tpetra::Details::computeOffsetsFromCounts;
typedef typename LocalMapType::local_ordinal_type LO;
typedef typename LocalMapType::global_ordinal_type GO;
typedef typename LocalMatrixType::value_type IST;
typedef typename LocalMatrixType::device_type device_type;
typedef typename device_type::execution_space execution_space;
typedef typename Kokkos::RangePolicy<execution_space, LO> range_type;
const char prefix[] = "Tpetra::Details::packCrsMatrix: ";
static_assert (std::is_same<LO, typename LocalMatrixType::ordinal_type>::value,
"LocalMapType::local_ordinal_type and "
"LocalMatrixType::ordinal_type must be the same.");
// Setting this to zero tells the caller to expect a possibly
// different ("nonconstant") number of packets per local index
// (i.e., a possibly different number of entries per row).
constantNumPackets = 0;
const size_t numExportLIDs = static_cast<size_t> (exportLIDs.size ());
if (numExportLIDs != static_cast<size_t> (numPacketsPerLID.size ())) {
std::ostringstream os;
os << prefix << "exportLIDs.size() = " << numExportLIDs
<< " != numPacketsPerLID.size() = " << numPacketsPerLID.size ()
<< "." << std::endl;
if (errStr.get () == NULL) {
errStr = std::unique_ptr<std::string> (new std::string (os.str ()));
}
else {
*errStr = *errStr + os.str ();
}
return false;
}
if (numExportLIDs != 0 && numPacketsPerLID.getRawPtr () == NULL) {
std::ostringstream os;
os << prefix << "numExportLIDs = " << numExportLIDs << " != 0, but "
<< "numPacketsPerLID.getRawPtr() = " << numPacketsPerLID.getRawPtr ()
<< " != NULL." << std::endl;
if (errStr.get () == NULL) {
errStr = std::unique_ptr<std::string> (new std::string (os.str ()));
}
else {
*errStr = *errStr + os.str ();
}
return false;
}
if (numExportLIDs == 0) {
exports.resize (0);
return true; // nothing to pack
}
typename LocalMatrixType::device_type outputDevice;
using Tpetra::Details::create_mirror_view_from_raw_host_array;
// This is an output array, so we don't have to copy to device here.
// However, we'll have to remember to copy back to host when done.
auto numPktPerLid_d =
create_mirror_view_from_raw_host_array (outputDevice,
numPacketsPerLID.getRawPtr (),
numPacketsPerLID.size (),
false,
"numPktPerLid");
// This is an input array, so we have to copy to device here.
// However, we never need to copy it back to host.
auto packLids_d =
create_mirror_view_from_raw_host_array (outputDevice,
exportLIDs.getRawPtr (),
exportLIDs.size (),
true,
"packLids");
// Array of offsets into the pack buffer.
Kokkos::View<size_t*, device_type> packOffsets_d ("packOffsets",
numExportLIDs + 1);
// Compute number of packets per LID (row to send), as well as
// corresponding offsets (the prefix sum of the packet counts).
std::unique_ptr<std::ostringstream> errStrm;
std::pair<size_t, bool> countResult =
computeNumPacketsAndOffsets (errStrm,
packOffsets_d,
numPktPerLid_d,
lclMatrix.graph.row_map,
packLids_d,
sizeof (LO),
sizeof (IST),
sizeof (GO));
if (! countResult.second) {
if (errStr.get () == NULL) {
errStr = std::unique_ptr<std::string> (new std::string (errStrm->str ()));
}
else {
*errStr = *errStr + errStrm->str ();
}
return false;
}
// The counts were an output of computeNumPacketsAndOffsets, so we
// have to copy them back to host.
typename decltype (numPktPerLid_d)::HostMirror numPktPerLid_h (numPacketsPerLID.getRawPtr (),
numPacketsPerLID.size ());
Kokkos::deep_copy (numPktPerLid_h, numPktPerLid_d);
// Resize the output pack buffer if needed.
if (countResult.first > static_cast<size_t> (exports.size ())) {
exports.resize (countResult.first);
}
// Make device version of output pack buffer. This is an output
// array, so we don't have to copy to device here.
auto packBuf_d =
create_mirror_view_from_raw_host_array (outputDevice,
exports.getRawPtr (),
countResult.first,
false,
"packBuf");
// Now do the actual pack!
typedef PackCrsMatrixFunctor<
decltype (numPktPerLid_d),
decltype (packOffsets_d),
decltype (packBuf_d),
decltype (packLids_d),
LocalMatrixType,
LocalMapType> pack_functor_type;
pack_functor_type packer (numPktPerLid_d, packOffsets_d, packBuf_d,
packLids_d, lclMatrix, lclColMap);
typename pack_functor_type::value_type result;
Kokkos::parallel_reduce (range_type (0, numExportLIDs), packer, result);
if (! result.success ()) {
std::ostringstream os;
os << "Proc " << myRank << ": packCrsMatrix failed. "
<< result.summary()
<< std::endl;
if (errStr.get () != NULL) {
errStr = std::unique_ptr<std::string> (new std::string ());
*errStr = os.str ();
}
return false;
}
// Copy pack result back to host, if needed.
typename decltype (packBuf_d)::HostMirror packBuf_h (exports.getRawPtr (),
countResult.first);
Kokkos::deep_copy (packBuf_h, packBuf_d);
return true; // if we got this far, we succeeded
}
} // namespace Details
} // namespace Tpetra
#endif // TPETRA_DETAILS_PACKCRSMATRIX_HPP
|