/usr/include/trilinos/Tpetra_Details_defaultGemm.hpp is in libtrilinos-tpetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | /*
//@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef TPETRA_DETAILS_DEFAULTGEMM_HPP
#define TPETRA_DETAILS_DEFAULTGEMM_HPP
/// \file Tpetra_Details_defaultGemm.hpp
/// \brief Default implementation of local (but process-global) GEMM
/// (dense matrix-matrix multiply), for Tpetra::MultiVector.
///
/// \warning This file, and its contents, are an implementation detail
/// of Tpetra::MultiVector. Either may disappear or change at any
/// time.
#include "TpetraCore_config.h"
#include "Kokkos_ArithTraits.hpp"
#include "Kokkos_Complex.hpp"
#include <type_traits>
namespace Tpetra {
namespace Details {
namespace Blas {
namespace Default {
/// \brief Default implementation of dense matrix-matrix multiply on a
/// single MPI process: <tt>C := alpha*A*B + beta*C</tt>.
///
/// \tparam ViewType1 Type of the first matrix input A.
/// \tparam ViewType2 Type of the second matrix input B.
/// \tparam ViewType3 Type of the third matrix input/output C.
/// \tparam CoefficientType Type of the scalar coefficients alpha and beta.
/// \tparam IndexType Type of the index used in for loops; defaults to \c int.
///
/// ViewType1, ViewType2, and ViewType3 are all Kokkos::View specializations.
template<class ViewType1,
class ViewType2,
class ViewType3,
class CoefficientType,
class IndexType = int>
void
gemm (const char transA,
const char transB,
const CoefficientType& alpha,
const ViewType1& A,
const ViewType2& B,
const CoefficientType& beta,
const ViewType3& C)
{
// Assert that A, B, and C are in fact matrices
static_assert (ViewType1::rank == 2, "GEMM: A must have rank 2 (be a matrix).");
static_assert (ViewType2::rank == 2, "GEMM: B must have rank 2 (be a matrix).");
static_assert (ViewType3::rank == 2, "GEMM: C must have rank 2 (be a matrix).");
typedef typename ViewType3::non_const_value_type c_value_type;
typedef Kokkos::Details::ArithTraits<CoefficientType> STS;
const CoefficientType ZERO = STS::zero ();
const CoefficientType ONE = STS::one ();
// Get the dimensions
IndexType m, n, k;
if (transA == 'N' || transA == 'n') {
m = static_cast<IndexType> (A.dimension_0 ());
n = static_cast<IndexType> (A.dimension_1 ());
}
else {
m = static_cast<IndexType> (A.dimension_1 ());
n = static_cast<IndexType> (A.dimension_0 ());
}
k = static_cast<IndexType> (C.dimension_1 ());
// quick return if possible
if (alpha == ZERO && beta == ONE) {
return;
}
// And if alpha equals zero...
if (alpha == ZERO) {
if (beta == ZERO) {
for (IndexType i = 0; i < m; ++i) {
for (IndexType j = 0; j < k; ++j) {
C(i,j) = ZERO;
}
}
}
else {
for (IndexType i = 0; i < m; ++i) {
for (IndexType j = 0; j < k; ++j) {
C(i,j) = beta*C(i,j);
}
}
}
}
// Start the operations
if (transB == 'n' || transB == 'N') {
if (transA == 'n' || transA == 'N') {
// Form C = alpha*A*B + beta*C
for (IndexType j = 0; j < n; ++j) {
if (beta == ZERO) {
for (IndexType i = 0; i < m; ++i) {
C(i,j) = ZERO;
}
}
else if (beta != ONE) {
for (IndexType i = 0; i < m; ++i) {
C(i,j) = beta*C(i,j);
}
}
for (IndexType l = 0; l < k; ++l) {
// Don't use c_value_type here, since it unnecessarily
// forces type conversion before we assign to C(i,j).
auto temp = alpha*B(l,j);
for (IndexType i = 0; i < m; ++i) {
C(i,j) = C(i,j) + temp*A(i,l);
}
}
}
}
else {
// Form C = alpha*A**T*B + beta*C
for (IndexType j = 0; j < n; ++j) {
for (IndexType i = 0; i < m; ++i) {
c_value_type temp = ZERO;
for (IndexType l = 0; l < k; ++l) {
temp = temp + A(l,i)*B(l,j);
}
if (beta == ZERO) {
C(i,j) = alpha*temp;
}
else {
C(i,j) = alpha*temp + beta*C(i,j);
}
}
}
}
}
else {
if (transA == 'n' || transA == 'N') {
// Form C = alpha*A*B**T + beta*C
for (IndexType j = 0; j < n; ++j) {
if (beta == ZERO) {
for (IndexType i = 0; i < m; ++i) {
C(i,j) = ZERO;
}
}
else if (beta != ONE) {
for (IndexType i = 0; i < m; ++i) {
C(i,j) = beta*C(i,j);
}
}
for (IndexType l = 0; l < k; ++l) {
// Don't use c_value_type here, since it unnecessarily
// forces type conversion before we assign to C(i,j).
auto temp = alpha*B(j,l);
for (IndexType i = 0; i < m; ++i) {
C(i,j) = C(i,j) + temp*A(i,l);
}
}
}
}
else {
// Form C = alpha*A**T*B**T + beta*C
for (IndexType j = 0; j < n; ++j) {
for (IndexType i = 0; i < m; ++i) {
c_value_type temp = ZERO;
for (IndexType l = 0; l < k; ++l) {
temp = temp + A(l,i)*B(j,l);
}
if (beta == ZERO) {
C(i,j) = alpha*temp;
}
else {
C(i,j) = alpha*temp + beta*C(i,j);
}
}
}
}
}
}
} // namespace Default
} // namespace Blas
} // namespace Details
} // namespace Tpetra
#endif // TPETRA_DETAILS_DEFAULTGEMM_HPP
|