This file is indexed.

/usr/include/trilinos/TbbTsqr_RevealRankTask.hpp is in libtrilinos-tpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_TBB_RevealRankTask_hpp
#define __TSQR_TBB_RevealRankTask_hpp

#include <tbb/task.h>
#include <TbbTsqr_Partitioner.hpp>
#include <Tsqr_SequentialTsqr.hpp>

////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////

namespace TSQR {
  namespace TBB {

    /// \class RevealRankTask
    /// \brief TBB task for recursive TSQR "rank-revealing" phase.
    ///
    /// This part of the factorization doesn't actually reveal the
    /// rank in parallel; we assume that this has already been done
    /// and the columns of U form a basis for the column space of the
    /// R factor (in the QR factorization of the original matrix).
    /// All we need to do here is compute Q*U in parallel, respecting
    /// the original partitioning and cache blocking scheme.
    template<class LocalOrdinal, class Scalar>
    class RevealRankTask : public tbb::task {
    public:
      typedef MatView<LocalOrdinal, Scalar> mat_view_type;
      typedef ConstMatView<LocalOrdinal, Scalar> const_mat_view_type;
      typedef std::pair<mat_view_type, mat_view_type> split_type;
      typedef SequentialTsqr<LocalOrdinal, Scalar> seq_tsqr_type;

      RevealRankTask (const size_t P_first,
                      const size_t P_last,
                      const mat_view_type& Q,
                      const const_mat_view_type& U,
                      const seq_tsqr_type& seq,
                      const bool contiguous_cache_blocks) :
        P_first_ (P_first),
        P_last_ (P_last),
        Q_ (Q),
        U_ (U),
        seq_ (seq),
        contiguous_cache_blocks_ (contiguous_cache_blocks)
      {}

      void
      execute_base_case ()
      {
        // Use SequentialTsqr to compute Q*U for this core's local
        // part of Q.  The method is called "Q_times_B" so that it
        // doesn't suggest any orthogonality of the B input matrix,
        // though in this case B is U and U is orthogonal
        // (resp. unitary if Scalar is complex).
        seq_.Q_times_B (Q_.nrows(), Q_.ncols(), Q_.get(), Q_.lda(),
                        U_.get(), U_.lda(), contiguous_cache_blocks_);
      }

      tbb::task* execute ()
      {
        using tbb::task;

        if (P_first_ > P_last_ || Q_.empty())
          return NULL; // shouldn't get here, but just in case...
        else if (P_first_ == P_last_)
          {
            execute_base_case ();
            return NULL;
          }
        else
          {
            // Recurse on two intervals: [P_first, P_mid] and
            // [P_mid+1, P_last]
            const size_t P_mid = (P_first_ + P_last_) / 2;
            split_type out_split =
              partitioner_.split (Q_, P_first_, P_mid, P_last_,
                                  contiguous_cache_blocks_);
            // The partitioner may decide that the current block Q_
            // has too few rows to be worth splitting.  In that case,
            // out_split.second (the bottom block) will be empty.  We
            // can deal with this by treating it as the base case.
            if (out_split.second.empty() || out_split.second.nrows() == 0)
              {
                execute_base_case ();
                return NULL;
              }

            // "c": continuation task
            tbb::empty_task& c =
              *new( allocate_continuation() ) tbb::empty_task;
            // Recurse on the split
            RevealRankTask& topTask = *new( c.allocate_child() )
              RevealRankTask (P_first_, P_mid, out_split.first, U_,
                              seq_, contiguous_cache_blocks_);
            RevealRankTask& botTask = *new( c.allocate_child() )
              RevealRankTask (P_mid+1, P_last_, out_split.second, U_,
                              seq_, contiguous_cache_blocks_);
            // Set reference count of parent (in this case, the
            // continuation task) to 2 (since 2 children -- no
            // additional task since no waiting).
            c.set_ref_count (2);
            c.spawn (botTask);
            return &topTask; // scheduler bypass optimization
          }
      }

    private:
      size_t P_first_, P_last_;
      mat_view_type Q_;
      const_mat_view_type U_;
      SequentialTsqr<LocalOrdinal, Scalar> seq_;
      Partitioner<LocalOrdinal, Scalar> partitioner_;
      bool contiguous_cache_blocks_;
    };

  } // namespace TBB
} // namespace TSQR


#endif // __TSQR_TBB_RevealRankTask_hpp