This file is indexed.

/usr/include/trilinos/TbbTsqr_FactorTask.hpp is in libtrilinos-tpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_TBB_FactorTask_hpp
#define __TSQR_TBB_FactorTask_hpp

#include <tbb/task.h>
#include <TbbTsqr_Partitioner.hpp>
#include <Tsqr_SequentialTsqr.hpp>
#include <Teuchos_Assert.hpp>
#include <algorithm>

////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////

namespace TSQR {
  namespace TBB {

    /// \class FactorTask
    /// \brief TBB task for recursive TSQR factorization phase.
    ///
    template<class LocalOrdinal, class Scalar, class TimerType>
    class FactorTask : public tbb::task {
    public:
      typedef MatView<LocalOrdinal, Scalar> mat_view_type;
      typedef ConstMatView<LocalOrdinal, Scalar> const_mat_view_type;
      typedef std::pair<mat_view_type, mat_view_type> split_t;
      typedef std::pair<const_mat_view_type, const_mat_view_type> const_split_t;

      /// \typedef SeqOutput
      /// Result of SequentialTsqr for each thread.
      typedef typename SequentialTsqr<LocalOrdinal, Scalar>::FactorOutput SeqOutput;
      /// \typedef ParOutput
      ///
      /// Array of ncores "local tau arrays" from parallel TSQR.
      /// (Local Q factors are stored in place.)
      typedef std::vector<std::vector<Scalar> > ParOutput;
      /// \typedef FactorOutput
      /// Result of SequentialTsqr for the data on each thread,
      /// and the result of combining the threads' data.
      typedef typename std::pair<std::vector<SeqOutput>, ParOutput> FactorOutput;

      /// \brief Constructor.
      ///
      /// \note The timing references are only modified by one thread
      ///   at a time; recursive calls use distinct references and
      ///   combine the results.
      FactorTask (const size_t P_first__,
                  const size_t P_last__,
                  mat_view_type A,
                  mat_view_type* const A_top_ptr,
                  std::vector<SeqOutput>& seq_outputs,
                  ParOutput& par_output,
                  const SequentialTsqr<LocalOrdinal, Scalar>& seq,
                  double& my_seq_timing,
                  double& min_seq_timing,
                  double& max_seq_timing,
                  const bool contiguous_cache_blocks) :
        P_first_ (P_first__),
        P_last_ (P_last__),
        A_ (A),
        A_top_ptr_ (A_top_ptr),
        seq_outputs_ (seq_outputs),
        par_output_ (par_output),
        seq_ (seq),
        contiguous_cache_blocks_ (contiguous_cache_blocks),
        my_seq_timing_ (my_seq_timing),
        min_seq_timing_ (min_seq_timing),
        max_seq_timing_ (max_seq_timing)
      {}

      tbb::task* execute ()
      {
        if (P_first_ > P_last_ || A_.empty())
          return NULL;
        else if (P_first_ == P_last_)
          {
            execute_base_case ();
            return NULL;
          }
        else
          {
            // Recurse on two intervals: [P_first, P_mid] and [P_mid+1, P_last]
            const size_t P_mid = (P_first_ + P_last_) / 2;
            split_t A_split =
              partitioner_.split (A_, P_first_, P_mid, P_last_,
                                  contiguous_cache_blocks_);
            // The partitioner may decide that the current block A_
            // has too few rows to be worth splitting.  In that case,
            // A_split.second (the bottom block) will be empty.  We
            // can deal with this by treating it as the base case.
            if (A_split.second.empty() || A_split.second.nrows() == 0)
              {
                execute_base_case ();
                return NULL;
              }

            double top_timing;
            double top_min_timing = 0.0;
            double top_max_timing = 0.0;
            double bot_timing;
            double bot_min_timing = 0.0;
            double bot_max_timing = 0.0;

            FactorTask& topTask = *new( allocate_child() )
              FactorTask (P_first_, P_mid, A_split.first, A_top_ptr_,
                          seq_outputs_, par_output_, seq_,
                          top_timing, top_min_timing, top_max_timing,
                          contiguous_cache_blocks_);
            // After the task finishes, A_bot will be set to the topmost
            // partition of A_split.second.  This will let us combine
            // the two subproblems (using factor_pair()) after their
            // tasks complete.
            mat_view_type A_bot;
            FactorTask& botTask = *new( allocate_child() )
              FactorTask (P_mid+1, P_last_, A_split.second, &A_bot,
                          seq_outputs_, par_output_, seq_,
                          bot_timing, bot_min_timing, bot_max_timing,
                          contiguous_cache_blocks_);
            set_ref_count (3); // 3 children (2 + 1 for the wait)
            spawn (topTask);
            spawn_and_wait_for_all (botTask);

            // Combine the two results
            factor_pair (P_first_, P_mid+1, *A_top_ptr_, A_bot);

            top_min_timing = (top_min_timing == 0.0) ? top_timing : top_min_timing;
            top_max_timing = (top_max_timing == 0.0) ? top_timing : top_max_timing;

            bot_min_timing = (bot_min_timing == 0.0) ? bot_timing : bot_min_timing;
            bot_max_timing = (bot_max_timing == 0.0) ? bot_timing : bot_max_timing;

            min_seq_timing_ = std::min (top_min_timing, bot_min_timing);
            max_seq_timing_ = std::min (top_max_timing, bot_max_timing);

            return NULL;
          }
      }

    private:
      const size_t P_first_, P_last_;
      mat_view_type A_;
      mat_view_type* const A_top_ptr_;
      std::vector<SeqOutput>& seq_outputs_;
      ParOutput& par_output_;
      SequentialTsqr<LocalOrdinal, Scalar> seq_;
      TSQR::Combine<LocalOrdinal, Scalar> combine_;
      Partitioner<LocalOrdinal, Scalar> partitioner_;
      const bool contiguous_cache_blocks_;
      double& my_seq_timing_;
      double& min_seq_timing_;
      double& max_seq_timing_;

      void
      factor_pair (const size_t P_top,
                   const size_t P_bot,
                   mat_view_type& A_top, // different than A_top_
                   mat_view_type& A_bot)
      {
        const char thePrefix[] = "TSQR::TBB::Factor::factor_pair: ";
        TEUCHOS_TEST_FOR_EXCEPTION(P_top == P_bot, std::logic_error,
                           thePrefix << "Should never get here! P_top == P_bot (= "
                           << P_top << "), that is, the indices of the thread "
                           "partitions are the same.");
        // We only read and write the upper ncols x ncols triangle of
        // each block.
        TEUCHOS_TEST_FOR_EXCEPTION(A_top.ncols() != A_bot.ncols(), std::logic_error,
                           thePrefix << "The top cache block A_top is "
                           << A_top.nrows() << " x " << A_top.ncols()
                           << ", and the bottom cache block A_bot is "
                           << A_bot.nrows() << " x " << A_bot.ncols()
                           << "; this means we can't factor [A_top; A_bot].");
        const LocalOrdinal ncols = A_top.ncols();
        std::vector<Scalar>& tau = par_output_[P_bot];
        std::vector<Scalar> work (ncols);
        combine_.factor_pair (ncols, A_top.get(), A_top.lda(),
                              A_bot.get(), A_bot.lda(), &tau[0], &work[0]);
      }

      void
      execute_base_case ()
      {
        TimerType timer("");
        timer.start();
        seq_outputs_[P_first_] =
          seq_.factor (A_.nrows(), A_.ncols(), A_.get(),
                       A_.lda(), contiguous_cache_blocks_);
        // Assign the topmost cache block of the current partition to
        // *A_top_ptr_.  Every base case invocation does this, so that
        // we can combine subproblems.  The root task also does this,
        // but for a different reason: so that we can extract the R
        // factor, once we're done with the factorization.
        *A_top_ptr_ = seq_.top_block (A_, contiguous_cache_blocks_);
        my_seq_timing_ = timer.stop();
      }
    };
  } // namespace TBB
} // namespace TSQR

#endif // __TSQR_TBB_FactorTask_hpp