/usr/include/trilinos/TbbTsqr_ApplyTask.hpp is in libtrilinos-tpetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_TBB_ApplyTask_hpp
#define __TSQR_TBB_ApplyTask_hpp
#include <tbb/task.h>
#include <TbbTsqr_Partitioner.hpp>
#include <Tsqr_SequentialTsqr.hpp>
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
namespace TSQR {
namespace TBB {
/// \class ApplyTask
/// \brief TBB task for recursive TSQR "apply Q factor" phase.
///
template< class LocalOrdinal, class Scalar, class TimerType >
class ApplyTask : public tbb::task {
public:
typedef MatView<LocalOrdinal, Scalar> mat_view_type;
typedef ConstMatView<LocalOrdinal, Scalar> const_mat_view_type;
typedef std::pair<mat_view_type, mat_view_type> split_t;
typedef std::pair<const_mat_view_type, const_mat_view_type> const_split_t;
typedef std::pair<const_mat_view_type, mat_view_type> top_blocks_t;
typedef std::vector<top_blocks_t> array_top_blocks_t;
/// \typedef SeqOutput
/// Result of SequentialTsqr for each thread.
typedef typename SequentialTsqr<LocalOrdinal, Scalar>::FactorOutput SeqOutput;
/// \typedef ParOutput
///
/// Array of ncores "local tau arrays" from parallel TSQR.
/// (Local Q factors are stored in place.)
typedef std::vector<std::vector<Scalar> > ParOutput;
/// \typedef FactorOutput
/// Result of SequentialTsqr for the data on each thread,
/// and the result of combining the threads' data.
typedef typename std::pair<std::vector<SeqOutput>, ParOutput> FactorOutput;
/// \brief Constructor.
///
/// \note The timing references are only modified by one thread
/// at a time; recursive calls use distinct references and
/// combine the results.
ApplyTask (const size_t P_first__,
const size_t P_last__,
const_mat_view_type Q,
mat_view_type C,
array_top_blocks_t& top_blocks,
const FactorOutput& factor_output,
const SequentialTsqr<LocalOrdinal, Scalar>& seq,
double& my_seq_timing,
double& min_seq_timing,
double& max_seq_timing,
const bool contiguous_cache_blocks) :
P_first_ (P_first__),
P_last_ (P_last__),
Q_ (Q),
C_ (C),
top_blocks_ (top_blocks),
factor_output_ (factor_output),
seq_ (seq),
apply_type_ (ApplyType::NoTranspose), // FIXME: modify to support Q^T and Q^H
my_seq_timing_ (my_seq_timing),
min_seq_timing_ (min_seq_timing),
max_seq_timing_ (max_seq_timing),
contiguous_cache_blocks_ (contiguous_cache_blocks)
{}
tbb::task* execute ()
{
if (P_first_ > P_last_ || Q_.empty() || C_.empty())
return NULL;
else if (P_first_ == P_last_)
{
execute_base_case ();
return NULL;
}
else
{
// Recurse on two intervals: [P_first, P_mid] and [P_mid+1, P_last]
const size_t P_mid = (P_first_ + P_last_) / 2;
const_split_t Q_split =
partitioner_.split (Q_, P_first_, P_mid, P_last_,
contiguous_cache_blocks_);
split_t C_split =
partitioner_.split (C_, P_first_, P_mid, P_last_,
contiguous_cache_blocks_);
// The partitioner may decide that the current blocks Q_
// and C_ have too few rows to be worth splitting. In
// that case, Q_split.second and C_split.second (the
// bottom block) will be empty. We can deal with this by
// treating it as the base case.
if (Q_split.second.empty() || Q_split.second.nrows() == 0)
{
execute_base_case ();
return NULL;
}
double top_timing;
double top_min_timing = 0.0;
double top_max_timing = 0.0;
double bot_timing;
double bot_min_timing = 0.0;
double bot_max_timing = 0.0;
apply_pair (P_first_, P_mid+1);
ApplyTask& topTask = *new( allocate_child() )
ApplyTask (P_first_, P_mid, Q_split.first, C_split.first,
top_blocks_, factor_output_, seq_,
top_timing, top_min_timing, top_max_timing,
contiguous_cache_blocks_);
ApplyTask& botTask = *new( allocate_child() )
ApplyTask (P_mid+1, P_last_, Q_split.second, C_split.second,
top_blocks_, factor_output_, seq_,
bot_timing, bot_min_timing, bot_max_timing,
contiguous_cache_blocks_);
set_ref_count (3); // 3 children (2 + 1 for the wait)
spawn (topTask);
spawn_and_wait_for_all (botTask);
top_min_timing = (top_min_timing == 0.0) ? top_timing : top_min_timing;
top_max_timing = (top_max_timing == 0.0) ? top_timing : top_max_timing;
bot_min_timing = (bot_min_timing == 0.0) ? bot_timing : bot_min_timing;
bot_max_timing = (bot_max_timing == 0.0) ? bot_timing : bot_max_timing;
min_seq_timing_ = std::min (top_min_timing, bot_min_timing);
max_seq_timing_ = std::min (top_max_timing, bot_max_timing);
return NULL;
}
}
private:
size_t P_first_, P_last_;
const_mat_view_type Q_;
mat_view_type C_;
array_top_blocks_t& top_blocks_;
const FactorOutput& factor_output_;
SequentialTsqr<LocalOrdinal, Scalar> seq_;
TSQR::ApplyType apply_type_;
TSQR::Combine<LocalOrdinal, Scalar> combine_;
Partitioner<LocalOrdinal, Scalar> partitioner_;
double& my_seq_timing_;
double& min_seq_timing_;
double& max_seq_timing_;
bool contiguous_cache_blocks_;
void
execute_base_case ()
{
TimerType timer("");
timer.start();
const std::vector<SeqOutput>& seq_outputs = factor_output_.first;
seq_.apply (apply_type_, Q_.nrows(), Q_.ncols(),
Q_.get(), Q_.lda(), seq_outputs[P_first_],
C_.ncols(), C_.get(), C_.lda(),
contiguous_cache_blocks_);
my_seq_timing_ = timer.stop();
}
void
apply_pair (const size_t P_top,
const size_t P_bot)
{
if (P_top == P_bot)
throw std::logic_error("apply_pair: should never get here!");
const_mat_view_type& Q_bot = top_blocks_[P_bot].first;
mat_view_type& C_top = top_blocks_[P_top].second;
mat_view_type& C_bot = top_blocks_[P_bot].second;
const ParOutput& par_output = factor_output_.second;
const std::vector<Scalar>& tau = par_output[P_bot];
std::vector<Scalar> work (C_top.ncols());
combine_.apply_pair (apply_type_, C_top.ncols(), Q_bot.ncols(),
Q_bot.get(), Q_bot.lda(), &tau[0],
C_top.get(), C_top.lda(),
C_bot.get(), C_bot.lda(), &work[0]);
}
};
} // namespace TBB
} // namespace TSQR
#endif // __TSQR_TBB_ApplyTask_hpp
|