/usr/include/trilinos/TbbTsqr.hpp is in libtrilinos-tpetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
/// \file TbbTsqr.hpp
/// \brief Intranode TSQR, parallelized with Intel TBB.
///
#ifndef __TSQR_TbbTsqr_hpp
#define __TSQR_TbbTsqr_hpp
#include <TbbTsqr_TbbParallelTsqr.hpp>
#include <Tsqr_TimeStats.hpp>
#include <Teuchos_ParameterList.hpp>
#include <Teuchos_ParameterListExceptions.hpp>
#include <Teuchos_Time.hpp>
// #include <TbbRecursiveTsqr.hpp>
#include <stdexcept>
#include <string>
#include <utility> // std::pair
#include <vector>
namespace TSQR {
namespace TBB {
/// \class TbbTsqr
/// \brief Intranode TSQR, parallelized with Intel TBB
///
/// TSQR factorization for a dense, tall and skinny matrix stored
/// on a single node. Parallelized using Intel's Threading
/// Building Blocks.
///
/// \note TSQR only needs to know about the local ordinal type
/// (LocalOrdinal), not about the global ordinal type.
/// TimerType may be any class with the same interface as
/// TrivialTimer; it times the divide-and-conquer base cases
/// (the operations on each CPU core within the thread-parallel
/// implementation).
template< class LocalOrdinal, class Scalar, class TimerType = Teuchos::Time >
class TbbTsqr : public Teuchos::Describable {
private:
/// \brief Implementation of TBB TSQR.
///
/// If you don't have TBB available, you can test this class by
/// substituting in a TbbRecursiveTsqr<LocalOrdinal, Scalar>
/// object. That is a nonparallel implementation that emulates
/// the control flow of TbbParallelTsqr. If you do this, you
/// should also change the FactorOutput public typedef.
///
/// \note This is NOT a use of the pImpl idiom, because the
/// point of the pImpl idiom is to avoid including the
/// implementation details of the header file of the
/// implementation class. Here, the implementation class is
/// templated, so we have to include the implementation class'
/// implementation details.
TbbParallelTsqr<LocalOrdinal, Scalar, TimerType> impl_;
// Collected running statistcs on various computations
mutable TimeStats factorStats_;
mutable TimeStats applyStats_;
mutable TimeStats explicitQStats_;
mutable TimeStats cacheBlockStats_;
mutable TimeStats unCacheBlockStats_;
// Timers for various computations
mutable TimerType factorTimer_;
mutable TimerType applyTimer_;
mutable TimerType explicitQTimer_;
mutable TimerType cacheBlockTimer_;
mutable TimerType unCacheBlockTimer_;
public:
typedef Scalar scalar_type;
typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType magnitude_type;
typedef LocalOrdinal ordinal_type;
/// \typedef FactorOutput
/// \brief Type of partial output of TBB TSQR.
///
/// If you don't have TBB available, you can test this class by
/// substituting in "typename TbbRecursiveTsqr<LocalOrdinal,
/// Scalar>::FactorOutput" for the typedef's definition. If you
/// do this, you should also change the type of \c impl_ above.
typedef typename TbbParallelTsqr<LocalOrdinal, Scalar, TimerType>::FactorOutput FactorOutput;
/// \brief Constructor.
///
/// \param numCores [in] Maximum number of processing cores to use
/// when factoring the matrix. Fewer cores may be used if the
/// matrix is not big enough to justify their use.
///
/// \param cacheSizeHint [in] Cache block size hint (in bytes)
/// to use in the sequential part of TSQR. If zero or not
/// specified, a reasonable default is used. If each CPU core
/// has a private cache, that cache's size (minus a little
/// wiggle room) would be the appropriate value for this
/// parameter. Set to zero for the implementation to choose a
/// reasonable default.
TbbTsqr (const size_t numCores,
const size_t cacheSizeHint = 0) :
impl_ (numCores, cacheSizeHint),
factorTimer_ ("TbbTsqr::factor"),
applyTimer_ ("TbbTsqr::apply"),
explicitQTimer_ ("TbbTsqr::explicit_Q"),
cacheBlockTimer_ ("TbbTsqr::cache_block"),
unCacheBlockTimer_ ("TbbTsqr::un_cache_block")
{}
/// \brief Constructor (that takes a parameter list).
///
/// \param plist [in/out] On input: list of TbbTsqr parameters.
/// On output: missing parameters are filled in with default
/// values.
///
/// For a list of accepted parameters and thei documentation,
/// see the parameter list returned by \c getValidParameters().
TbbTsqr (const Teuchos::RCP<Teuchos::ParameterList>& plist) :
impl_ (plist),
factorTimer_ ("TbbTsqr::factor"),
applyTimer_ ("TbbTsqr::apply"),
explicitQTimer_ ("TbbTsqr::explicit_Q"),
cacheBlockTimer_ ("TbbTsqr::cache_block"),
unCacheBlockTimer_ ("TbbTsqr::un_cache_block")
{}
/// \brief Constructor (that uses default parameters).
///
/// \param plist [in/out] On input: list of TbbTsqr parameters.
/// On output: missing parameters are filled in with default
/// values.
///
/// For a list of accepted parameters and thei documentation,
/// see the parameter list returned by \c getValidParameters().
TbbTsqr () :
impl_ (Teuchos::null),
factorTimer_ ("TbbTsqr::factor"),
applyTimer_ ("TbbTsqr::apply"),
explicitQTimer_ ("TbbTsqr::explicit_Q"),
cacheBlockTimer_ ("TbbTsqr::cache_block"),
unCacheBlockTimer_ ("TbbTsqr::un_cache_block")
{}
Teuchos::RCP<const Teuchos::ParameterList>
getValidParameters () const
{
return impl_.getValidParameters ();
}
void
setParameterList (const Teuchos::RCP<Teuchos::ParameterList>& plist)
{
impl_.setParameterList (plist);
}
/// \brief Number of tasks that TSQR will use to solve the problem.
///
/// This is the number of subproblems into which to divide the
/// main problem, in order to solve it in parallel.
size_t ntasks() const { return impl_.ntasks(); }
//! Cache size hint (in bytes) used for the factorization.
size_t cache_size_hint() const { return impl_.cache_size_hint(); }
/// Whether or not this QR factorization produces an R factor
/// with all nonnegative diagonal entries.
static bool QR_produces_R_factor_with_nonnegative_diagonal() {
typedef TbbParallelTsqr< LocalOrdinal, Scalar, TimerType > impl_type;
return impl_type::QR_produces_R_factor_with_nonnegative_diagonal();
}
//! Whether this object is ready to perform computations.
bool ready() const {
return true;
}
/// \brief One-line description of this object.
///
/// This implements Teuchos::Describable::description(). For now,
/// SequentialTsqr uses the default implementation of
/// Teuchos::Describable::describe().
std::string description () const {
using std::endl;
// SequentialTsqr also implements Describable, so if you
// decide to implement describe(), you could call
// SequentialTsqr's describe() and get a nice hierarchy of
// descriptions.
std::ostringstream os;
os << "Intranode Tall Skinny QR (TSQR): "
<< "Intel Threading Building Blocks (TBB) implementation"
<< ", max " << ntasks() << "-way parallelism"
<< ", cache size hint of " << cache_size_hint() << " bytes.";
return os.str();
}
void
cache_block (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A_out[],
const Scalar A_in[],
const LocalOrdinal lda_in) const
{
cacheBlockTimer_.start(true);
impl_.cache_block (nrows, ncols, A_out, A_in, lda_in);
cacheBlockStats_.update (cacheBlockTimer_.stop());
}
void
un_cache_block (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A_out[],
const LocalOrdinal lda_out,
const Scalar A_in[]) const
{
unCacheBlockTimer_.start(true);
impl_.un_cache_block (nrows, ncols, A_out, lda_out, A_in);
unCacheBlockStats_.update (unCacheBlockTimer_.stop());
}
void
fill_with_zeros (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar C[],
const LocalOrdinal ldc,
const bool contiguous_cache_blocks) const
{
impl_.fill_with_zeros (nrows, ncols, C, ldc, contiguous_cache_blocks);
}
template< class MatrixViewType >
MatrixViewType
top_block (const MatrixViewType& C,
const bool contiguous_cache_blocks) const
{
return impl_.top_block (C, contiguous_cache_blocks);
}
/// \brief Compute QR factorization of the dense matrix A
///
/// Compute the QR factorization of the dense matrix A.
///
/// \param nrows [in] Number of rows of A.
/// Precondition: nrows >= ncols.
///
/// \param ncols [in] Number of columns of A.
/// Precondition: nrows >= ncols.
///
/// \param A [in,out] On input, the matrix to factor, stored as a
/// general dense matrix in column-major order. On output,
/// overwritten with an implicit representation of the Q factor.
///
/// \param lda [in] Leading dimension of A.
/// Precondition: lda >= nrows.
///
/// \param R [out] The final R factor of the QR factorization of
/// the matrix A. An ncols by ncols upper triangular matrix
/// stored in column-major order, with leading dimension ldr.
///
/// \param ldr [in] Leading dimension of the matrix R.
///
/// \param b_contiguous_cache_blocks [in] Whether cache blocks are
/// stored contiguously in the input matrix A and the output
/// matrix Q (of explicit_Q()). If not and you want them to be,
/// you should use the cache_block() method to copy them into
/// that format. You may use the un_cache_block() method to
/// copy them out of that format into the usual column-oriented
/// format.
///
/// \return FactorOutput struct, which together with the data in A
/// form an implicit representation of the Q factor. They
/// should be passed into the apply() and explicit_Q() functions
/// as the "factor_output" parameter.
FactorOutput
factor (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A[],
const LocalOrdinal lda,
Scalar R[],
const LocalOrdinal ldr,
const bool contiguous_cache_blocks) const
{
factorTimer_.start(true);
return impl_.factor (nrows, ncols, A, lda, R, ldr, contiguous_cache_blocks);
factorStats_.update (factorTimer_.stop());
}
/// \brief Apply Q factor to the global dense matrix C
///
/// Apply the Q factor (computed by factor() and represented
/// implicitly) to the dense matrix C.
///
/// \param apply_type [in] Whether to compute Q*C, Q^T * C, or
/// Q^H * C.
///
/// \param nrows [in] Number of rows of the matrix C and the
/// matrix Q. Precondition: nrows >= ncols_Q, ncols_C.
///
/// \param ncols_Q [in] Number of columns of Q
///
/// \param Q [in] Same as the "A" output of factor()
///
/// \param ldq [in] Same as the "lda" input of factor()
///
/// \param factor_output [in] Return value of factor()
///
/// \param ncols_C [in] Number of columns in C.
/// Precondition: nrows_local >= ncols_C.
///
/// \param C [in,out] On input, the matrix C, stored as a general
/// dense matrix in column-major order. On output, overwritten
/// with op(Q)*C, where op(Q) = Q or Q^T.
///
/// \param ldc [in] Leading dimension of C.
/// Precondition: ldc_local >= nrows_local.
/// Not applicable if C is cache-blocked in place.
///
/// \param contiguous_cache_blocks [in] Whether or not cache
/// blocks of Q and C are stored contiguously (default:
/// false).
void
apply (const ApplyType& apply_type,
const LocalOrdinal nrows,
const LocalOrdinal ncols_Q,
const Scalar Q[],
const LocalOrdinal ldq,
const FactorOutput& factor_output,
const LocalOrdinal ncols_C,
Scalar C[],
const LocalOrdinal ldc,
const bool contiguous_cache_blocks) const
{
applyTimer_.start(true);
impl_.apply (apply_type, nrows, ncols_Q, Q, ldq, factor_output,
ncols_C, C, ldc, contiguous_cache_blocks);
applyStats_.update (applyTimer_.stop());
}
/// \brief Compute the explicit Q factor from factor()
///
/// Compute the explicit version of the Q factor computed by
/// factor() and represented implicitly (via Q_in and
/// factor_output).
///
/// \param nrows [in] Number of rows of the matrix Q_in. Also,
/// the number of rows of the output matrix Q_out.
/// Precondition: nrows >= ncols_Q_in.
///
/// \param ncols_Q_in [in] Number of columns in the original matrix
/// A, whose explicit Q factor we are computing.
/// Precondition: nrows >= ncols_Q_in.
///
/// \param Q_local_in [in] Same as A output of factor().
///
/// \param ldq_local_in [in] Same as lda input of factor()
///
/// \param ncols_Q_out [in] Number of columns of the explicit Q
/// factor to compute.
///
/// \param Q_out [out] The explicit representation of the Q factor.
///
/// \param ldq_out [in] Leading dimension of Q_out.
///
/// \param factor_output [in] Return value of factor().
void
explicit_Q (const LocalOrdinal nrows,
const LocalOrdinal ncols_Q_in,
const Scalar Q_in[],
const LocalOrdinal ldq_in,
const FactorOutput& factor_output,
const LocalOrdinal ncols_Q_out,
Scalar Q_out[],
const LocalOrdinal ldq_out,
const bool contiguous_cache_blocks) const
{
explicitQTimer_.start(true);
impl_.explicit_Q (nrows, ncols_Q_in, Q_in, ldq_in, factor_output,
ncols_Q_out, Q_out, ldq_out, contiguous_cache_blocks);
explicitQStats_.update (explicitQTimer_.stop());
}
/// \brief Compute Q*B
///
/// Compute matrix-matrix product Q*B, where Q is nrows by ncols
/// and B is ncols by ncols. Respect cache blocks of Q.
void
Q_times_B (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar Q[],
const LocalOrdinal ldq,
const Scalar B[],
const LocalOrdinal ldb,
const bool contiguous_cache_blocks) const
{
impl_.Q_times_B (nrows, ncols, Q, ldq, B, ldb, contiguous_cache_blocks);
}
/// Compute SVD \f$R = U \Sigma V^*\f$, not in place. Use the
/// resulting singular values to compute the numerical rank of R,
/// with respect to the relative tolerance tol. If R is full
/// rank, return without modifying R. If R is not full rank,
/// overwrite R with \f$\Sigma \cdot V^*\f$.
///
/// \return Numerical rank of R: 0 <= rank <= ncols.
LocalOrdinal
reveal_R_rank (const LocalOrdinal ncols,
Scalar R[],
const LocalOrdinal ldr,
Scalar U[],
const LocalOrdinal ldu,
const magnitude_type tol) const
{
return impl_.reveal_R_rank (ncols, R, ldr, U, ldu, tol);
}
/// \brief Rank-revealing decomposition
///
/// Using the R factor from factor() and the explicit Q factor
/// from explicit_Q(), compute the SVD of R (\f$R = U \Sigma
/// V^*\f$). R. If R is full rank (with respect to the given
/// relative tolerance tol), don't change Q or R. Otherwise,
/// compute \f$Q := Q \cdot U\f$ and \f$R := \Sigma V^*\f$ in
/// place (the latter may be no longer upper triangular).
///
/// \return Rank \f$r\f$ of R: \f$ 0 \leq r \leq ncols\f$.
///
LocalOrdinal
reveal_rank (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar Q[],
const LocalOrdinal ldq,
Scalar R[],
const LocalOrdinal ldr,
const magnitude_type tol,
const bool contiguous_cache_blocks) const
{
return impl_.reveal_rank (nrows, ncols, Q, ldq, R, ldr, tol,
contiguous_cache_blocks);
}
double
min_seq_factor_timing () const { return impl_.min_seq_factor_timing(); }
double
max_seq_factor_timing () const { return impl_.max_seq_factor_timing(); }
double
min_seq_apply_timing () const { return impl_.min_seq_apply_timing(); }
double
max_seq_apply_timing () const { return impl_.max_seq_apply_timing(); }
void getStats (std::vector< TimeStats >& stats) {
const int numStats = 5;
stats.resize (numStats);
stats[0] = factorStats_;
stats[1] = applyStats_;
stats[2] = explicitQStats_;
stats[3] = cacheBlockStats_;
stats[4] = unCacheBlockStats_;
}
void getStatsLabels (std::vector< std::string >& labels) {
const int numStats = 5;
labels.resize (numStats);
labels[0] = factorTimer_.name();
labels[1] = applyTimer_.name();
labels[2] = explicitQTimer_.name();
labels[3] = cacheBlockTimer_.name();
labels[4] = unCacheBlockTimer_.name();
}
}; // class TbbTsqr
} // namespace TBB
} // namespace TSQR
#endif // __TSQR_TbbTsqr_hpp
|