This file is indexed.

/usr/include/trilinos/Teuchos_SerialTriDiMatrix.hpp is in libtrilinos-teuchos-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
// @HEADER
// ***********************************************************************
//
//                    Teuchos: Common Tools Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER


#ifndef _TEUCHOS_SERIALTRIDIMATRIX_HPP_
#define _TEUCHOS_SERIALTRIDIMATRIX_HPP_
/*! \file Teuchos_SerialTriDiMatrix.hpp
  \brief Templated serial TriDi matrix class
*/

#include "Teuchos_CompObject.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_DataAccess.hpp"
#include "Teuchos_ConfigDefs.hpp"
#include "Teuchos_Assert.hpp"

/*!     \class Teuchos::SerialTriDiMatrix
        \brief This class creates and provides basic support for TriDi matrix of templated type.
*/
/** \example TriDiMatrix/cxx_main.cpp
    This is an example of how to use the Teuchos::SerialTriDiMatrix class.
*/


namespace Teuchos {

template<typename OrdinalType, typename ScalarType>
class SerialTriDiMatrix : public CompObject, public Object, public BLAS<OrdinalType, ScalarType > {
public:

  //! Typedef for ordinal type
  typedef OrdinalType ordinalType;
  //! Typedef for scalar type
  typedef ScalarType scalarType;

  //! @name Constructor/Destructor methods.
  //@{

  //! Default Constructor
  /*! Creates a empty matrix of no dimension.  The Shaping methods should be used to size this matrix.
    Values of this matrix should be set using the [], (), or = operators.
  */
  SerialTriDiMatrix();

  //! Shaped Constructor
  /*!
    \param numRows - Number of rows in matrix.
    \param numCols - Number of columns in matrix.
    \param zeroOut - Initializes values to 0 if true (default)

    Creates a shaped matrix with \c numRows rows and \c numCols cols.  All values are initialized to 0 when \c zeroOut is true.
    Values of this matrix should be set using the [] or the () operators.
  */
  SerialTriDiMatrix(OrdinalType numRows, OrdinalType numCols, bool zeroOut = true);

  //! Shaped Constructor with Values
  /*!
    \param CV - Enumerated type set to Teuchos::Copy or Teuchos::View.
    \param values - Pointer to an array of ScalarType.
    \param numRowsCols - Number of rows and columns in matrix. 
  */
  SerialTriDiMatrix(DataAccess CV, ScalarType* values, OrdinalType numRowsCols);

  //! Copy Constructor
  /*! \note A deep copy of the \c Source transposed can be obtained if \c trans=Teuchos::TRANS, \c else
    a non-transposed copy of \c Source is made.  There is no storage of the transpose state of the matrix
    within the SerialTriDiMatrix class, so this information will not propogate to any operation performed
    on a matrix that has been copy constructed in transpose.
  */
  SerialTriDiMatrix(const SerialTriDiMatrix<OrdinalType, ScalarType> &Source, ETransp trans = Teuchos::NO_TRANS);

  //! Submatrix Copy Constructor
  /*!
    \param CV - Enumerated type set to Teuchos::Copy or Teuchos::View.
    \param Source - Reference to another TriDi matrix from which values are to be copied.
    \param numRowsCols - The number of rows and columns in this matrix.

    \param startRowCols - The row and col of \c Source from which the submatrix copy should start.

    Creates a shaped matrix with \c numRowsCols rows and columns, which is a submatrix of \c Source.
    If \c startRowCols, then the submatrix is the leading submatrix of \c Source.
    Otherwise, the (1,1) entry in the copied matrix is the (\c startRow, \c startCol) entry of \c Source.
  */
  SerialTriDiMatrix(DataAccess CV, const SerialTriDiMatrix<OrdinalType, ScalarType> &Source, OrdinalType numRowsCols, OrdinalType startRowCols=0);

  //! Destructor
  virtual ~SerialTriDiMatrix();
  //@}

  //! @name Shaping methods.
  //@{
  //! Shape method for changing the size of a SerialTriDiMatrix, initializing entries to zero.
  /*!
    \param numRowsCols - The number of rows in this matrix.

    This method allows the user to define the dimensions of a SerialTriDiMatrix at any point.  This method
    can be called at any point after construction.  Any values previously in this object will be destroyed
    and the resized matrix starts of with all zero values.

    \return Integer error code, set to 0 if successful.
  */
  int shape(OrdinalType numRows);

  //! Same as <tt>shape()</tt> except leaves uninitialized.
  int shapeUninitialized(OrdinalType numRows);

  //! Reshaping method for changing the size of a SerialTriDiMatrix, keeping the entries.
  /*!
    \param numRowsCols - The number of rows in this matrix.

    This method allows the user to redefine the dimensions of a SerialTriDiMatrix at any point.  This method
    can be called at any point after construction.  Any values previously in this object will be copied into
    the reshaped matrix.

    \return Integer error code, set 0 if successful.
  */
  int reshape(OrdinalType numRowsCols);

  //@}

  //! @name Set methods.
  //@{

  //! Copies values from one matrix to another.
  /*!
    The operator= copies the values from one existing SerialTriDiMatrix to another.
    If \c Source is a view (i.e. CV = Teuchos::View), then this method will
    return a view.  Otherwise, it will return a copy of \c Source.  \e this object
    will be resized if it is not large enough to copy \c Source into.
  */
  SerialTriDiMatrix<OrdinalType, ScalarType>& operator= (const SerialTriDiMatrix<OrdinalType, ScalarType>& Source);

  //! Copies values from one matrix to another.
  /*!
    The operator= copies the values from one existing SerialTriDiMatrix to another
    if the dimension of both matrices are the same.  If not, \e this matrix
    will be returned unchanged.
  */
  SerialTriDiMatrix<OrdinalType, ScalarType>& assign (const SerialTriDiMatrix<OrdinalType, ScalarType>& Source);

  //! Set all values in the matrix to a constant value.
  /*!
    \param value - Value to use;
  */
  SerialTriDiMatrix<OrdinalType, ScalarType>& operator= (const ScalarType value) { putScalar(value); return(*this); }

  //! Set all values in the matrix to a constant value.
  /*!
    \param value - Value to use; zero if none specified.
    \return Integer error code, set to 0 if successful.
  */
  int putScalar( const ScalarType value = Teuchos::ScalarTraits<ScalarType>::zero() );

  //! Set all values in the matrix to be random numbers.
  //  int random();

  //@}

  //! @name Accessor methods.
  //@{

  //! Element access method (non-const).
  /*! Returns the element in the ith row and jth column if A(i,j) is specified, the
    expression A[j][i] will return the same element.

    \return Element from the specified \c rowIndex row and \c colIndex column.
    \warning The validity of \c rowIndex and \c colIndex will only be checked if Teuchos is
    configured with --enable-teuchos-abc.
  */
  ScalarType& operator () (OrdinalType rowIndex, OrdinalType colIndex);

  //! Element access method (const).
  /*! Returns the element in the ith row and jth column if A(i,j) is specified, the expression
    A[j][i] will return the same element.

    \return Element from the specified \c rowIndex row and \c colIndex column.
    \warning The validity of \c rowIndex and \c colIndex will only be checked if Teuchos is
    configured with --enable-teuchos-abc.
  */
  const ScalarType& operator () (OrdinalType rowIndex, OrdinalType colIndex) const;

  //! Column access method (non-const).
  /*! Returns the pointer to the ScalarType array at the jth column if A[j] is specified, the expression
    A[j][i] will return the same element as A(i,j).

    \return Pointer to the ScalarType array at the \c colIndex column ( \c values_+colIndex*stride_ ).
    \warning The validity of \c colIndex will only be checked if Teuchos is     configured with
    --enable-teuchos-abc.
  */
  //  ScalarType* operator [] (OrdinalType colIndex);

  //! Column access method (const).
  /*! Returns the pointer to the ScalarType array at the jth column if A[j] is specified, the expression
    A[j][i] will return the same element as A(i,j).

    \return Pointer to the ScalarType array at the \c colIndex column ( \c values_+colIndex*stride_ ).
    \warning The validity of \c colIndex will only be checked if Teuchos is     configured with
    --enable-teuchos-abc.
  */
  //  const ScalarType* operator [] (OrdinalType colIndex) const;

  //! Data array access method.
  /*! \return Pointer to the ScalarType data array contained in the object. */
  ScalarType* values() const { return(values_); }

  ScalarType* D() const { return D_;}
  ScalarType* DL() const { return DL_;}
  ScalarType* DU() const { return DU_;}
  ScalarType* DU2() const { return DU2_;}

  //@}

  //! @name Mathematical methods.
  //@{

  //! Add another matrix to \e this matrix.
  /*! Add \c Source to \e this if the dimension of both matrices are the same.  If not, \e this matrix
    will be returned unchanged.
  */
  SerialTriDiMatrix<OrdinalType, ScalarType>& operator+= (const SerialTriDiMatrix<OrdinalType, ScalarType>& Source);

  //! Subtract another matrix from \e this matrix.
  /*! Subtract \c Source from \e this if the dimension of both matrices are the same.  If not, \e this matrix
    will be returned unchanged.
  */
  SerialTriDiMatrix<OrdinalType, ScalarType>& operator-= (const SerialTriDiMatrix<OrdinalType, ScalarType>& Source);

  //! Scale \c this matrix by \c alpha; \c *this = \c alpha*\c *this.
  /*!
    \param alpha Scalar to multiply \e this by.
  */
  SerialTriDiMatrix<OrdinalType, ScalarType>& operator*= (const ScalarType alpha);

  //! Scale \c this matrix by \c alpha; \c *this = \c alpha*\c *this.
  /*!
    \param alpha Scalar to multiply \e this by.
    \return Integer error code, set to 0 if successful.
  */
  int scale ( const ScalarType alpha );

  //! Point-wise scale \c this matrix by \c A; i.e. *this(i,j) *= A(i,j)
  /*! The values of \c *this matrix will be point-wise scaled by the values in A.
    If A and \c this matrix are not the same dimension \c this will be returned unchanged.

    \param B Teuchos::SerialTriDiMatrix used to perform element-wise scaling of \e this.
    \return Integer error code, set to 0 if successful.
  */
  int scale ( const SerialTriDiMatrix<OrdinalType, ScalarType>& A );

  //! Multiply \c A * \c B and add them to \e this; \e this = \c beta * \e this + \c alpha*A*B.
  /*!
    \param transa - Use the transpose of \c A if transa = Teuchos::TRANS, else don't use the
    transpose if transa = Teuchos::NO_TRANS.
    \param transb - Use the transpose of \c B if transb = Teuchos::TRANS, else don't use the
    transpose if transb = Teuchos::NO_TRANS.
    \param alpha - The scaling factor for \c A * \c B.
    \param A - SerialTriDiMatrix
    \param B - SerialTriDiMatrix
    \param beta - The scaling factor for \e this.

    If the matrices \c A and \c B are not of the right dimension, consistent with \e this, then \e this
    matrix will not be altered and -1 will be returned.
    \return Integer error code, set to 0 if successful.
  */
  //int multiply (ETransp transa, ETransp transb, ScalarType alpha, const SerialTriDiMatrix<OrdinalType, ScalarType> &A, const SerialTriDiMatrix<OrdinalType, ScalarType> &B, ScalarType beta);

  //! Multiply \c A and \c B and add them to \e this; \e this = \c beta * \e this + \c alpha*A*B or \e this = \c beta * \e this + \c alpha*B*A.
  /*!
    \param sideA - Which side is A on for the multiplication to B, A*B (Teuchos::LEFT_SIDE) or B*A (Teuchos::RIGHT_SIDE).
    \param alpha - The scaling factor for \c A * \c B, or \c B * \c A.
    \param A - SerialSymTriDiMatrix (a serial SPD TriDi matrix)
    \param B - SerialTriDiMatrix (a serial TriDi matrix)
    \param beta - The scaling factor for \e this.

    If the matrices \c A and \c B are not of the right dimension, consistent with \e this, then \e this
    matrix will not be altered and -1 will be returned.
    \return Integer error code, set to 0 if successful.
  */
  //int multiply (ESide sideA, ScalarType alpha, const SerialSymTriDiMatrix<OrdinalType, ScalarType> &A, const SerialTriDiMatrix<OrdinalType, ScalarType> &B, ScalarType beta);

  //@}

  //! @name Comparison methods.
  //@{

  //! Equality of two matrices.
  /*! \return True if \e this matrix and \c Operand are of the same shape (rows and columns) and have
    the same entries, else False will be returned.
  */
  bool operator== (const SerialTriDiMatrix<OrdinalType, ScalarType> &Operand) const;

  //! Inequality of two matrices.
  /*! \return True if \e this matrix and \c Operand of not of the same shape (rows and columns) or don't
    have the same entries, else False will be returned.
  */
  bool operator!= (const SerialTriDiMatrix<OrdinalType, ScalarType> &Operand) const;

  //@}

  //! @name Attribute methods.
  //@{

  //! Returns the row dimension of this matrix.
  OrdinalType numRowsCols() const { return(numRowsCols_); }

  //! Returns the column dimension of this matrix.
  //  OrdinalType numCols() const { return(numRowsCols_); }

  //! Returns the stride between the columns of this matrix in memory.
  //  OrdinalType stride() const { return(stride_); }

  //! Returns whether this matrix is empty.
  bool empty() const { return(numRowsCols_ == 0); }
  //@}

  //! @name Norm methods.
  //@{

  //! Returns the 1-norm of the matrix.
  typename ScalarTraits<ScalarType>::magnitudeType normOne() const;

  //! Returns the Infinity-norm of the matrix.
  typename ScalarTraits<ScalarType>::magnitudeType normInf() const;

  //! Returns the Frobenius-norm of the matrix.
  typename ScalarTraits<ScalarType>::magnitudeType normFrobenius() const;
  //@}

  //! @name I/O methods.
  //@{
  //! Print method.  Defines the behavior of the std::ostream << operator inherited from the Object class.
  virtual void print(std::ostream& os) const;

  //@}
protected:
  void copyMat(SerialTriDiMatrix<OrdinalType, ScalarType> matrix,
               OrdinalType startCol,
               ScalarType alpha = ScalarTraits<ScalarType>::zero() );
  void deleteArrays();
  void checkIndex( OrdinalType rowIndex, OrdinalType colIndex = 0 ) const;
  OrdinalType numRowsCols_;

  bool valuesCopied_;
  ScalarType* values_;
  ScalarType* DL_;
  ScalarType* D_;
  ScalarType* DU_;
  ScalarType* DU2_;

}; // class Teuchos_SerialTriDiMatrix

//----------------------------------------------------------------------------------------------------
//  Constructors and Destructor
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
SerialTriDiMatrix<OrdinalType, ScalarType>::SerialTriDiMatrix()
  :
    CompObject(),
    numRowsCols_(0),
    valuesCopied_(false),
    values_(0),
    DL_(NULL),
    D_(NULL),
    DU_(NULL),
    DU2_(NULL)
{}

template<typename OrdinalType, typename ScalarType>
SerialTriDiMatrix<OrdinalType, ScalarType>::SerialTriDiMatrix( OrdinalType numRowsCols_in, OrdinalType numCols_in, bool zeroOut)
  : CompObject(), numRowsCols_(numRowsCols_in) {

  OrdinalType numvals = (numRowsCols_ == 1) ? 1 :  4*(numRowsCols_-1);
  values_ = new ScalarType [numvals];
  DL_  = values_;
  D_   = DL_  + (numRowsCols_-1);
  DU_  = D_   +  numRowsCols_;
  DU2_ = DU_  + (numRowsCols_-1);

  valuesCopied_ = true;
  if (zeroOut == true)
    putScalar();
}

template<typename OrdinalType, typename ScalarType>
SerialTriDiMatrix<OrdinalType, ScalarType>::SerialTriDiMatrix(DataAccess CV, ScalarType* values_in, OrdinalType numRowsCols_in  )
  : CompObject(), numRowsCols_(numRowsCols_in),
    valuesCopied_(false), values_(values_in)
{
  const OrdinalType numvals = (numRowsCols_ == 1) ? 1 :  4*(numRowsCols_-1);
  if(CV == Copy) {
    values_ = new ScalarType[numvals];
    valuesCopied_ = true;
  }
  else //CV == View
  {
    values_ = values_in;
    valuesCopied_ = false;
  }
  DL_ = values_;
  D_  = DL_    + (numRowsCols_-1);
  DU_ = D_     + numRowsCols_;
  DU2_ = DU_   + (numRowsCols_-1);
  if(CV == Copy) {
    for(OrdinalType i = 0 ; i < numRowsCols_ ; ++i )
      values_[i] = values_in[i];
  }
}

template<typename OrdinalType, typename ScalarType>
SerialTriDiMatrix<OrdinalType, ScalarType>::SerialTriDiMatrix(const SerialTriDiMatrix<OrdinalType, ScalarType> &Source, ETransp trans) : CompObject(), BLAS<OrdinalType,ScalarType>(), numRowsCols_(0), valuesCopied_(true), values_(0)
{
  if ( trans == Teuchos::NO_TRANS )  {
    numRowsCols_ = Source.numRowsCols_;

    const OrdinalType numvals = (numRowsCols_ == 1) ? 1 : 4*(numRowsCols_-1);
    values_ = new ScalarType[numvals];
    DL_ = values_;
    D_  = DL_+ (numRowsCols_-1);
    DU_ = D_ + numRowsCols_;
    DU2_ = DU_ + (numRowsCols_-1);

    copyMat(Source, 0, 0);
  }
  else if ( trans == Teuchos::CONJ_TRANS && ScalarTraits<ScalarType>::isComplex )
    {
      numRowsCols_ = Source.numRowsCols_;
      const OrdinalType numvals = (numRowsCols_ == 1) ? 1 :  4*(numRowsCols_-1);
      values_ = new ScalarType[numvals];
      DL_ = values_;
      D_  = DL_+(numRowsCols_-1);
      DU_ = D_ + numRowsCols_;
      DU2_ = DU_ + (numRowsCols_-1);

      OrdinalType min = numRowsCols_;
      if(min > Source.numRowsCols_) min = Source.numRowsCols_;

      for(OrdinalType i = 0 ; i< min ; ++i) {
        D_[i] = Teuchos::ScalarTraits<ScalarType>::conjugate(Source.D_[i]);
        if(i < (min-1)) {
          DL_[i] = Teuchos::ScalarTraits<ScalarType>::conjugate(Source.DL_[i]);
          DU_[i] = Teuchos::ScalarTraits<ScalarType>::conjugate(Source.DU_[i]);
        }
        if(i < (min-2)) {
          DU2_[i] = Teuchos::ScalarTraits<ScalarType>::conjugate(Source.DU2_[i]);
        }
      }
    }
  else
    {
      numRowsCols_ = Source.numRowsCols_;
      const OrdinalType numvals = (numRowsCols_  == 1) ? 1 : 4*(numRowsCols_-1);
      values_ = new ScalarType[numvals];
      OrdinalType min = numRowsCols_;
      if(min > Source.numRowsCols_) min = Source.numRowsCols_;
      for(OrdinalType i = 0 ; i< min ; ++i) {
        D_[i] = Source.D_[i];
        if(i < (min-1)) {
          DL_[i] = Source.DL_[i];
          DU_[i] = Source.DU_[i];
        }
        if(i < (min-2)) {
          DU2_[i] = Source.DU2_[i];
        }
    }
  }
}

template<typename OrdinalType, typename ScalarType>
SerialTriDiMatrix<OrdinalType, ScalarType>::SerialTriDiMatrix(
  DataAccess CV, const SerialTriDiMatrix<OrdinalType, ScalarType> &Source,
  OrdinalType numRowsCols_in, OrdinalType startRow )
  : CompObject(), numRowsCols_(numRowsCols_in),
    valuesCopied_(false), values_(Source.values_) {
  if(CV == Copy)
    {
      const OrdinalType numvals = (numRowsCols_ == 1) ? 1 : 4*(numRowsCols_-1);
      values_ = new ScalarType[numvals];
      copyMat(Source, startRow);
      valuesCopied_ = true;
    }
  else // CV == View
    {
      // \todo ???
      //    values_ = values_ + (stride_ * startCol) + startRow;
    }
}

template<typename OrdinalType, typename ScalarType>
SerialTriDiMatrix<OrdinalType, ScalarType>::~SerialTriDiMatrix()
{
  deleteArrays();
}

//----------------------------------------------------------------------------------------------------
//  Shape methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
int SerialTriDiMatrix<OrdinalType, ScalarType>::shape( OrdinalType numRowsCols_in  )
{
  deleteArrays(); // Get rid of anything that might be already allocated
  numRowsCols_ = numRowsCols_in;
  const OrdinalType numvals = ( numRowsCols_ == 1) ? 1 :  4*(numRowsCols_-1);
  values_ = new ScalarType[numvals];

  putScalar();
  valuesCopied_ = true;
  return(0);
}

template<typename OrdinalType, typename ScalarType>
int SerialTriDiMatrix<OrdinalType, ScalarType>::shapeUninitialized(  OrdinalType numRowsCols_in  )
{
  deleteArrays(); // Get rid of anything that might be already allocated
  numRowsCols_ = numRowsCols_in;
  const OrdinalType numvals = ( numRowsCols_ == 1) ? 1 :  4*(numRowsCols_-1);
  values_ = new ScalarType[numvals];
  valuesCopied_ = true;
  return(0);
}

template<typename OrdinalType, typename ScalarType>
int SerialTriDiMatrix<OrdinalType, ScalarType>::reshape(  OrdinalType numRowsCols_in  )
{
  if(numRowsCols_in <1 ) {
    deleteArrays();
    return 0;
  }
  // Allocate space for new matrix
  const OrdinalType numvals = ( numRowsCols_in == 1) ? 1 :  4*(numRowsCols_in - 1);
  ScalarType* values_tmp = new ScalarType[numvals];
  ScalarType zero = ScalarTraits<ScalarType>::zero();
  for(OrdinalType i= 0; i<numvals ; ++i)
    values_tmp[i] = zero;

  OrdinalType min = TEUCHOS_MIN(numRowsCols_, numRowsCols_in);
  ScalarType* dl = values_tmp;
  ScalarType* d = values_tmp + (numRowsCols_in-1);
  ScalarType* du = d+(numRowsCols_in);
  ScalarType* du2 = du+(numRowsCols_in - 1);

  if(values_ != 0) {
   for(OrdinalType i = 0 ; i< min ; ++i) {
      dl[i] = DL_[i];
      d[i]  = D_[i];
      du[i] = DU_[i];
      du2[i] = DU2_[i];
    }
  }

  deleteArrays(); // Get rid of anything that might be already allocated
  numRowsCols_ = numRowsCols_in;

  values_ = values_tmp; // Set pointer to new A
  DL_ = dl;
  D_  = d;
  DU_ = du;
  DU2_ = du2;

  valuesCopied_ = true;
  return(0);
}

//----------------------------------------------------------------------------------------------------
//   Set methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
int SerialTriDiMatrix<OrdinalType, ScalarType>::putScalar( const ScalarType value_in ) {
  // Set each value of the TriDi matrix to "value".
  const OrdinalType numvals = (numRowsCols_ == 1) ? 1 : 4*(numRowsCols_-1);

  for(OrdinalType i = 0; i<numvals ; ++i)
    {
      values_[i] = value_in;
    }
  return 0;
}

// template<typename OrdinalType, typename ScalarType>
// int SerialTriDiMatrix<OrdinalType, ScalarType>::random()
// {
//   // Set each value of the TriDi matrix to a random value.
//   for(OrdinalType j = 0; j < numCols_; j++)
//   {
//     for(OrdinalType i = 0; i < numRowsCols_; i++)
//        {
//          values_[i + j*stride_] = ScalarTraits<ScalarType>::random();
//        }
//   }
//   return 0;
// }

template<typename OrdinalType, typename ScalarType>
SerialTriDiMatrix<OrdinalType,ScalarType>&
SerialTriDiMatrix<OrdinalType, ScalarType>::operator=(const SerialTriDiMatrix<OrdinalType,ScalarType>& Source )
{
  if(this == &Source)
    return(*this); // Special case of source same as target
  if((!valuesCopied_) && (!Source.valuesCopied_) && (values_ == Source.values_))
    return(*this); // Special case of both are views to same data.

  // If the source is a view then we will return a view, else we will return a copy.
  if (!Source.valuesCopied_) {
    if(valuesCopied_)       {
      // Clean up stored data if this was previously a copy.
      deleteArrays();
    }
    numRowsCols_ = Source.numRowsCols_;
    values_ = Source.values_;
  }
  else {
    // If we were a view, we will now be a copy.
    if(!valuesCopied_) {
      numRowsCols_ = Source.numRowsCols_;
      const OrdinalType numvals = ( Source.numRowsCols_ == 1) ? 1 :  4*(Source.numRowsCols_ - 1);
      if(numvals > 0) {
        values_ = new ScalarType[numvals];
        valuesCopied_ = true;
      }
      else {
        values_ = 0;
      }
    }
    // If we were a copy, we will stay a copy.
    else {
      // we need to allocate more space (or less space)
      deleteArrays();
      numRowsCols_ = Source.numRowsCols_;
      const OrdinalType numvals = ( Source.numRowsCols_ == 1) ? 1 :  4*(Source.numRowsCols_ - 1);
      if(numvals > 0) {
        values_ = new ScalarType[numvals];
        valuesCopied_ = true;
      }
    }
    DL_ = values_;
    if(values_ != 0) {
      D_  = DL_    + (numRowsCols_-1);
      DU_ = D_     +  numRowsCols_;
      DU2_ = DU_   + (numRowsCols_-1);

      OrdinalType min = TEUCHOS_MIN(numRowsCols_, Source.numRowsCols_);
      for(OrdinalType i = 0 ; i < min ; ++i ) {
        D_[i] = Source.D()[i];
        if(i< (min-1 ) )
          {
            DL_[i] = Source.DL()[i];
            DU_[i] = Source.DU()[i];
          }
        if(i< (min-2))
          DU2_[i] = Source.DU2()[i];
      }

    }
    else {
      D_ = DU_ = DU2_ = 0;
    }
  }
  return(*this);
}

template<typename OrdinalType, typename ScalarType>
SerialTriDiMatrix<OrdinalType, ScalarType>& SerialTriDiMatrix<OrdinalType, ScalarType>::operator+= (const SerialTriDiMatrix<OrdinalType,ScalarType>& Source )
{
  // Check for compatible dimensions
  if ((numRowsCols_ != Source.numRowsCols_) )
    {
      TEUCHOS_CHK_REF(*this); // Return *this without altering it.
    }
  copyMat(Source, 0, ScalarTraits<ScalarType>::one());
  return(*this);
}

template<typename OrdinalType, typename ScalarType>
SerialTriDiMatrix<OrdinalType, ScalarType>& SerialTriDiMatrix<OrdinalType, ScalarType>::operator-= (const SerialTriDiMatrix<OrdinalType,ScalarType>& Source )
{
  // Check for compatible dimensions
  if ((numRowsCols_ != Source.numRowsCols_) )
    {
      TEUCHOS_CHK_REF(*this); // Return *this without altering it.
    }
  copyMat(Source, 0, -ScalarTraits<ScalarType>::one());
  return(*this);
}

template<typename OrdinalType,typename ScalarType>
SerialTriDiMatrix<OrdinalType,ScalarType> & SerialTriDiMatrix<OrdinalType,ScalarType>::assign(const SerialTriDiMatrix<OrdinalType,ScalarType> & Source)
{
  if(this == &Source)
    return(*this); // Special case of source same as target
  if((!valuesCopied_) && (!Source.valuesCopied_) && (values_ == Source.values_))
    return(*this); // Special case of both are views to same data.

  // Check for compatible dimensions
  if ((numRowsCols_ != Source.numRowsCols_) )
    {
      TEUCHOS_CHK_REF(*this); // Return *this without altering it.
    }
  copyMat(Source,  0, 0);
  return(*this);
}

//----------------------------------------------------------------------------------------------------
//   Accessor methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType,typename ScalarType>
inline const ScalarType& SerialTriDiMatrix<OrdinalType,ScalarType>::operator () (OrdinalType rowIndex, OrdinalType colIndex) const
{
  OrdinalType diff = colIndex - rowIndex;

  //#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
  checkIndex( rowIndex, colIndex );
  //#endif
  switch (diff) {
  case -1:
    return DL_[colIndex];
  case 0:
    return D_[colIndex];
  case 1:
    return DU_[rowIndex];
  case 2:
    return DU2_[rowIndex];
  default:
    TEUCHOS_TEST_FOR_EXCEPTION(true, std::out_of_range,
                               "SerialTriDiMatrix<T>::operator (row,col) "
                               "Index (" << rowIndex <<","<<colIndex<<") out of range ");
  }
}

template<typename OrdinalType,typename ScalarType>
inline ScalarType& Teuchos::SerialTriDiMatrix<OrdinalType,ScalarType>::operator () (OrdinalType rowIndex, OrdinalType colIndex)
{
  OrdinalType diff = colIndex - rowIndex;
  //#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
  checkIndex( rowIndex, colIndex );
  //#endif
  switch (diff) {
  case -1:
    return DL_[colIndex];
  case 0:
    return D_[colIndex];
  case 1:
    return DU_[rowIndex];
  case 2:
    return DU2_[rowIndex];
  default:
    TEUCHOS_TEST_FOR_EXCEPTION(true, std::out_of_range,
                               "SerialTriDiMatrix<T>::operator (row,col) "
                               "Index (" << rowIndex <<","<<colIndex<<") out of range ");
  }
}

//----------------------------------------------------------------------------------------------------
//   Norm methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType,typename ScalarType>
typename ScalarTraits<ScalarType>::magnitudeType SerialTriDiMatrix<OrdinalType,ScalarType>::normOne() const
{
  OrdinalType i, j;
  typename ScalarTraits<ScalarType>::magnitudeType anorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());
  typename ScalarTraits<ScalarType>::magnitudeType absSum = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());

  // Fix this for Tri DI

  for(j = 0; j < numRowsCols_; j++)
    {
      ScalarType sum = 0;
      if(j-1>=0) sum +=  ScalarTraits<ScalarType>::magnitude((*this)(j-1,j));
      sum+= ScalarTraits<ScalarType>::magnitude((*this)(j,j));
      if(j+1<numRowsCols_) sum+= ScalarTraits<ScalarType>::magnitude((*this)(j+1,j));
      absSum = ScalarTraits<ScalarType>::magnitude(sum);
      if(absSum > anorm)
        {
          anorm = absSum;
        }
    }
  updateFlops(numRowsCols_ * numRowsCols_);
  return(anorm);
}

template<typename OrdinalType, typename ScalarType>
typename ScalarTraits<ScalarType>::magnitudeType SerialTriDiMatrix<OrdinalType, ScalarType>::normInf() const
{
  OrdinalType i,j;
  typename ScalarTraits<ScalarType>::magnitudeType sum, anorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());

  for (i = 0; i < numRowsCols_; i++) {
    sum = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());
    for (j=i-1; j<= i+1; j++) {
      if(j >= 0 && j < numRowsCols_) sum += ScalarTraits<ScalarType>::magnitude((*this)(i,j));
    }
    anorm = TEUCHOS_MAX( anorm, sum );
  }
  updateFlops(numRowsCols_ * numRowsCols_);
  return(anorm);
}

template<typename OrdinalType, typename ScalarType>
typename ScalarTraits<ScalarType>::magnitudeType SerialTriDiMatrix<OrdinalType, ScalarType>::normFrobenius() const
{
  // \todo fix this
  OrdinalType i, j;
  typename ScalarTraits<ScalarType>::magnitudeType anorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());
  for (j = 0; j < numRowsCols_; j++) {
    for (i = j-1; i <= j+1; i++) {
      if(i >= 0 && i < numRowsCols_ ) anorm += ScalarTraits<ScalarType>::magnitude((*this)(i,j));
    }
  }
  anorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::squareroot(anorm));
  updateFlops( (numRowsCols_ == 1) ? 1 :  4*(numRowsCols_-1) );
  return(anorm);
}

//----------------------------------------------------------------------------------------------------
//   Comparison methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
bool SerialTriDiMatrix<OrdinalType, ScalarType>::operator== (const SerialTriDiMatrix<OrdinalType, ScalarType> &Operand) const
{
  bool allmatch = true;
  // bool result = 1; // unused
  if((numRowsCols_ != Operand.numRowsCols_) )
    {
      // result = 0; // unused
    }
  else
    {
      OrdinalType numvals = (numRowsCols_ == 1)? 1 : 4*(numRowsCols_ -1 );

      for(OrdinalType i = 0; i< numvals; ++i)
        allmatch &= (Operand.values_[i] == values_[i]);
    }
  return allmatch;
}

template<typename OrdinalType, typename ScalarType>
bool SerialTriDiMatrix<OrdinalType, ScalarType>::operator!= (const SerialTriDiMatrix<OrdinalType, ScalarType> &Operand) const {
  return !((*this) == Operand);
}

//----------------------------------------------------------------------------------------------------
//   Multiplication method
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
SerialTriDiMatrix<OrdinalType, ScalarType>& SerialTriDiMatrix<OrdinalType, ScalarType>::operator*= (const ScalarType alpha )
{
  this->scale( alpha );
  return(*this);
}

template<typename OrdinalType, typename ScalarType>
int SerialTriDiMatrix<OrdinalType, ScalarType>::scale( const ScalarType alpha )
{
  OrdinalType i;
  OrdinalType numvals = (numRowsCols_ == 1)? 1 : 4*(numRowsCols_ -1 );
  for (i=0; i < numvals ; ++i ) {
    values_[i] *= alpha;
  }
  return(0);
}

template<typename OrdinalType, typename ScalarType>
int SerialTriDiMatrix<OrdinalType, ScalarType>::scale( const SerialTriDiMatrix<OrdinalType,ScalarType>& A )
{
  OrdinalType j;

  // Check for compatible dimensions
  if ((numRowsCols_ != A.numRowsCols_) )
    {
      TEUCHOS_CHK_ERR(-1); // Return error
    }
  OrdinalType numvals = (numRowsCols_ == 1)? 1 : 4*(numRowsCols_ -1 );
  for (j=0; j<numvals; j++) {
    values_[j] = A.values_ * values_[j];
  }
  updateFlops( numvals );
  return(0);
}

template<typename OrdinalType, typename ScalarType>
void SerialTriDiMatrix<OrdinalType, ScalarType>::print(std::ostream& os) const
{
  os << std::endl;
  if(valuesCopied_)
    os << "A_Copied: yes" << std::endl;
  else
    os << "A_Copied: no" << std::endl;
  os << "Rows and Columns: " << numRowsCols_ << std::endl;
  if(numRowsCols_ == 0) {
    os << "(matrix is empty, no values to display)" << std::endl;
    return;
  }
  else
    {
      os << "DL: "<<std::endl;
      for(int i=0;i<numRowsCols_-1;++i)
        os << DL_[i]<<" ";
      os << std::endl;
      os << "D: "<<std::endl;
      for(int i=0;i<numRowsCols_;++i)
        os << D_[i]<<" ";
      os << std::endl;
      os << "DU: "<<std::endl;
      for(int i=0;i<numRowsCols_-1;++i)
        os << DU_[i]<<" ";
      os << std::endl;
      os << "DU2: "<<std::endl;
      for(int i=0;i<numRowsCols_-2;++i)
        os << DU2_[i]<<" ";
      os << std::endl;
    }

  os <<" square format:"<<std::endl;
  for(int i=0 ; i < numRowsCols_ ; ++i )  {
    for(int j=0;j<numRowsCols_;++j)  {
      if ( j >= i-1  && j <= i+1) {
        os << (*this)(i,j)<<" ";
      }
      else
        os <<". ";
    }
    os << std::endl;
  }

}

//----------------------------------------------------------------------------------------------------
//   Protected methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
inline void SerialTriDiMatrix<OrdinalType, ScalarType>::checkIndex( OrdinalType rowIndex, OrdinalType colIndex ) const
{
  OrdinalType diff = colIndex - rowIndex;
  TEUCHOS_TEST_FOR_EXCEPTION(rowIndex < 0 || rowIndex >= numRowsCols_, std::out_of_range,
                             "SerialTriDiMatrix<T>::checkIndex: "
                             "Row index " << rowIndex << " out of range [0, "<< numRowsCols_ << "]");
  TEUCHOS_TEST_FOR_EXCEPTION(colIndex < 0 || colIndex >= numRowsCols_,
                             std::out_of_range,
                             "SerialTriDiMatrix<T>::checkIndex: "
                             "Col index " << colIndex << " out of range [0, "<< numRowsCols_ << "]");
  TEUCHOS_TEST_FOR_EXCEPTION(diff > 2 || diff < -1 , std::out_of_range,
                             "SerialTriDiMatrix<T>::checkIndex: "
                             "index difference " << diff << " out of range [-1, 2]");
}

template<typename OrdinalType, typename ScalarType>
void SerialTriDiMatrix<OrdinalType, ScalarType>::deleteArrays(void)
{
  if (valuesCopied_)
    {
      delete [] values_;
      values_ = 0;
      valuesCopied_ = false;
    }
}

template<typename OrdinalType, typename ScalarType>
void SerialTriDiMatrix<OrdinalType, ScalarType>::copyMat(SerialTriDiMatrix<OrdinalType, ScalarType> inputMatrix,
                                                         OrdinalType startRowCol,
                                                         ScalarType alpha )
{
  OrdinalType i;
  OrdinalType max = inputMatrix.numRowsCols_;
  if(max > numRowsCols_ ) max = numRowsCols_;
  if(startRowCol > max ) return; //

  for(i = startRowCol ; i < max ; ++i) {

    if (alpha != Teuchos::ScalarTraits<ScalarType>::zero() ) {
      // diagonal
      D()[i] += inputMatrix.D()[i];
      if(i<(max-1) && (i-1) >= startRowCol) {
        DL()[i] += inputMatrix.DL()[i];
        DU()[i] += inputMatrix.DU()[i];
      }
      if(i<(max-2) && (i-2) >= startRowCol) {
        DU2()[i] += inputMatrix.DU2()[i];
      }
    }
    else {
      // diagonal
      D()[i] = inputMatrix.D()[i];
      if(i<(max-1) && (i-1) >= startRowCol) {
        DL()[i] = inputMatrix.DL()[i];
        DU()[i] = inputMatrix.DU()[i];
      }
      if(i<(max-2) && (i-2) >= startRowCol) {
        DU2()[i] = inputMatrix.DU2()[i];
      }
    }
  }
}

}


#endif /* _TEUCHOS_SERIALTRIDIMATRIX_HPP_ */