This file is indexed.

/usr/include/trilinos/Teuchos_SerialSymDenseMatrix.hpp is in libtrilinos-teuchos-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
// @HEADER
// ***********************************************************************
//
//                    Teuchos: Common Tools Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef _TEUCHOS_SERIALSYMDENSEMATRIX_HPP_
#define _TEUCHOS_SERIALSYMDENSEMATRIX_HPP_
/*! \file Teuchos_SerialSymDenseMatrix.hpp
  \brief Templated serial, dense, symmetric matrix class.
*/

#include "Teuchos_CompObject.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_DataAccess.hpp"
#include "Teuchos_ConfigDefs.hpp"
#include "Teuchos_Assert.hpp"

/*! \class Teuchos::SerialSymDenseMatrix
    \brief This class creates and provides basic support for symmetric, positive-definite dense matrices of templated type.

    The Teuchos_SerialSymDenseMatrix class enables the construction and use of
    symmetric, positive-definite, dense matrices of templated type.

    The Teuchos::SerialSymDenseMatrix class is intended to provide full-featured support for solving
    linear and eigen system problems for symmetric positive-definite (SPD) matrices.  It is written on
    top of BLAS and LAPACK and thus has excellent performance and numerical capabilities.  Using this
    class, one can either perform simple factorizations and solves or apply all the tricks available in
    LAPACK to get the best possible solution for very ill-conditioned problems.

    <b>Teuchos::SerialSymDenseMatrix vs. Teuchos::LAPACK</b>

    The Teuchos::LAPACK class provides access to most of the same functionality as Teuchos::SerialSymDenseMatrix.
    The primary difference is that Teuchos::LAPACK is a "thin" layer on top of LAPACK and
    Teuchos::SerialSymDenseMatrix attempts to provide easy access to the more sophisticated aspects of
    solving dense linear and eigensystems.
<ul>
<li> When you should use Teuchos::LAPACK:  If you are simply looking for a convenient wrapper around
the Fortran LAPACK routines and you have a well-conditioned problem, you should probably use Teuchos::LAPACK directly.
<li> When you should use Teuchos::SerialSymDenseMatrix: If you want to (or potentially want to) solve ill-conditioned
     problems or want to work with a more object-oriented interface, you should probably use Teuchos::SerialSymDenseMatrix.
</ul>

<b>Constructing Teuchos::SerialSymDenseMatrix Objects</b>

There are three Teuchos::SerialSymDenseMatrix constructors.  The first constructs a zero-sized object
which should be made to appropriate length using the Shape() or Reshape() functions and then filled with
the [] or () operators. The second is a constructor that accepts user data as a 2D array, the third is a
copy constructor. The second constructor has two data access modes (specified by the Teuchos::DataAccess argument):
<ol>
  <li> Copy mode - Allocates memory and makes a copy of the user-provided data. In this case, the
       user data is not needed after construction.
  <li> View mode - Creates a "view" of the user data. In this case, the
       user data is required to remain intact for the life of the object.
</ol>

\warning View mode is \e extremely dangerous from a data hiding perspective. Therefore, we strongly encourage
users to develop code using Copy mode first and only use the View mode in a secondary optimization phase.

<b>Extracting Data from Teuchos::SerialSymDenseMatrix Objects</b>

Once a Teuchos::SerialSymDenseMatrix is constructed, it is possible to view the data via access functions.

\warning Use of these access functions cam be \e extremely dangerous from a data hiding perspective.

<b>Vector and Utility Functions</b>

Once a Teuchos::SerialSymDenseMatrix is constructed, several mathematical functions can be applied to
the object.  Specifically:
<ul>
  <li> Multiplication.
  <li> Norms.
</ul>

*/

/** \example DenseMatrix/cxx_main_sym.cpp
    This is an example of how to use the Teuchos::SerialSymDenseMatrix class.
*/

namespace Teuchos {

template<typename OrdinalType, typename ScalarType>
class SerialSymDenseMatrix : public CompObject, public Object, public BLAS<OrdinalType,ScalarType>
{
 public:

  //! Typedef for ordinal type
  typedef OrdinalType ordinalType;
  //! Typedef for scalar type
  typedef ScalarType scalarType;

  //! @name Constructor/Destructor Methods
  //@{
  //! Default constructor; defines a zero size object.
  /*!
    Teuchos::SerialSymDenseMatrix objects defined by the default constructor
    should be sized with the Shape() or Reshape() functions.
    Values should be defined by using the [] or ()operators.

    Note: By default the active part of the matrix is assumed to be the lower triangular part.
    To set the upper part as active, call SetUpper(). See Detailed Description section for further discussion.
   */
  SerialSymDenseMatrix();

  //! Basic constructor; defines a matrix of \c numRowsCols size and (optionally) initializes it.
  /*!
    \param numRowsCols - Number of rows and columns in the matrix.
    \param zeroOut - Initializes values to 0 if true (default)

    Creates a shaped matrix with \c numRowsCols rows and cols.  All values are initialized to 0 when \c zeroOut is true.
    Values of this matrix should be set using the [] or the () operators.

    \note By default the active part of the matrix is assumed to be the lower triangular part.
    To set the upper part as active, call SetUpper(). See Detailed Description section for further discussion.
  */
  SerialSymDenseMatrix(OrdinalType numRowsCols, bool zeroOut = true);

  //! Set object values from two-dimensional array.
  /*!
    \param CV - Enumerated type set to Teuchos::Copy or Teuchos::View.

    \param values - Pointer to an array of ScalarType.  The first column starts at \c values,
                the second at \c values+stride, etc.
    \param stride - The stride between the columns of the matrix in memory.
    \param numRowsCols - Number of rows and columns in the matrix.

    \note By default the active part of the matrix is assumed to be the lower triangular part.
    To set the upper part as active, call SetUpper(). See Detailed Description section for further discussion.
  */
  SerialSymDenseMatrix(DataAccess CV, bool upper, ScalarType* values, OrdinalType stride, OrdinalType numRowsCols);

  //! Teuchos::SerialSymDenseMatrix copy constructor.
  SerialSymDenseMatrix(const SerialSymDenseMatrix<OrdinalType, ScalarType> &Source);

  //! Submatrix Copy Constructor
  /*!
    \param CV - Enumerated type set to Teuchos::Copy or Teuchos::View.
    \param Source - Reference to another dense matrix from which values are to be copied.
    \param numRowCols - The number of rows and columns in this matrix.
    \param startRowCol - The row and column of \c Source from which the submatrix copy should start.

    Creates a shaped matrix with \c numRowCols rows and columns, which is a submatrix of \c Source.
    If \c startRowCol are not given, then the submatrix is the leading submatrix of \c Source.
  */
  SerialSymDenseMatrix(DataAccess CV, const SerialSymDenseMatrix<OrdinalType, ScalarType> &Source, OrdinalType numRowCols, OrdinalType startRowCol=0);

  //! Teuchos::SerialSymDenseMatrix destructor.
  virtual ~SerialSymDenseMatrix ();
  //@}

  //! @name Shaping Methods
  //@{

  //! Set dimensions of a Teuchos::SerialSymDenseMatrix object; init values to zero.
  /*!
    \param numRowsCols - Number of rows and columns in object.

    Allows user to define the dimensions of a Teuchos::SerialSymDenseMatrix at any point. This function can
    be called at any point after construction.  Any values that were previously in this object are
    destroyed and the resized matrix starts off with all zero values.

    \return Integer error code, set to 0 if successful.
  */
  int shape(OrdinalType numRowsCols);

  //! Set dimensions of a Teuchos::SerialSymDenseMatrix object; don't initialize values.
  /*!
    \param numRowsCols - Number of rows and columns in object.

    Allows user to define the dimensions of a Teuchos::SerialSymDenseMatrix at any point. This function can
    be called at any point after construction.  Any values that were previously in this object are
    destroyed.  The resized matrix has uninitialized values.

    \return Integer error code, set to 0 if successful.
  */
  int shapeUninitialized(OrdinalType numRowsCols);

  //! Reshape a Teuchos::SerialSymDenseMatrix object.
  /*!
    \param numRowsCols - Number of rows and columns in object.

    Allows user to define the dimensions of a Teuchos::SerialSymDenseMatrix at any point. This function can
    be called at any point after construction.  Any values that were previously in this object are
    copied into the new shape.  If the new shape is smaller than the original, the upper left portion
    of the original matrix (the principal submatrix) is copied to the new matrix.

    \return Integer error code, set to 0 if successful.
  */
  int reshape(OrdinalType numRowsCols);

  //! Specify that the lower triangle of the \e this matrix should be used.
  /*! \warning This may necessitate the matrix values be copied from the upper to lower portion of the matrix.
  */
  void setLower();

  //! Specify that the upper triangle of the \e this matrix should be used.
  /*! \warning This may necessitate the matrix values be copied from the lower to upper portion of the matrix.
  */
  void setUpper();

  //@}

  //! @name Set methods.
  //@{

  //! Copies values from one matrix to another.
  /*!
    The operator= copies the values from one existing SerialSymDenseMatrix to another.
    If \c Source is a view (i.e. CV = Teuchos::View), then this method will
    return a view.  Otherwise, it will return a copy of \c Source.  \e this object
    will be resized if it is not large enough to copy \c Source into.
  */
  SerialSymDenseMatrix<OrdinalType, ScalarType>& operator= (const SerialSymDenseMatrix<OrdinalType, ScalarType>& Source);

  //! Copies values from one matrix to another.
  /*!
    Copies the values from one existing SerialSymDenseMatrix to another if the dimension of both matrices are the same.
    If not, \e this matrix will be returned unchanged.
  */
  SerialSymDenseMatrix<OrdinalType, ScalarType>& assign (const SerialSymDenseMatrix<OrdinalType, ScalarType>& Source);

  //! Set all values in the matrix to a constant value.
  /*!
    \param value - Value to use;
  */
  SerialSymDenseMatrix<OrdinalType, ScalarType>& operator= (const ScalarType value) { putScalar(value); return(*this); }

  //! Set all values in the matrix to a constant value.
  /*!
    \param value - Value to use; zero if none specified.
    \param fullMatrix - set full matrix entries to \c value, not just active portion of symmetric matrix.
    \return Integer error code, set to 0 if successful.
  */
  int putScalar( const ScalarType value = Teuchos::ScalarTraits<ScalarType>::zero(), bool fullMatrix = false );

  //! Set all values in the active area (upper/lower triangle) of this matrix to be random numbers.
  /*! \note The diagonal will be the sum of the off diagonal elements, plus a bias, so the matrix is SPD.
   */
  int random( const ScalarType bias = 0.1*Teuchos::ScalarTraits<ScalarType>::one() );

  //@}

  //! @name Accessor methods.
  //@{

  //! Element access method (non-const).
  /*! Returns the element in the ith row and jth column if A(i,j) is specified.

    \return Element from the specified \c rowIndex row and \c colIndex column.
    \note If the requested element lies in the inactive part of the matrix, then A(j,i) will be returned.
    \warning The validity of \c rowIndex and \c colIndex will only be checked if Teuchos is
    configured with --enable-teuchos-abc.
  */
  ScalarType& operator () (OrdinalType rowIndex, OrdinalType colIndex);

  //! Element access method (const).
  /*! Returns the element in the ith row and jth column if A(i,j) is specified.

    \return Element from the specified \c rowIndex row and \c colIndex column.
    \note If the requested element lies in the inactive part of the matrix, then A(j,i) will be returned.
    \warning The validity of \c rowIndex and \c colIndex will only be checked if Teuchos is
    configured with --enable-teuchos-abc.
  */
  const ScalarType& operator () (OrdinalType rowIndex, OrdinalType colIndex) const;

  //! Returns the pointer to the ScalarType data array contained in the object.
  /*! \note The matrix values are only guaranteed to be stored in the active area of the matrix (upper/lower).
  */
  ScalarType* values() const { return(values_); }

  //@}

  //! @name Query methods
  //@{

  //! Returns true if upper triangular part of \e this matrix has and will be used.
  bool upper() const {return(upper_);};

  //! Returns character value of UPLO used by LAPACK routines.
  char UPLO() const {return(UPLO_);};
  //@}

  //! @name Mathematical Methods
  //@{

  //! Inplace scalar-matrix product A = \c alpha*A.
  /*! Scale a matrix, entry-by-entry using the value \e alpha.  This method is sensitive to
      the UPLO() parameter.

   \param alpha - Scalar to multiply with A.

  */
  SerialSymDenseMatrix<OrdinalType, ScalarType>& operator*= (const ScalarType alpha);

  //! Add another matrix to \e this matrix.
  /*! Add \c Source to \e this if the dimension of both matrices are the same.  If not, \e this matrix
    will be returned unchanged.
  */
  SerialSymDenseMatrix<OrdinalType, ScalarType>& operator+= (const SerialSymDenseMatrix<OrdinalType, ScalarType>& Source);

  //! Subtract another matrix from \e this matrix.
  /*! Subtract \c Source from \e this if the dimension of both matrices are the same.  If not, \e this matrix
    will be returned unchanged.
  */
  SerialSymDenseMatrix<OrdinalType, ScalarType>& operator-= (const SerialSymDenseMatrix<OrdinalType, ScalarType>& Source);

  //@}

  //! @name Comparison methods.
  //@{

  //! Equality of two matrices.
  /*! \return True if \e this matrix and \c Operand are of the same shape (rows / columns) and have
    the same entries in the active (upper / lower triangular) area of the matrix, else False will be returned.
  */
  bool operator== (const SerialSymDenseMatrix<OrdinalType, ScalarType> &Operand) const;

  //! Inequality of two matrices.
  /*! \return True if \e this matrix and \c Operand of not of the same shape (rows / columns) or don't
    have the same entries in the active (upper / lower triangular), else False will be returned.
  */
  bool operator!= (const SerialSymDenseMatrix<OrdinalType, ScalarType> &Operand) const;

  //@}

  //! @name Attribute methods.
  //@{

  //! Returns the row dimension of this matrix.
  OrdinalType numRows() const { return(numRowCols_); }

  //! Returns the column dimension of this matrix.
  OrdinalType numCols() const { return(numRowCols_); }

  //! Returns the stride between the columns of this matrix in memory.
  OrdinalType stride() const { return(stride_); }

  //! Returns whether this matrix is empty.
  bool empty() const { return(numRowCols_ == 0); }

  //@}

  //! @name Norm methods.
  //@{

  //! Returns the 1-norm of the matrix.
  typename ScalarTraits<ScalarType>::magnitudeType normOne() const;

  //! Returns the Infinity-norm of the matrix.
  typename ScalarTraits<ScalarType>::magnitudeType normInf() const;

  //! Returns the Frobenius-norm of the matrix.
  typename ScalarTraits<ScalarType>::magnitudeType normFrobenius() const;
  //@}

  //! @name I/O methods.
  //@{
  //! Print method.  Defines the behavior of the std::ostream << operator inherited from the Object class.
  virtual void print(std::ostream& os) const;

  //@}

 protected:

  // In-place scaling of matrix.
  void scale( const ScalarType alpha );

  // Copy the values from one matrix to the other.
  void copyMat(bool inputUpper, ScalarType* inputMatrix, OrdinalType inputStride,
               OrdinalType numRowCols, bool outputUpper, ScalarType* outputMatrix,
               OrdinalType outputStride, OrdinalType startRowCol,
               ScalarType alpha = ScalarTraits<ScalarType>::zero() );

  // Copy the values from the active triangle of the matrix to the other to make the matrix full symmetric.
  void copyUPLOMat(bool inputUpper, ScalarType* inputMatrix,
                   OrdinalType inputStride, OrdinalType inputRows);

  void deleteArrays();
  void checkIndex( OrdinalType rowIndex, OrdinalType colIndex = 0 ) const;
  OrdinalType numRowCols_;
  OrdinalType stride_;
  bool valuesCopied_;
  ScalarType* values_;
  bool upper_;
  char UPLO_;


};

//----------------------------------------------------------------------------------------------------
//  Constructors and Destructor
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
SerialSymDenseMatrix<OrdinalType, ScalarType>::SerialSymDenseMatrix()
  : CompObject(), Object(), BLAS<OrdinalType,ScalarType>(), 
    numRowCols_(0), stride_(0), valuesCopied_(false), values_(0), upper_(false), UPLO_('L')
{}

template<typename OrdinalType, typename ScalarType>
SerialSymDenseMatrix<OrdinalType, ScalarType>::SerialSymDenseMatrix(OrdinalType numRowCols_in, bool zeroOut)
  : CompObject(), Object(), BLAS<OrdinalType,ScalarType>(),
    numRowCols_(numRowCols_in), stride_(numRowCols_in), valuesCopied_(false), upper_(false), UPLO_('L')
{
  values_ = new ScalarType[stride_*numRowCols_];
  valuesCopied_ = true;
  if (zeroOut == true)
    putScalar( Teuchos::ScalarTraits<ScalarType>::zero(), true );
}

template<typename OrdinalType, typename ScalarType>
SerialSymDenseMatrix<OrdinalType, ScalarType>::SerialSymDenseMatrix(
  DataAccess CV, bool upper_in, ScalarType* values_in, OrdinalType stride_in, OrdinalType numRowCols_in
  )
  : CompObject(), Object(), BLAS<OrdinalType,ScalarType>(), 
    numRowCols_(numRowCols_in), stride_(stride_in), valuesCopied_(false),
    values_(values_in), upper_(upper_in)
{
  if (upper_)
    UPLO_ = 'U';
  else
    UPLO_ = 'L';

  if(CV == Copy)
  {
    stride_ = numRowCols_;
    values_ = new ScalarType[stride_*numRowCols_];
    copyMat(upper_in, values_in, stride_in, numRowCols_, upper_, values_, stride_, 0);
    valuesCopied_ = true;
  }
}

template<typename OrdinalType, typename ScalarType>
SerialSymDenseMatrix<OrdinalType, ScalarType>::SerialSymDenseMatrix(const SerialSymDenseMatrix<OrdinalType, ScalarType> &Source) 
  : CompObject(), Object(), BLAS<OrdinalType,ScalarType>(), 
    numRowCols_(Source.numRowCols_), stride_(0), valuesCopied_(true), 
    values_(0), upper_(Source.upper_), UPLO_(Source.UPLO_)
{
  if (!Source.valuesCopied_)
  {
    stride_ = Source.stride_;
    values_ = Source.values_;
    valuesCopied_ = false;
  }
  else
  {
    stride_ = numRowCols_;
    const OrdinalType newsize = stride_ * numRowCols_;
    if(newsize > 0) {
      values_ = new ScalarType[newsize];
      copyMat(Source.upper_, Source.values_, Source.stride_, numRowCols_, upper_, values_, stride_, 0);
    }
    else {
      numRowCols_ = 0; stride_ = 0;
      valuesCopied_ = false;
    }
  }
}

template<typename OrdinalType, typename ScalarType>
SerialSymDenseMatrix<OrdinalType, ScalarType>::SerialSymDenseMatrix(
                                                                    DataAccess CV, const SerialSymDenseMatrix<OrdinalType,
                                                                    ScalarType> &Source, OrdinalType numRowCols_in, OrdinalType startRowCol )
  : CompObject(), Object(), BLAS<OrdinalType,ScalarType>(),
    numRowCols_(numRowCols_in), stride_(Source.stride_), valuesCopied_(false), upper_(Source.upper_), UPLO_(Source.UPLO_)
{
  if(CV == Copy)
  {
    stride_ = numRowCols_in;
    values_ = new ScalarType[stride_ * numRowCols_in];
    copyMat(Source.upper_, Source.values_, Source.stride_, numRowCols_in, upper_, values_, stride_, startRowCol);
    valuesCopied_ = true;
  }
  else // CV == View
  {
    values_ = Source.values_ + (stride_ * startRowCol) + startRowCol;
  }
}

template<typename OrdinalType, typename ScalarType>
SerialSymDenseMatrix<OrdinalType, ScalarType>::~SerialSymDenseMatrix()
{
  deleteArrays();
}

//----------------------------------------------------------------------------------------------------
//  Shape methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
int SerialSymDenseMatrix<OrdinalType, ScalarType>::shape( OrdinalType numRowCols_in )
{
  deleteArrays(); // Get rid of anything that might be already allocated
  numRowCols_ = numRowCols_in;
  stride_ = numRowCols_;
  values_ = new ScalarType[stride_*numRowCols_];
  putScalar( Teuchos::ScalarTraits<ScalarType>::zero(), true );
  valuesCopied_ = true;
  return(0);
}

template<typename OrdinalType, typename ScalarType>
int SerialSymDenseMatrix<OrdinalType, ScalarType>::shapeUninitialized( OrdinalType numRowCols_in )
{
  deleteArrays(); // Get rid of anything that might be already allocated
  numRowCols_ = numRowCols_in;
  stride_ = numRowCols_;
  values_ = new ScalarType[stride_*numRowCols_];
  valuesCopied_ = true;
  return(0);
}

template<typename OrdinalType, typename ScalarType>
int SerialSymDenseMatrix<OrdinalType, ScalarType>::reshape( OrdinalType numRowCols_in )
{
  // Allocate space for new matrix
  ScalarType* values_tmp = new ScalarType[numRowCols_in * numRowCols_in];
  ScalarType zero = ScalarTraits<ScalarType>::zero();
  for(OrdinalType k = 0; k < numRowCols_in * numRowCols_in; k++)
  {
    values_tmp[k] = zero;
  }
  OrdinalType numRowCols_tmp = TEUCHOS_MIN(numRowCols_, numRowCols_in);
  if(values_ != 0)
  {
    copyMat(upper_, values_, stride_, numRowCols_tmp, upper_, values_tmp, numRowCols_in, 0); // Copy principal submatrix of A to new A
  }
  deleteArrays(); // Get rid of anything that might be already allocated
  numRowCols_ = numRowCols_in;
  stride_ = numRowCols_;
  values_ = values_tmp; // Set pointer to new A
  valuesCopied_ = true;
  return(0);
}

//----------------------------------------------------------------------------------------------------
//   Set methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
void SerialSymDenseMatrix<OrdinalType, ScalarType>::setLower()
{
  // Do nothing if the matrix is already a lower triangular matrix
  if (upper_ != false) {
    copyUPLOMat( true, values_, stride_, numRowCols_ );
    upper_ = false;
    UPLO_ = 'L';
  }
}

template<typename OrdinalType, typename ScalarType>
void SerialSymDenseMatrix<OrdinalType, ScalarType>::setUpper()
{
  // Do nothing if the matrix is already an upper triangular matrix
  if (upper_ == false) {
    copyUPLOMat( false, values_, stride_, numRowCols_ );
    upper_ = true;
    UPLO_ = 'U';
  }
}

template<typename OrdinalType, typename ScalarType>
int SerialSymDenseMatrix<OrdinalType, ScalarType>::putScalar( const ScalarType value_in, bool fullMatrix )
{
  // Set each value of the dense matrix to "value".
  if (fullMatrix == true) {
    for(OrdinalType j = 0; j < numRowCols_; j++)
      {
        for(OrdinalType i = 0; i < numRowCols_; i++)
          {
            values_[i + j*stride_] = value_in;
          }
      }
  }
  // Set the active upper or lower triangular part of the matrix to "value"
  else {
    if (upper_) {
      for(OrdinalType j = 0; j < numRowCols_; j++) {
        for(OrdinalType i = 0; i <= j; i++) {
          values_[i + j*stride_] = value_in;
        }
      }
    }
    else {
      for(OrdinalType j = 0; j < numRowCols_; j++) {
        for(OrdinalType i = j; i < numRowCols_; i++) {
          values_[i + j*stride_] = value_in;
        }
      }
    }
  }
  return 0;
}

template<typename OrdinalType, typename ScalarType>
int SerialSymDenseMatrix<OrdinalType, ScalarType>::random( const ScalarType bias )
{
  typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MT;

  // Set each value of the dense matrix to a random value.
  std::vector<MT> diagSum( numRowCols_, Teuchos::ScalarTraits<MT>::zero() );
  if (upper_) {
    for(OrdinalType j = 0; j < numRowCols_; j++) {
      for(OrdinalType i = 0; i < j; i++) {
        values_[i + j*stride_] = ScalarTraits<ScalarType>::random();
        diagSum[i] += Teuchos::ScalarTraits<ScalarType>::magnitude( values_[i + j*stride_] );
        diagSum[j] += Teuchos::ScalarTraits<ScalarType>::magnitude( values_[i + j*stride_] );
      }
    }
  }
  else {
    for(OrdinalType j = 0; j < numRowCols_; j++) {
      for(OrdinalType i = j+1; i < numRowCols_; i++) {
        values_[i + j*stride_] = ScalarTraits<ScalarType>::random();
        diagSum[i] += Teuchos::ScalarTraits<ScalarType>::magnitude( values_[i + j*stride_] );
        diagSum[j] += Teuchos::ScalarTraits<ScalarType>::magnitude( values_[i + j*stride_] );
      }
    }
  }

  // Set the diagonal.
  for(OrdinalType i = 0; i < numRowCols_; i++) {
    values_[i + i*stride_] = diagSum[i] + bias;
  }
  return 0;
}

template<typename OrdinalType, typename ScalarType>
SerialSymDenseMatrix<OrdinalType,ScalarType>&
SerialSymDenseMatrix<OrdinalType, ScalarType>::operator=( const SerialSymDenseMatrix<OrdinalType,ScalarType>& Source )
{
  if(this == &Source)
    return(*this); // Special case of source same as target
  if((!valuesCopied_) && (!Source.valuesCopied_) && (values_ == Source.values_)) {
    upper_ = Source.upper_;  // Might have to change the active part of the matrix.
    return(*this); // Special case of both are views to same data.
  }

  // If the source is a view then we will return a view, else we will return a copy.
  if (!Source.valuesCopied_) {
    if(valuesCopied_)       {
      // Clean up stored data if this was previously a copy.
      deleteArrays();
    }
    numRowCols_ = Source.numRowCols_;
    stride_ = Source.stride_;
    values_ = Source.values_;
    upper_ = Source.upper_;
    UPLO_ = Source.UPLO_;
  }
  else {
    // If we were a view, we will now be a copy.
    if(!valuesCopied_) {
      numRowCols_ = Source.numRowCols_;
      stride_ = Source.numRowCols_;
      upper_ = Source.upper_;
      UPLO_ = Source.UPLO_;
      const OrdinalType newsize = stride_ * numRowCols_;
      if(newsize > 0) {
        values_ = new ScalarType[newsize];
        valuesCopied_ = true;
      }
      else {
        values_ = 0;
      }
    }
    // If we were a copy, we will stay a copy.
    else {
      if((Source.numRowCols_ <= stride_) && (Source.numRowCols_ == numRowCols_)) { // we don't need to reallocate
        numRowCols_ = Source.numRowCols_;
        upper_ = Source.upper_;
        UPLO_ = Source.UPLO_;
      }
      else { // we need to allocate more space (or less space)
        deleteArrays();
        numRowCols_ = Source.numRowCols_;
        stride_ = Source.numRowCols_;
        upper_ = Source.upper_;
        UPLO_ = Source.UPLO_;
        const OrdinalType newsize = stride_ * numRowCols_;
        if(newsize > 0) {
          values_ = new ScalarType[newsize];
          valuesCopied_ = true;
        }
      }
    }
    copyMat(Source.upper_, Source.values_, Source.stride_, Source.numRowCols_, upper_, values_, stride_, 0);
  }
  return(*this);
}

template<typename OrdinalType, typename ScalarType>
SerialSymDenseMatrix<OrdinalType, ScalarType>& SerialSymDenseMatrix<OrdinalType, ScalarType>::operator*= (const ScalarType alpha)
{
  this->scale(alpha);
  return(*this);
}

template<typename OrdinalType, typename ScalarType>
SerialSymDenseMatrix<OrdinalType, ScalarType>& SerialSymDenseMatrix<OrdinalType, ScalarType>::operator+= (const SerialSymDenseMatrix<OrdinalType,ScalarType>& Source )
{
  // Check for compatible dimensions
  if ((numRowCols_ != Source.numRowCols_))
    {
      TEUCHOS_CHK_REF(*this); // Return *this without altering it.
    }
  copyMat(Source.upper_, Source.values_, Source.stride_, numRowCols_, upper_, values_, stride_, 0, ScalarTraits<ScalarType>::one());
  return(*this);
}

template<typename OrdinalType, typename ScalarType>
SerialSymDenseMatrix<OrdinalType, ScalarType>& SerialSymDenseMatrix<OrdinalType, ScalarType>::operator-= (const SerialSymDenseMatrix<OrdinalType,ScalarType>& Source )
{
  // Check for compatible dimensions
  if ((numRowCols_ != Source.numRowCols_))
  {
    TEUCHOS_CHK_REF(*this); // Return *this without altering it.
  }
  copyMat(Source.upper_, Source.values_, Source.stride_, numRowCols_, upper_, values_, stride_, 0, -ScalarTraits<ScalarType>::one());
  return(*this);
}

template<typename OrdinalType, typename ScalarType>
SerialSymDenseMatrix<OrdinalType,ScalarType>& SerialSymDenseMatrix<OrdinalType, ScalarType>::assign (const SerialSymDenseMatrix<OrdinalType,ScalarType>& Source) {
  if(this == &Source)
    return(*this); // Special case of source same as target
  if((!valuesCopied_) && (!Source.valuesCopied_) && (values_ == Source.values_)) {
    upper_ = Source.upper_; // We may have to change the active part of the matrix.
    return(*this); // Special case of both are views to same data.
  }

  // Check for compatible dimensions
  if ((numRowCols_ != Source.numRowCols_))
  {
    TEUCHOS_CHK_REF(*this); // Return *this without altering it.
  }
  copyMat(Source.upper_, Source.values_, Source.stride_, numRowCols_, upper_, values_, stride_, 0 );
  return(*this);
}

//----------------------------------------------------------------------------------------------------
//   Accessor methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
inline ScalarType& SerialSymDenseMatrix<OrdinalType, ScalarType>::operator () (OrdinalType rowIndex, OrdinalType colIndex)
{
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
  checkIndex( rowIndex, colIndex );
#endif
  if ( rowIndex <= colIndex ) {
    // Accessing upper triangular part of matrix
    if (upper_)
      return(values_[colIndex * stride_ + rowIndex]);
    else
      return(values_[rowIndex * stride_ + colIndex]);
  }
  else {
    // Accessing lower triangular part of matrix
    if (upper_)
      return(values_[rowIndex * stride_ + colIndex]);
    else
      return(values_[colIndex * stride_ + rowIndex]);
  }
}

template<typename OrdinalType, typename ScalarType>
inline const ScalarType& SerialSymDenseMatrix<OrdinalType, ScalarType>::operator () (OrdinalType rowIndex, OrdinalType colIndex) const
{
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
  checkIndex( rowIndex, colIndex );
#endif
  if ( rowIndex <= colIndex ) {
    // Accessing upper triangular part of matrix
    if (upper_)
      return(values_[colIndex * stride_ + rowIndex]);
    else
      return(values_[rowIndex * stride_ + colIndex]);
  }
  else {
    // Accessing lower triangular part of matrix
    if (upper_)
      return(values_[rowIndex * stride_ + colIndex]);
    else
      return(values_[colIndex * stride_ + rowIndex]);
  }
}

//----------------------------------------------------------------------------------------------------
//   Norm methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
typename ScalarTraits<ScalarType>::magnitudeType SerialSymDenseMatrix<OrdinalType, ScalarType>::normOne() const
{
  return(normInf());
}

template<typename OrdinalType, typename ScalarType>
typename ScalarTraits<ScalarType>::magnitudeType SerialSymDenseMatrix<OrdinalType, ScalarType>::normInf() const
{
  typedef typename ScalarTraits<ScalarType>::magnitudeType MT;

  OrdinalType i, j;

  MT sum, anorm = ScalarTraits<MT>::zero();
  ScalarType* ptr;

  if (upper_) {
    for (j=0; j<numRowCols_; j++) {
      sum = ScalarTraits<MT>::zero();
      ptr = values_ + j*stride_;
      for (i=0; i<j; i++) {
        sum += ScalarTraits<ScalarType>::magnitude( *ptr++ );
      }
      ptr = values_ + j + j*stride_;
      for (i=j; i<numRowCols_; i++) {
        sum += ScalarTraits<ScalarType>::magnitude( *ptr );
        ptr += stride_;
      }
      anorm = TEUCHOS_MAX( anorm, sum );
    }
  }
  else {
    for (j=0; j<numRowCols_; j++) {
      sum = ScalarTraits<MT>::zero();
      ptr = values_ + j + j*stride_;
      for (i=j; i<numRowCols_; i++) {
        sum += ScalarTraits<ScalarType>::magnitude( *ptr++ );
      }
      ptr = values_ + j;
      for (i=0; i<j; i++) {
        sum += ScalarTraits<ScalarType>::magnitude( *ptr );
        ptr += stride_;
      }
      anorm = TEUCHOS_MAX( anorm, sum );
    }
  }
  return(anorm);
}

template<typename OrdinalType, typename ScalarType>
typename ScalarTraits<ScalarType>::magnitudeType SerialSymDenseMatrix<OrdinalType, ScalarType>::normFrobenius() const
{
  typedef typename ScalarTraits<ScalarType>::magnitudeType MT;

  OrdinalType i, j;

  MT sum = ScalarTraits<MT>::zero(), anorm = ScalarTraits<MT>::zero();

  if (upper_) {
    for (j = 0; j < numRowCols_; j++) {
      for (i = 0; i < j; i++) {
        sum += ScalarTraits<ScalarType>::magnitude(2.0*values_[i+j*stride_]*values_[i+j*stride_]);
      }
      sum += ScalarTraits<ScalarType>::magnitude(values_[j + j*stride_]*values_[j + j*stride_]);
    }
  }
  else {
    for (j = 0; j < numRowCols_; j++) {
      sum += ScalarTraits<ScalarType>::magnitude(values_[j + j*stride_]*values_[j + j*stride_]);
      for (i = j+1; i < numRowCols_; i++) {
        sum += ScalarTraits<ScalarType>::magnitude(2.0*values_[i+j*stride_]*values_[i+j*stride_]);
      }
    }
  }
  anorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::squareroot(sum));
  return(anorm);
}

//----------------------------------------------------------------------------------------------------
//   Comparison methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
bool SerialSymDenseMatrix<OrdinalType, ScalarType>::operator== (const SerialSymDenseMatrix<OrdinalType, ScalarType> &Operand) const
{
  bool result = 1;
  if((numRowCols_ != Operand.numRowCols_)) {
    result = 0;
  }
  else {
    OrdinalType i, j;
    for(i = 0; i < numRowCols_; i++) {
      for(j = 0; j < numRowCols_; j++) {
        if((*this)(i, j) != Operand(i, j)) {
          return 0;
        }
      }
    }
  }
  return result;
}

template<typename OrdinalType, typename ScalarType>
bool SerialSymDenseMatrix<OrdinalType, ScalarType>::operator!= (const SerialSymDenseMatrix<OrdinalType, ScalarType> &Operand) const
{
  return !((*this) == Operand);
}

//----------------------------------------------------------------------------------------------------
//   Multiplication method
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
void SerialSymDenseMatrix<OrdinalType, ScalarType>::scale( const ScalarType alpha )
{
  OrdinalType i, j;
  ScalarType* ptr;

  if (upper_) {
    for (j=0; j<numRowCols_; j++) {
      ptr = values_ + j*stride_;
      for (i=0; i<= j; i++) { *ptr = alpha * (*ptr); ptr++; }
    }
  }
  else {
    for (j=0; j<numRowCols_; j++) {
      ptr = values_ + j*stride_ + j;
      for (i=j; i<numRowCols_; i++) { *ptr = alpha * (*ptr); ptr++; }
    }
  }
}

/*
template<typename OrdinalType, typename ScalarType>
int SerialSymDenseMatrix<OrdinalType, ScalarType>::scale( const SerialSymDenseMatrix<OrdinalType,ScalarType>& A )
{
  OrdinalType i, j;
  ScalarType* ptr;

  // Check for compatible dimensions
  if ((numRowCols_ != A.numRowCols_)) {
    TEUCHOS_CHK_ERR(-1); // Return error
  }

  if (upper_) {
    for (j=0; j<numRowCols_; j++) {
      ptr = values_ + j*stride_;
      for (i=0; i<= j; i++) { *ptr = A(i,j) * (*ptr); ptr++; }
    }
  }
  else {
    for (j=0; j<numRowCols_; j++) {
      ptr = values_ + j*stride_;
      for (i=j; i<numRowCols_; i++) { *ptr = A(i,j) * (*ptr); ptr++; }
    }
  }

  return(0);
}
*/

template<typename OrdinalType, typename ScalarType>
void SerialSymDenseMatrix<OrdinalType, ScalarType>::print(std::ostream& os) const
{
  os << std::endl;
  if(valuesCopied_)
    os << "Values_copied : yes" << std::endl;
  else
    os << "Values_copied : no" << std::endl;
  os << "Rows / Columns : " << numRowCols_ << std::endl;
  os << "LDA : " << stride_ << std::endl;
  if (upper_)
    os << "Storage: Upper" << std::endl;
  else
    os << "Storage: Lower" << std::endl;
  if(numRowCols_ == 0) {
    os << "(matrix is empty, no values to display)" << std::endl;
  } else {
    for(OrdinalType i = 0; i < numRowCols_; i++) {
      for(OrdinalType j = 0; j < numRowCols_; j++){
        os << (*this)(i,j) << " ";
      }
      os << std::endl;
    }
  }
}

//----------------------------------------------------------------------------------------------------
//   Protected methods
//----------------------------------------------------------------------------------------------------

template<typename OrdinalType, typename ScalarType>
inline void SerialSymDenseMatrix<OrdinalType, ScalarType>::checkIndex( OrdinalType rowIndex, OrdinalType colIndex ) const {
  TEUCHOS_TEST_FOR_EXCEPTION(rowIndex < 0 || rowIndex >= numRowCols_, std::out_of_range,
    "SerialSymDenseMatrix<T>::checkIndex: "
    "Row index " << rowIndex << " out of range [0, "<< numRowCols_ << ")");
  TEUCHOS_TEST_FOR_EXCEPTION(colIndex < 0 || colIndex >= numRowCols_, std::out_of_range,
    "SerialSymDenseMatrix<T>::checkIndex: "
    "Col index " << colIndex << " out of range [0, "<< numRowCols_ << ")");
}

template<typename OrdinalType, typename ScalarType>
void SerialSymDenseMatrix<OrdinalType, ScalarType>::deleteArrays(void)
{
  if (valuesCopied_)
  {
    delete [] values_;
    values_ = 0;
    valuesCopied_ = false;
  }
}

template<typename OrdinalType, typename ScalarType>
void SerialSymDenseMatrix<OrdinalType, ScalarType>::copyMat(
                                                            bool inputUpper, ScalarType* inputMatrix,
                                                            OrdinalType inputStride, OrdinalType numRowCols_in,
                                                            bool outputUpper, ScalarType* outputMatrix,
                                                            OrdinalType outputStride, OrdinalType startRowCol,
                                                            ScalarType alpha
                                                            )
{
  OrdinalType i, j;
  ScalarType* ptr1 = 0;
  ScalarType* ptr2 = 0;

  for (j = 0; j < numRowCols_in; j++) {
    if (inputUpper == true) {
      // The input matrix is upper triangular, start at the beginning of each column.
      ptr2 = inputMatrix + (j + startRowCol) * inputStride + startRowCol;
      if (outputUpper == true) {
        // The output matrix matches the same pattern as the input matrix.
        ptr1 = outputMatrix + j*outputStride;
        if (alpha != Teuchos::ScalarTraits<ScalarType>::zero() ) {
          for(i = 0; i <= j; i++) {
            *ptr1++ += alpha*(*ptr2++);
          }
        } else {
          for(i = 0; i <= j; i++) {
            *ptr1++ = *ptr2++;
          }
        }
      }
      else {
        // The output matrix has the opposite pattern as the input matrix.
        // Copy down across rows of the output matrix, but down columns of the input matrix.
        ptr1 = outputMatrix + j;
        if (alpha != Teuchos::ScalarTraits<ScalarType>::zero() ) {
          for(i = 0; i <= j; i++) {
            *ptr1 += alpha*(*ptr2++);
            ptr1 += outputStride;
          }
        } else {
          for(i = 0; i <= j; i++) {
            *ptr1 = *ptr2++;
            ptr1 += outputStride;
          }
        }
      }
    }
    else {
      // The input matrix is lower triangular, start at the diagonal of each row.
      ptr2 = inputMatrix + (startRowCol+j) * inputStride + startRowCol + j;
      if (outputUpper == true) {
        // The output matrix has the opposite pattern as the input matrix.
        // Copy across rows of the output matrix, but down columns of the input matrix.
        ptr1 = outputMatrix + j*outputStride + j;
        if (alpha != Teuchos::ScalarTraits<ScalarType>::zero() ) {
          for(i = j; i < numRowCols_in; i++) {
            *ptr1 += alpha*(*ptr2++);
            ptr1 += outputStride;
          }
        } else {
          for(i = j; i < numRowCols_in; i++) {
            *ptr1 = *ptr2++;
            ptr1 += outputStride;
          }
        }
      }
      else {
        // The output matrix matches the same pattern as the input matrix.
        ptr1 = outputMatrix + j*outputStride + j;
        if (alpha != Teuchos::ScalarTraits<ScalarType>::zero() ) {
          for(i = j; i < numRowCols_in; i++) {
            *ptr1++ += alpha*(*ptr2++);
          }
        } else {
          for(i = j; i < numRowCols_in; i++) {
            *ptr1++ = *ptr2++;
          }
        }
      }
    }
  }
}

template<typename OrdinalType, typename ScalarType>
void SerialSymDenseMatrix<OrdinalType, ScalarType>::copyUPLOMat(
                                                                bool inputUpper, ScalarType* inputMatrix,
                                                                OrdinalType inputStride, OrdinalType inputRows
                                                                )
{
  OrdinalType i, j;
  ScalarType * ptr1 = 0;
  ScalarType * ptr2 = 0;

  if (inputUpper) {
    for (j=1; j<inputRows; j++) {
      ptr1 = inputMatrix + j;
      ptr2 = inputMatrix + j*inputStride;
      for (i=0; i<j; i++) {
        *ptr1 = *ptr2++;
        ptr1+=inputStride;
      }
    }
  }
  else {
    for (i=1; i<inputRows; i++) {
      ptr1 = inputMatrix + i;
      ptr2 = inputMatrix + i*inputStride;
      for (j=0; j<i; j++) {
        *ptr2++ = *ptr1;
        ptr1+=inputStride;
      }
    }
  }
}

} // namespace Teuchos

#endif /* _TEUCHOS_SERIALSYMDENSEMATRIX_HPP_ */