/usr/include/trilinos/Teuchos_ArrayRCPDecl.hpp is in libtrilinos-teuchos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 | // @HEADER
// ***********************************************************************
//
// Teuchos: Common Tools Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef TEUCHOS_ARRAY_RCP_DECL_HPP
#define TEUCHOS_ARRAY_RCP_DECL_HPP
#include "Teuchos_RCP.hpp"
#include "Teuchos_Exceptions.hpp"
#include "Teuchos_ArrayViewDecl.hpp"
namespace Teuchos {
/** \brief Reference-counted smart pointer for managing arrays.
* \tparam T The type of each element in the array.
* \ingroup teuchos_mem_mng_grp
*
* \section Teuchos_ArrayRCP_Summary Summary
*
* ArrayRCP manages an array of objects of type T. Like RCP, it uses
* reference counting to decide when to deallocate the array. This
* lets you share references to the array, without worrying about who
* is responsible for deallocating it. We may thus call an ArrayRCP a
* "shared array."
*
* \section Teuchos_ArrayRCP_Details Details
*
* Managing an array of objects is very different from managing a
* pointer to an individual, possibly polymorphic, object. For
* example, while implicit conversions from derived to base types can
* be useful when dealing with pointers to single objects, they often
* cause problems when working with arrays of objects. Therefore,
* this class contains those capabilities of raw pointers that are
* good when working with arrays of objects, but excludes those that
* are bad, such as implicit conversions from derived to base types.
* If you really do want a shared array with implicit conversions from
* derived to base types, you may use an <tt>ArrayRCP<RCP<T> ></tt>.
*
* \section Teuchos_ArrayRCP_Bounds Optional bounds checking
*
* You may enable bounds checking and other safety checks for this
* class by setting the <tt>Teuchos_ENABLE_DEBUG:BOOL=ON</tt> CMake
* option when configuring your Trilinos build. This option is off by
* default. It incurs a significant performance penalty and so is not
* recommended for production builds. Bounds checking requires that
* you always create ArrayRCP instances with the correct range. For
* example, if you use one of the constructors that accepts a raw
* pointer, you are responsible for supplying the correct number of
* elements in the array. Our bounds checking implementation does not
* attempt to replace memory debugging tools such as the Memcheck tool
* in <a href="http://en.wikipedia.org/wiki/Valgrind">Valgrind</a>.
*
* \section Teuchos_ArrayRCP_Req Requirements on the type T
*
* ArrayRCP imposes the following requirements on the type T of
* elements in the array:
* <ul>
* <li> T must be default constructible.
* <li> T must be copy constructible.
* <li> TypeNameTraits must have a specialization for T.
* </ul>
*
* \section Teuchos_ArrayView_DesignDiscussion_sec Design discussion
*
* This class has a partial specialization for <tt>const T</tt> that
* omits the conversion operator <tt>operator ArrayRCP<const T>()
* const</tt>, and the assign() and deepCopy() methods (which perform
* a deep copy). The conversion operator does not make sense if T is
* already <tt>const T'</tt> for some type <tt>T'</tt>, and the
* assign() and deepCopy() methods do not make sense if the right-hand
* side of the assignment is const.
*
* Partial specialization results in duplicated code, so Teuchos
* developers should be careful to make modifications in both the
* fully generic implementation and in the partial specialization.
*
* We considered avoiding most of the duplication by making
* <tt>ArrayRCP<T></tt> and its partial specialization
* <tt>ArrayRCP<const T></tt> inherit from a common base class, which
* contains all the common code. However, the circular dependency
* between ArrayRCP and ArrayView would have complicated this
* solution. We chose instead the simple "partial specialization
* without a common base class" solution, which does not interfere
* with the ArrayRCP / ArrayView circular dependency.
*/
template<class T>
class ArrayRCP {
public:
//! @name Public typedefs
//@{
//! Integer index type used throughout ArrayRCP.
typedef Teuchos_Ordinal Ordinal;
//! Type representing the number of elements in an ArrayRCP or view thereof.
typedef Ordinal size_type;
//! Type representing the difference between two size_type values.
typedef Ordinal difference_type;
//! Category of ArrayRCP's iterator type.
typedef std::random_access_iterator_tag iterator_category;
//! Type of an ArrayRCP's iterator.
typedef T* iterator_type;
//! Type of each array element.
typedef T value_type;
//! Type of a (nonconstant) reference to an array element.
typedef T& reference;
//! Type of a (constant) reference to an array element.
typedef const T& const_reference;
//! Type of a (raw) (nonconstant) pointer to an array element.
typedef T* pointer;
//! Type of a (raw) (constant) pointer to an array element.
typedef T* const_pointer;
//! Type of each array element.
typedef T element_type;
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
//! Nonconstant iterator type used if bounds checking is enabled.
typedef ArrayRCP<T> iterator;
//! Constant iterator type used if bounds checking is enabled.
typedef ArrayRCP<const T> const_iterator;
#else
//! Nonconstant iterator type used if bounds checking is disabled.
typedef T* iterator;
//! Constant iterator type used if bounds checking is disabled.
typedef const T* const_iterator;
#endif
//@}
//! @name Constructors/Destructors/Initializers
//@{
/// \brief Default constructor; initialize to an empty array.
///
/// This lets users write code like:
/// \code
/// ArrayRCP<int> p = null;
/// \endcode
/// or
/// \code
/// ArrayRCP<int> p;
/// \endcode
/// Both lines of code above set the raw array pointer to
/// <tt>NULL</tt>, and the array's length to zero.
inline ArrayRCP( ENull null_arg = null );
/** \brief Construct from a raw pointer and a valid range.
*
* \param p [in] Raw array pointer.
* \param lowerOffset [in] Array index at which the range starts
* (zero if at the beginning of the range).
* \param size [in] Number of array elements in the range.
* \param has_ownership [in] True if the ArrayRCP is responsible for
* deallocating the raw array (using <tt>delete []</tt>) when the
* reference count goes to zero. If false, the ArrayRCP does not
* deallocate the array.
* \param rcpNodeLookup [in] Whether to perform RCPNode lookup. The
* default value is fine for nearly all use cases.
*
* \post <tt>this->get() == p</tt>
* \post <tt>this->lowerOffset() == lowerOffset</tt>
* \post <tt>this->upperOffset() == size + lowerOffset - 1</tt>
* \post <tt>this->has_ownership() == has_ownership</tt>
*
* \warning You should avoid manipulating raw pointers and use other
* methods to construct an ArrayRCP object instead!
*/
inline ArrayRCP( T* p, size_type lowerOffset, size_type size,
bool has_ownership, const ERCPNodeLookup rcpNodeLookup = RCP_ENABLE_NODE_LOOKUP );
/** \brief Construct from a raw pointer, a valid range, and a deallocator.
*
* \param p [in] Raw array pointer.
* \param lowerOffset [in] Array index at which the range starts
* (zero if at the beginning of the range).
* \param size [in] Number of array elements in the range.
* \param dealloc [in] Function (or object with an
* <tt>operator()(T*)</tt> method) responsible for deallocating
* the raw array when the reference count goes to zero.
* \param has_ownership [in] True if the ArrayRCP is responsible for
* deallocating the raw array (using the given deallocator) when
* the reference count goes to zero. If false, the ArrayRCP does
* not deallocate the array.
*
* \post <tt>this->get() == p</tt>
* \post <tt>this->lowerOffset() == lowerOffset</tt>
* \post <tt>this->upperOffset() == size + lowerOffset - 1</tt>
* \post <tt>this->has_ownership() == has_ownership</tt>
*
* \warning You should avoid manipulating raw pointers and use other
* methods to construct an ArrayRCP object instead!
*/
template<class Dealloc_T>
inline ArrayRCP( T* p, size_type lowerOffset, size_type size, Dealloc_T dealloc,
bool has_ownership );
/** \brief Construct an array with the given number of elements.
*
* \param size [in] Number of elements in the array.
* \param val [in] Value with which to fill all elements of the
* array.
*
* This constructor fills the array as if with the following code:
\code
std::fill_n (begin (), n, val);
\endcode
*
* \post <tt>this->lowerOffset() == 0</tt>
* \post <tt>this->upperOffset() == size - 1</tt>
* \post <tt>this->has_ownership() == true</tt>
*/
inline explicit ArrayRCP( size_type size, const T& val = T() );
/** \brief Initialize from another <tt>ArrayRCP<T></tt> object.
*
* After construction, <tt>this</tt> and <tt>r_ptr</tt> will
* reference the same array.
*
* \post <tt>this->get() == r_ptr.get()</tt>
* \post <tt>this->count() == r_ptr.count()</tt>
* \post <tt>this->has_ownership() == r_ptr.has_ownership()</tt>
* \post If <tt>r_ptr.get() != NULL</tt> then <tt>r_ptr.count()</tt> is incremented by 1.
*
* \note To implementers: In compilers that conform to the C++
* standard, this copy constructor overload is unnecessary, since
* the more general templated version of the copy constructor
* below is sufficient. However, not all compilers have handled
* this code correctly in the past. This version ensures correct
* compilation with such compilers, without affecting compilers
* that correctly implement the C++ standard.
*/
inline ArrayRCP(const ArrayRCP<T>& r_ptr);
/** \brief Destructor, that decrements the reference count.
*
* If <tt>this->get() == NULL</tt> then the destructor does nothing.
* Otherwise, it decrements the reference count of this and all
* other references to the array. If the final reference count is
* zero, it also deallocates the array if owned (i.e., if
* <tt>this->has_ownership()</tt> returns true). Deallocation uses
* the custom deallocator if one was supplied; otherwise it uses
* <tt>delete []</tt>.
*/
inline ~ArrayRCP();
/** \brief Assignment operator: Makes <tt>*this</tt> reference the input array.
*
* If the input array is a reference to <tt>*this</tt> (that is, if
* <tt>this->getRawPtr() == r_ptr.getRawPtr()</tt>), then this
* method does nothing. Otherwise, it does the following:
* <ol>
* <li> Decrements the reference count of <tt>*this</tt> (as
* if its destructor had been called)
* <li> Makes <tt>*this</tt> a reference to the input array
* (thus incrementing its reference count)
* </ol>
* For example, after the following sample code is done, the array
* to which x originally pointed on construction will have reference
* count 2, and the array to which y originally pointed on
* constructor will have reference count 0 (and will thus be
* deallocated).
\code
ArrayRCP<T> x = arcp<T> (10);
ArrayRCP<T> y = arcp<T> (42);
x = y;
\endcode
*
* \post <tt>this->get() == r_ptr.get()</tt>
* \post <tt>this->count() == r_ptr.count()</tt>
* \post <tt>this->has_ownership() == r_ptr.has_ownership()</tt>
* \post If <tt>r_ptr.get() != NULL</tt> then <tt>r_ptr.count()</tt> is incremented by 1
*/
inline ArrayRCP<T>& operator=(const ArrayRCP<T>& r_ptr);
//@}
//! @name Object/Pointer Access Functions
//@{
//! True if the underlying pointer is null, else false.
inline bool is_null() const;
/** \brief Pointer (<tt>-></tt>) access to members of underlying object for
* current position.
*
* \pre <tt>this->get() != NULL</tt>
* \pre <tt>this->lowerOffset() <= 0</tt>
* \pre <tt>this->upperOffset() >= 0</tt>
*/
inline T* operator->() const;
/** \brief Dereference the underlying object for the current pointer
* position.
*
* \pre <tt>this->get() != NULL</tt>
* \pre <tt>this->lowerOffset() <= 0</tt>
* \pre <tt>this->upperOffset() >= 0</tt>
*/
inline T& operator*() const;
/** \brief Get the raw C++ pointer to the underlying object.
*
* \pre [<tt>*this != null</tt>] <tt>this->lowerOffset() <= 0</tt>
* \pre [<tt>*this != null</tt>] <tt>this->upperOffset() >= 0</tt>
*/
inline T* get() const;
/** \brief Get the raw C++ pointer to the underlying object.
*
* \pre [<tt>*this != null</tt>] <tt>this->lowerOffset() <= 0</tt>
* \pre [<tt>*this != null</tt>] <tt>this->upperOffset() >= 0</tt>
*/
inline T* getRawPtr() const;
/** \brief Random object access.
*
* \pre <tt>this->get() != NULL</tt>
* \pre <tt>this->lowerOffset() <= offset && offset <= this->upperOffset()</tt>
*/
inline T& operator[](size_type offset) const;
//@}
//! @name Pointer Arithmetic Functions
//@{
/** \brief Prefix increment of pointer (i.e. ++ptr).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* \post [<tt>this->get()!=NULL</tt>] <tt>this->get()</tt> is incremented by <tt>1</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>this->lowerOffset()</tt> is decremented by <tt>1</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>this->upperOffset()</tt> is decremented by <tt>1</tt>
*/
inline ArrayRCP<T>& operator++();
/** \brief Postfix increment of pointer (i.e. ptr++).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* \post <tt>this->get()</tt> is incremented by <tt>1</tt>
* \post <tt>this->lowerOffset()</tt> is decremented by <tt>1</tt>
* \post <tt>this->upperOffset()</tt> is decremented by <tt>1</tt>
*/
inline ArrayRCP<T> operator++(int);
/** \brief Prefix decrement of pointer (i.e. --ptr).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* \post [<tt>this->get()!=NULL</tt>] <tt>this->get()</tt> is decremented by <tt>1</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>this->lowerOffset()</tt> is incremented by <tt>1</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>this->upperOffset()</tt> is incremented by <tt>1</tt>
*/
inline ArrayRCP<T>& operator--();
/** \brief Postfix decrement of pointer (i.e. ptr--).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* \post <tt>this->get()</tt> is decremented by <tt>1</tt>
* \post <tt>this->lowerOffset()</tt> is incremented by <tt>1</tt>
* \post <tt>this->upperOffset()</tt> is incremented by <tt>1</tt>
*/
inline ArrayRCP<T> operator--(int);
/** \brief Pointer integer increment (i.e. ptr+=offset).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* \post [<tt>this->get()!=NULL</tt>] <tt>this->get()</tt> is incremented by <tt>offset</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>this->lowerOffset()</tt> is decremented by <tt>offset</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>this->upperOffset()</tt> is decremented by <tt>offset</tt>
*/
inline ArrayRCP<T>& operator+=(size_type offset);
/** \brief Pointer integer increment (i.e. ptr-=offset).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* \post [<tt>this->get()!=NULL</tt>] <tt>this->get()</tt> is decremented by <tt>offset</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>this->lowerOffset()</tt> is incremented by <tt>offset</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>this->upperOffset()</tt> is incremented by <tt>offset</tt>
*/
inline ArrayRCP<T>& operator-=(size_type offset);
/** \brief Pointer integer increment (i.e. ptr+offset).
*
* Returns a null pointer if <tt>this->get() == NULL</tt>.
*
* \post [<tt>this->get()!=NULL</tt>] <tt>return->get() == this->get() + offset</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>return->lowerOffset() == this->lowerOffset() - offset</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>return->upperOffset() == this->upperOffset() - offset</tt>
*
* Note that since implicit conversion of <tt>ArrayRCP<T></tt>
* objects is not allowed that it does not help at all to make this function
* into a non-member function.
*/
inline ArrayRCP<T> operator+(size_type offset) const;
/** \brief Pointer integer decrement (i.e. ptr-offset).
*
* Returns a null pointer if <tt>this->get() == NULL</tt>.
*
* \post [<tt>this->get()!=NULL</tt>] <tt>return->get() == this->get() - offset</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>return->lowerOffset() == this->lowerOffset() + offset</tt>
* \post [<tt>this->get()!=NULL</tt>] <tt>return->upperOffset() == this->upperOffset() + offset</tt>
*
* Note that since implicit conversion of <tt>ArrayRCP<T></tt>
* objects is not allowed that it does not help at all to make this function
* into a non-member function.
*/
inline ArrayRCP<T> operator-(size_type offset) const;
//@}
//! @name Standard Container-Like Functions
//@{
/** \brief Return an iterator to beginning of the array of data.
*
* If <tt>HAVE_TEUCHOS_ARRAY_BOUNDSCHECK</tt> is defined then the iterator
* returned is an <tt>ArrayRCP<T></tt> object and all operations are
* checked at runtime. When <tt>HAVE_TEUCHOS_ARRAY_BOUNDSCHECK</tt> is not
* defined, the a raw pointer <tt>T*</tt> is returned for fast execution.
*
* \post [<tt>this->get()!=NULL</tt>] <tt>&*return == this->get()</tt>
* \post [<tt>this->get()==NULL</tt>] <tt>return == (null or NULL)</tt>
*/
inline iterator begin() const;
/** \brief Return an iterator to past the end of the array of data.
*
* If <tt>HAVE_TEUCHOS_ARRAY_BOUNDSCHECK</tt> is defined then the iterator
* returned is an <tt>ArrayRCP<T></tt> object and all operations are
* checked at runtime. When <tt>HAVE_TEUCHOS_ARRAY_BOUNDSCHECK</tt> is not
* defined, the a raw pointer <tt>T*</tt> is returned for fast execution.
*
* \post [<tt>this->get()!=NULL</tt>] <tt>&*end == this->get()+(this->upperOffset()+1)</tt>
* \post [<tt>this->get()==NULL</tt>] <tt>return == (null or NULL)</tt>
*/
inline iterator end() const;
//@}
//! @name ArrayRCP Views
//@{
/** \brief Return object for only const access to data.
*
* This function should only compile successfully if the type <tt>T</tt> is
* not already declared <tt>const</tt>!
*/
inline ArrayRCP<const T> getConst() const;
/** \brief Return a persisting view of a contiguous range of elements.
*
* \pre <tt>this->get() != NULL</tt>
* \pre <tt>this->lowerOffset() <= lowerOffset</tt>
* \pre <tt>lowerOffset + size - 1 <= this->upperOffset()</tt>
*
* \post <tt>return->get() == this->get() + lowerOffset</tt>
* \post <tt>return->lowerOffset() == 0</tt>
* \post <tt>return->upperOffset() == size-1</tt>
*
* \note A <tt>size==0</tt> view of even a null ArrayRCP is allowed.
* It returns a <tt>null</tt> view in that case.
*/
inline ArrayRCP<T> persistingView( size_type lowerOffset, size_type size ) const;
//@}
//! @name Size and extent query functions
//@{
/** \brief Return the lower offset to valid data. */
inline size_type lowerOffset() const;
/** \brief Return the upper offset to valid data. */
inline size_type upperOffset() const;
/// \brief The total number of entries in the array.
///
/// <tt>x.upperOffset() - x.lowerOffset() + 1 == x.size()</tt> for
/// any ArrayRCP x.
inline size_type size() const;
//@}
//! @name ArrayView views
//@{
/** \brief Return a nonpersisting view of a contiguous range of elements.
*
* \pre <tt>this->get() != NULL</tt>
* \pre <tt>this->lowerOffset() <= lowerOffset</tt>
* \pre <tt>lowerOffset + size - 1 <= this->upperOffset()</tt>
*
* \post <tt>return->get() == this->get() + lowerOffset</tt>
* \post <tt>return->lowerOffset() == 0</tt>
* \post <tt>return->upperOffset() == size-1</tt>
*
* \note A <tt>size==0</tt> view of even a null ArrayRCP is allowed.
* It returns a <tt>null</tt> view in that case.
*/
inline ArrayView<T> view( size_type lowerOffset, size_type size ) const;
/** \brief Return a nonpersisting view of a contiguous range of elements.
*
* This is equivalent to calling <tt>view (offset, size)</tt>.
*/
inline ArrayView<T> operator()( size_type lowerOffset, size_type size ) const;
/** \brief Return a nonpersisting view of <tt>*this</tt>.
*
* \note This will return a null ArrayView if <tt>this->size() == 0</tt>.
*/
inline ArrayView<T> operator()() const;
//@}
//! @name Implicit conversions
//@{
/// \brief Convert from ArrayRCP<T> to ArrayRCP<const T>.
///
/// \note This conversion operator does not exist if T is already a
/// const type (that is, if T is <tt>const T'</tt> for some type
/// <tt>T'</tt>). In that case, the assignment operator and copy
/// constructor achieve the same syntactic effect.
inline operator ArrayRCP<const T>() const;
//@}
//! @name std::vector like and other misc functions
//@{
/** \brief Resize and assign n elements of val.
*
* \postconditions <tt>size() == n</tt>
*/
inline void assign(size_type n, const T &val);
/** \brief Resize and assign to iterator sequence [first, last)
*
* \postconditions <tt>size() == std::distance(first, last)</tt>
*
* This will not change the underlying pointer array if the size does not
* change.
*/
template<class Iter>
inline void assign(Iter first, Iter last);
/** \brief Deep copy the elements from one ArrayView object into this
* object.
*
* This is equivalent to calling <tt>assign (av.begin (), av.end ())</tt>
*/
inline void deepCopy(const ArrayView<const T>& av);
//! Resize and append new elements if necessary.
inline void resize(const size_type n, const T &val = T());
/** \brief Resize to zero.
*
* \postconditions <tt>size()==0</tt>
*/
inline void clear();
//@}
//! @name Reference counting
//@{
/** \brief Strength of the pointer.
*
* Return values:<ul>
* <li><tt>RCP_STRONG</tt>: Underlying reference-counted object will be deleted
* when <tt>*this</tt> is destroyed if <tt>strong_count()==1</tt>.
* <li><tt>RCP_WEAK</tt>: Underlying reference-counted object will not be deleted
* when <tt>*this</tt> is destroyed if <tt>strong_count() > 0</tt>.
* <li><tt>RCP_STRENGTH_INVALID</tt>: <tt>*this</tt> is not strong or weak but
* is null.
* </ul>
*/
inline ERCPStrength strength() const;
/** \brief Return whether the underlying object pointer is still valid.
*
* The underlying object will not be valid if the strong count has
* gone to zero but the weak count has not.
*
* NOTE: Null is a valid object pointer. If you want to know if there is a
* non-null object and it is valid then <tt>!is_null() &&
* is_valid_ptr()</tt> will be <tt>true</tt>.
*/
inline bool is_valid_ptr() const;
/** \brief Return the number of active <tt>RCP<></tt> objects that have a
* "strong" reference to the underlying reference-counted object.
*
* \return If <tt>this->get() == NULL</tt> then this function returns 0.
*/
inline int strong_count() const;
/** \brief Return the number of active <tt>RCP<></tt> objects that have a
* "weak" reference to the underlying reference-counted object.
*
* \return If <tt>this->get() == NULL</tt> then this function returns 0.
*/
inline int weak_count() const;
/** \brief Total count (strong_count() + weak_count()). */
inline int total_count() const;
/** \brief Give <tt>this</tt> and other <tt>ArrayRCP<></tt> objects
* ownership of the underlying referenced array to delete it.
*
* See <tt>~ArrayRCP()</tt> above. This function does nothing if
* <tt>this->get() == NULL</tt>.
*
* <b>Postconditions:</b><ul>
* <li> If <tt>this->get() == NULL</tt> then
* <ul>
* <li><tt>this->has_ownership() == false</tt> (always!).
* </ul>
* <li> else
* <ul>
* <li><tt>this->has_ownership() == true</tt>
* </ul>
* </ul>
*/
inline void set_has_ownership();
/** \brief Returns true if <tt>this</tt> has ownership of object pointed to
* by <tt>this->get()</tt> in order to deallocate it.
*
* See the above documentation for the destructor.
*
* \return If this->get() <tt>== NULL</tt> then this function always returns
* <tt>false</tt>. Otherwise the value returned from this function depends
* on which function was called most recently, if any;
* <tt>set_has_ownership()</tt> (<tt>true</tt>) or <tt>release()</tt>
* (<tt>false</tt>).
*/
inline bool has_ownership() const;
/** \brief Release the ownership of the underlying array.
*
* After this function is called then the client is responsible for deleting
* the returned pointer no matter how many <tt>ref_count_ptr<T></tt> objects
* have a reference to it. If <tt>this-></tt>get() <tt>== NULL</tt>, then
* this call is meaningless.
*
* Note that this function does not have the exact same semantics as does
* <tt>auto_ptr<T>::release()</tt>. In <tt>auto_ptr<T>::release()</tt>,
* <tt>this</tt> is set to <tt>NULL</tt> while here in ArrayRCP<T>::
* release() only an ownership flag is set and <tt>this</tt> still points to
* the same array. It would be difficult to duplicate the behavior of
* <tt>auto_ptr<T>::release()</tt> for this class.
*
* <b>Postconditions:</b><ul>
* <li><tt>this->has_ownership() == false</tt>
* </ul>
*
* \returns Returns the value of <tt>this->get()</tt>
*/
inline T* release();
/** \brief Create a new weak reference from another (strong) reference.
*
* A "weak" reference gives access to the array, without
* incrementing its (strong) reference count. This lets you have
* access to the array, without affecting when it gets deallocated.
*
* \pre <tt>returnVal.is_valid_ptr()==true</tt>
*
* \post <tt>returnVal.get() == this->get()</tt>
* \post <tt>returnVal.strong_count() == this->strong_count()</tt>
* \post <tt>returnVal.weak_count() == this->weak_count()+1</tt>
* \post <tt>returnVal.strength() == RCP_WEAK</tt>
* \post <tt>returnVal.has_ownership() == this->has_ownership()</tt>
*/
inline ArrayRCP<T> create_weak() const;
/** \brief Create a new strong RCP object from another (weak) RCP object.
*
* A "weak" reference gives access to the array, without
* incrementing its (strong) reference count. This method lets you
* "promote" a weak reference into a strong reference. If the array
* has been deallocated, the returned reference is null.
*
* \pre <tt>returnVal.is_valid_ptr()==true</tt>
*
* \post <tt>returnVal.get() == this->get()</tt>
* \post <tt>returnVal.strong_count() == this->strong_count()+1</tt>
* \post <tt>returnVal.weak_count() == this->weak_count()</tt>
* \post <tt>returnVal.strength() == RCP_STRONG</tt>
* \post <tt>returnVal.has_ownership() == this->has_ownership()</tt>
*/
inline ArrayRCP<T> create_strong() const;
/** \brief Returns true if the smart pointers share the same underlying reference-counted object.
*
* This method does more than just check if <tt>this->get() == r_ptr.get()</tt>.
* It also checks to see if the underlying reference counting machinery is the
* same.
*/
template<class T2>
inline bool shares_resource(const ArrayRCP<T2>& r_ptr) const;
//@}
//! @name Assertion Functions.
//@{
/** \brief Throws <tt>NullReferenceError</tt> if <tt>this->get()==NULL</tt>,
* otherwise returns reference to <tt>*this</tt>.
*/
inline const ArrayRCP<T>& assert_not_null() const;
/** \brief Throws <tt>NullReferenceError</tt> if <tt>this->get()==NULL</tt>
* or<tt>this->get()!=NULL</tt>, throws <tt>RangeError</tt> if
* <tt>(lowerOffset < this->lowerOffset() || this->upperOffset() <
* upperOffset</tt>, otherwise returns reference to <tt>*this</tt>
*/
inline const ArrayRCP<T>& assert_in_range( size_type lowerOffset, size_type size ) const;
/** \brief If the object pointer is non-null, assert that it is still valid.
*
* If <tt>is_null()==false && strong_count()==0</tt>, this will throw
* <tt>DanglingReferenceErorr</tt> with a great error message.
*
* If <tt>is_null()==true</tt>, then this will not throw any exception.
*
* In this context, null is a valid object.
*/
inline const ArrayRCP<T>& assert_valid_ptr() const;
//@}
/** \name Deprecated */
//@{
/** \brief Returns <tt>strong_count()</tt> [deprecated]. */
inline TEUCHOS_DEPRECATED int count() const;
//@}
private:
//! Raw pointer to the array; NULL if this array is null.
T *ptr_;
//! Reference-counting machinery.
RCPNodeHandle node_;
//! Lower offset to the data; 0 if this array is null.
size_type lowerOffset_;
//! Upper offset to the data; -1 if this array is null.
size_type upperOffset_;
inline void debug_assert_not_null () const {
#ifdef TEUCHOS_REFCOUNTPTR_ASSERT_NONNULL
assert_not_null();
#endif
}
inline void
debug_assert_in_range (size_type lowerOffset_in,
size_type size_in) const
{
(void) lowerOffset_in;
(void) size_in;
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
assert_in_range (lowerOffset_in, size_in);
#endif
}
inline void debug_assert_valid_ptr() const {
#ifdef TEUCHOS_DEBUG
assert_valid_ptr ();
#endif
}
public:
#ifndef DOXYGEN_COMPILE
// These constructors should be private but I have not had good luck making
// this portable (i.e. using friendship etc.) in the past
// This is a very bad breach of encapsulation that is needed since MS VC++
// 5.0 will not allow me to declare template functions as friends.
ArrayRCP( T* p, size_type lowerOffset, size_type size,
const RCPNodeHandle& node );
T* access_private_ptr() const;
RCPNodeHandle& nonconst_access_private_node();
const RCPNodeHandle& access_private_node() const;
#endif
};
/** \brief Partial specialization of ArrayRCP for const T.
*
* The main documentation for ArrayRCP explains why this class needs a
* partial specialization for const types.
*
* \ingroup teuchos_mem_mng_grp
*/
template<class T>
class ArrayRCP<const T> {
public:
typedef Teuchos_Ordinal Ordinal;
typedef Ordinal size_type;
typedef Ordinal difference_type;
typedef std::random_access_iterator_tag iterator_category;
typedef const T* iterator_type;
typedef const T value_type;
typedef const T& reference;
typedef const T& const_reference;
typedef const T* pointer;
typedef const T* const_pointer;
typedef const T element_type;
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
typedef ArrayRCP<const T> iterator;
typedef ArrayRCP<const T> const_iterator;
#else
typedef const T* iterator;
typedef const T* const_iterator;
#endif
inline ArrayRCP (ENull null_arg = null);
inline ArrayRCP (const T* p, size_type lowerOffset,
size_type size, bool has_ownership,
const ERCPNodeLookup rcpNodeLookup = RCP_ENABLE_NODE_LOOKUP);
template<class Dealloc_T>
inline ArrayRCP (const T* p, size_type lowerOffset, size_type size,
Dealloc_T dealloc, bool has_ownership);
inline explicit ArrayRCP (size_type size, const T& val = T ());
inline ArrayRCP (const ArrayRCP<const T>& r_ptr);
inline ~ArrayRCP();
inline ArrayRCP<const T>& operator= (const ArrayRCP<const T>& r_ptr);
inline bool is_null() const;
inline const T* operator->() const;
inline const T& operator*() const;
inline const T* get() const;
inline const T* getRawPtr() const;
inline const T& operator[] (size_type offset) const;
inline ArrayRCP<const T>& operator++ ();
inline ArrayRCP<const T> operator++ (int);
inline ArrayRCP<const T>& operator-- ();
inline ArrayRCP<const T> operator-- (int);
inline ArrayRCP<const T>& operator+= (size_type offset);
inline ArrayRCP<const T>& operator-= (size_type offset);
inline ArrayRCP<const T> operator+ (size_type offset) const;
inline ArrayRCP<const T> operator- (size_type offset) const;
inline iterator begin() const;
inline iterator end() const;
/** \brief Return const reference to the array.
*
* This method has a trivial implementation for the <tt>const T</tt>
* specialization of ArrayRCP.
*/
inline ArrayRCP<const T> getConst () const;
inline ArrayRCP<const T> persistingView (size_type lowerOffset, size_type size) const;
inline size_type lowerOffset() const;
inline size_type upperOffset() const;
inline size_type size() const;
inline ArrayView<const T> view (size_type lowerOffset, size_type size) const;
inline ArrayView<const T> operator() (size_type lowerOffset, size_type size) const;
inline ArrayView<const T> operator() () const;
inline void resize (const size_type n, const T& val = T ());
inline void clear ();
inline ERCPStrength strength() const;
inline bool is_valid_ptr() const;
inline int strong_count() const;
inline int weak_count() const;
inline int total_count() const;
inline void set_has_ownership();
inline bool has_ownership() const;
inline const T* release();
inline ArrayRCP<const T> create_weak() const;
inline ArrayRCP<const T> create_strong() const;
template<class T2>
inline bool shares_resource (const ArrayRCP<T2>& r_ptr) const;
inline const ArrayRCP<const T>& assert_not_null () const;
inline const ArrayRCP<const T>& assert_in_range (size_type lowerOffset, size_type size) const;
inline const ArrayRCP<const T>& assert_valid_ptr() const;
inline TEUCHOS_DEPRECATED int count() const;
private:
const T* ptr_; // NULL if this pointer is null
RCPNodeHandle node_; // NULL if this pointer is null
size_type lowerOffset_; // 0 if this pointer is null
size_type upperOffset_; // -1 if this pointer is null
inline void debug_assert_not_null() const {
#ifdef TEUCHOS_REFCOUNTPTR_ASSERT_NONNULL
assert_not_null ();
#endif
}
inline void
debug_assert_in_range (size_type lowerOffset_in,
size_type size_in) const
{
(void) lowerOffset_in; (void) size_in;
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
assert_in_range (lowerOffset_in, size_in);
#endif
}
inline void debug_assert_valid_ptr() const {
#ifdef TEUCHOS_DEBUG
assert_valid_ptr ();
#endif
}
public:
#ifndef DOXYGEN_COMPILE
// These constructors should be private but I have not had good luck making
// this portable (i.e. using friendship etc.) in the past
// This is a very bad breach of encapsulation that is needed since MS VC++
// 5.0 will not allow me to declare template functions as friends.
ArrayRCP (const T* p, size_type lowerOffset,
size_type size, const RCPNodeHandle& node);
const T* access_private_ptr() const;
RCPNodeHandle& nonconst_access_private_node();
const RCPNodeHandle& access_private_node() const;
#endif
};
/** \brief Full specialization of ArrayRCP for T = void.
*
* The generic implementation of ArrayRCP<T> does not make syntactic
* sense for T = void, because the reference and const_reference
* typedefs would resolve to the invalid "types" <tt>void&</tt> resp.
* <tt>const void&</tt>. This full template specialization
* ArrayRCP<void> neglects these invalid "types."
*/
template<>
class ArrayRCP<void> {
public:
typedef Teuchos_Ordinal Ordinal;
typedef Ordinal size_type;
typedef Ordinal difference_type;
typedef std::random_access_iterator_tag iterator_category;
typedef void* iterator_type;
typedef void value_type;
/** \brief . */
// typedef T& reference; // these are not valid
/** \brief . */
// typedef const T& const_reference; // these are not valid
typedef void* pointer;
typedef void* const_pointer;
typedef void element_type;
//! Default constructor; thows an exception.
inline ArrayRCP ();
};
/** \brief Dummy specialization of ArrayRCP<const void>.
*
* See ArrayRCP<void> for details.
*/
template<>
class ArrayRCP<const void> {
public:
typedef Teuchos_Ordinal Ordinal;
typedef Ordinal size_type;
typedef Ordinal difference_type;
typedef std::random_access_iterator_tag iterator_category;
typedef const void* iterator_type;
typedef const void value_type;
/** \brief . */
// typedef T& reference; // these are not valid
/** \brief . */
// typedef const T& const_reference; // these are not valid
typedef const void* pointer;
typedef const void* const_pointer;
typedef const void element_type;
//! Default constructor; thows an exception.
inline ArrayRCP ();
};
// 2008/09/22: rabartl: NOTE: I removed the TypeNameTraits<ArrayRCP<T> >
// specialization since I want to be able to print the type name of an
// ArrayRCP that does not have the type T fully defined!
/** \brief Traits specialization for ArrayRCP.
*
* \relates ArrayRCP
*/
template<typename T>
class NullIteratorTraits<ArrayRCP<T> > {
public:
static ArrayRCP<T> getNull() { return null; }
};
/** \brief Wraps a preallocated array of data with the assumption to call the
* array version of delete.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcp(
T* p,
typename ArrayRCP<T>::size_type lowerOffset,
typename ArrayRCP<T>::size_type size,
bool owns_mem = true
);
/** \brief Wraps a preallocated array of data and uses a templated
* deallocation strategy object to define deletion .
*
* \relates ArrayRCP
*/
template<class T, class Dealloc_T>
ArrayRCP<T> arcp(
T* p,
typename ArrayRCP<T>::size_type lowerOffset,
typename ArrayRCP<T>::size_type size,
Dealloc_T dealloc, bool owns_mem
);
/** \brief Allocate a new array just given a dimension.
*
* <b>Warning!</b> The memory is allocated using <tt>new T[size]</tt> and is
* *not* initialized (unless there is a default constructor for a user-defined
* type).
*
* When called with 'size == 0' it returns a null ArrayRCP object.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcp( typename ArrayRCP<T>::size_type size );
/** \brief Allocate a new ArrayRCP object with a new RCPNode with memory
* pointing to the initial node.
*
* The purpose of this function is to create a new "handle" to the array of
* memory with its own seprate reference count. The new ArrayRCP object will
* have a new RCPNodeTmpl object that has a copy of the input ArrayRCP object
* embedded in it. This maintains the correct reference counting behaviors
* but now gives a private count. One would want to use arcpCloneNode(...)
* whenever it is important to keep a private reference count which is needed
* for some types of use cases.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcpCloneNode( const ArrayRCP<T> &a );
/** \brief Allocate a new array by cloning data from an input array view.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcpClone( const ArrayView<const T> &v );
/** \brief Create an ArrayRCP with and also put in an embedded object.
*
* In this case the embedded object is destroyed (by setting to Embedded())
* before the object at <tt>*p</tt> is destroyed.
*
* The embedded object can be extracted using <tt>getEmbeddedObj()</tt> and
* <tt>getNonconstEmbeddedObject()</tt>.
*
* \relates ArrayRCP
*/
template<class T, class Embedded>
ArrayRCP<T>
arcpWithEmbeddedObjPreDestroy(
T* p,
typename ArrayRCP<T>::size_type lowerOffset,
typename ArrayRCP<T>::size_type size,
const Embedded &embedded,
bool owns_mem = true
);
/** \brief Create an ArrayRCP with and also put in an embedded object.
*
* In this case the embedded object is destroyed (by setting to Embedded())
* after the object at <tt>*p</tt> is destroyed.
*
* The embedded object can be extracted using <tt>getEmbeddedObj()</tt> and
* <tt>getNonconstEmbeddedObject()</tt>.
*
* \relates ArrayRCP
*/
template<class T, class Embedded>
ArrayRCP<T>
arcpWithEmbeddedObjPostDestroy(
T* p,
typename ArrayRCP<T>::size_type lowerOffset,
typename ArrayRCP<T>::size_type size,
const Embedded &embedded,
bool owns_mem = true
);
/** \brief Create an ArrayRCP with and also put in an embedded object.
*
* This function should be called when it is not important when the embedded
* object is destroyed (by setting to Embedded()) with respect to when
* <tt>*p</tt> is destroyed.
*
* The embedded object can be extracted using <tt>getEmbeddedObj()</tt> and
* <tt>getNonconstEmbeddedObject()</tt>.
*
* \relates ArrayRCP
*/
template<class T, class Embedded>
ArrayRCP<T>
arcpWithEmbeddedObj(
T* p,
typename ArrayRCP<T>::size_type lowerOffset,
typename ArrayRCP<T>::size_type size,
const Embedded &embedded,
bool owns_mem = true
);
/** \brief Wrap an <tt>std::vector<T></tt> object as an
* <tt>ArrayRCP<T></tt> object.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcp( const RCP<std::vector<T> > &v );
/** \brief Wrap a <tt>const std::vector<T></tt> object as an
* <tt>ArrayRCP<const T></tt> object.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<const T> arcp( const RCP<const std::vector<T> > &v );
/** \brief Get an ArrayRCP object out of an ArrayView object.
*
* This conversion is required and proper in certain types of situations. In a
* debug build, a dangling reference will be detected with an exception being
* thrown.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcpFromArrayView(const ArrayView<T> &av);
/** \brief Get an <tt>std::vector<T></tt> object out of an
* <tt>ArrayRCP<T></tt> object that was created using the
* <tt>arcp()</tt> function above to wrap the std::vector in the first
* place..
*
* \relates ArrayRCP
*/
template<class T>
RCP<std::vector<T> > get_std_vector( const ArrayRCP<T> &ptr );
/** \brief Get a <tt>const std::vector<T></tt> object out of an
* <tt>ArrayRCP<const T></tt> object that was created using the
* <tt>arcp()</tt> above to wrap the std::vector in the first place.
*
* \relates ArrayRCP
*/
template<class T>
RCP<const std::vector<T> > get_std_vector( const ArrayRCP<const T> &ptr );
/** \brief Returns true if <tt>p.get()==NULL</tt>.
*
* \relates ArrayRCP
*/
template<class T>
bool is_null( const ArrayRCP<T> &p );
/** \brief Returns true if <tt>p.get()!=NULL</tt>.
*
* \relates ArrayRCP
*/
template<class T>
bool nonnull( const ArrayRCP<T> &p );
/** \brief Returns true if <tt>p.get()==NULL</tt>.
*
* \relates ArrayRCP
*/
template<class T>
bool operator==( const ArrayRCP<T> &p, ENull );
/** \brief Returns true if <tt>p.get()!=NULL</tt>.
*
* \relates ArrayRCP
*/
template<class T>
bool operator!=( const ArrayRCP<T> &p, ENull );
/** \brief Compare two ArrayRCP objects for equality (by pointers).
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator==( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief Compare two ArrayRCP objects for inequality (by pointers).
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator!=( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief Compare the two ArrayRCP objects' pointers using <.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator<( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief Compare the two ArrayRCP objects' pointers using <=.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator<=( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief Compare the two ArrayRCP objects' pointers using >.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator>( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief Compare the two ArrayRCP objects' pointers using >=.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator>=( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief Return the difference of two ArrayRCP objects.
*
* The difference of two ArrayRCP objects is the difference of their
* two pointers.
*
* \relates ArrayRCP
*/
template<class T>
typename ArrayRCP<T>::difference_type
operator-( const ArrayRCP<T> &p1, const ArrayRCP<T> &p2 );
/** \brief Const cast of underlying <tt>ArrayRCP</tt> type from <tt>const T*</tt>
* to <tt>T*</tt>.
*
* The function will compile only if the following code compiles:
* \code
* T2* p2 = const_cast<T2*> (p1.get ());
* \endcode
*
* \relates ArrayRCP
*/
template<class T2, class T1>
inline
ArrayRCP<T2> arcp_const_cast(const ArrayRCP<T1>& p1);
/** \brief Reinterpret cast of underlying <tt>ArrayRCP</tt> type from
* <tt>T1*</tt> to <tt>T2*</tt>.
*
* The function will compile only if the following code compiles:
* \code
* T2* p2 = reinterpret_cast<T2*> (p1.get ());
* \endcode
*
* \warning This function is only for advanced users.
* \relates ArrayRCP
*/
template<class T2, class T1>
ArrayRCP<T2> arcp_reinterpret_cast(const ArrayRCP<T1>& p1);
/** \brief Reinterpret cast of underlying <tt>ArrayRCP</tt> type from
* <tt>T1*</tt> to <tt>T2*</tt> where <tt>T2</tt> is a non-POD
* (non-plain-old-data).
*
* The function will compile only if (<tt>reinterpret_cast<T2*>(p1.get());</tt>) compiles.
*
* This function is used to reinterpret-cast an array of
* plain-old-data (POD) (e.g. <tt>int</tt> or <tt>char</tt>) into an
* array of objects of type T2, which is not a plain-old-data type.
* The constructors will be called on each of the memory locations
* with placement new and the destructors will get called when the
* last ArrayRCP goes away.
*
* \warning This function is only for advanced users.
* \relates ArrayRCP
*/
template<class T2, class T1>
ArrayRCP<T2> arcp_reinterpret_cast_nonpod(const ArrayRCP<T1>& p1, const T2& val=T2());
/** \brief Implicit case the underlying <tt>ArrayRCP</tt> type from
* <tt>T1*</tt> to <tt>T2*</tt>.
*
* The function will compile only if (<tt>T2 *p = p1.get();</tt>) compiles.
*
* <b>Warning!</b> Do not use this function unless you absolutely know what you
* are doing. While implicit casting of pointers to single objects is usually
* 100% safe, implicit casting pointers to arrays of objects can be very
* dangerous. One std::exception that is always safe is when you are implicit
* casting an array of pointers to non-const objects to an array of const
* pointers to const objects. For example, the following implicit conversion
* from a array pointer objects <tt>aptr1</tt> of type
* <tt>ArrayRCP<T*></tt> to
\code
ArrayRCP<const T * const>
aptr2 = arcp_implicit_cast<const T * const>(ptr1);
\endcode
* is always legal and safe to do.
*
* \relates ArrayRCP
*/
template<class T2, class T1>
inline
ArrayRCP<T2> arcp_implicit_cast(const ArrayRCP<T1>& p1);
/** \brief Set extra data associated with a <tt>ArrayRCP</tt> object.
*
* \param extra_data [in] Data object that will be set (copied)
*
* \param name [in] The name given to the extra data. The value of
* <tt>name</tt> together with the data type <tt>T1</tt> of the extra data
* must be unique from any other such data or the other data will be
* overwritten.
*
* \param p [out] On output, will be updated with the input
* <tt>extra_data</tt>
*
* \param destroy_when [in] Determines when <tt>extra_data</tt> will be
* destroyed in relation to the underlying reference-counted object. If
* <tt>destroy_when==PRE_DESTROY</tt> then <tt>extra_data</tt> will be deleted
* before the underlying reference-counted object. If
* <tt>destroy_when==POST_DESTROY</tt> (the default) then <tt>extra_data</tt>
* will be deleted after the underlying reference-counted object.
*
* \param force_unique [in] Determines if this type and name pair must be
* unique in which case if an object with this same type and name already
* exists, then an std::exception will be thrown. The default is
* <tt>true</tt> for safety.
*
* If there is a call to this function with the same type of extra
* data <tt>T1</tt> and same arguments <tt>p</tt> and <tt>name</tt>
* has already been made, then the current piece of extra data already
* set will be overwritten with <tt>extra_data</tt>. However, if the
* type of the extra data <tt>T1</tt> is different, then the extra
* data can be added and not overwrite existing extra data. This
* means that extra data is keyed on both the type and name. This
* helps to minimize the chance that clients will unexpectedly
* overwrite data by accident.
*
* When the last <tt>RefcountPtr</tt> object is removed and the
* reference-count node is deleted, then objects are deleted in the following
* order: (1) All of the extra data that where added with
* <tt>destroy_when==PRE_DESTROY</tt> are first, (2) then the underlying
* reference-counted object is deleted, and (3) the rest of the extra data
* that was added with <tt>destroy_when==PRE_DESTROY</tt> is then deleted.
* The order in which the objects are destroyed is not guaranteed. Therefore,
* clients should be careful not to add extra data that has deletion
* dependencies (instead consider using nested ArrayRCP objects as extra
* data which will guarantee the order of deletion).
*
* <b>Preconditions:</b><ul>
* <li><tt>p->get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* <li> If this function has already been called with the same template
* type <tt>T1</tt> for <tt>extra_data</tt> and the same std::string <tt>name</tt>
* and <tt>force_unique==true</tt>, then an <tt>std::invalid_argument</tt>
* std::exception will be thrown.
* </ul>
*
* Note, this function is made a non-member function to be consistent
* with the non-member <tt>get_extra_data()</tt> functions.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
void set_extra_data(
const T1 &extra_data, const std::string& name,
const Ptr<ArrayRCP<T2> > &p, EPrePostDestruction destroy_when = POST_DESTROY,
bool force_unique = true );
/** \brief Get a non-const reference to extra data associated with a <tt>ArrayRCP</tt> object.
*
* \param p [in] Smart pointer object that extra data is being extracted from.
*
* \param name [in] Name of the extra data.
*
* \returns Returns a non-const reference to the extra_data object.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* <li><tt>name</tt> and <tt>T1</tt> must have been used in a previous
* call to <tt>set_extra_data()</tt> (throws <tt>std::invalid_argument</tt>).
* </ul>
*
* Note, this function must be a non-member function since the client
* must manually select the first template argument.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
T1& get_extra_data( ArrayRCP<T2>& p, const std::string& name );
/** \brief Get a const reference to extra data associated with a <tt>ArrayRCP</tt> object.
*
* \param p [in] Smart pointer object that extra data is being extracted from.
*
* \param name [in] Name of the extra data.
*
* \returns Returns a const reference to the extra_data object.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* <li><tt>name</tt> and <tt>T1</tt> must have been used in a previous
* call to <tt>set_extra_data()</tt> (throws <tt>std::invalid_argument</tt>).
* </ul>
*
* Note, this function must be a non-member function since the client
* must manually select the first template argument.
*
* Also note that this const version is a false sense of security
* since a client can always copy a const <tt>ArrayRCP</tt> object
* into a non-const object and then use the non-const version to
* change the data. However, its presence will help to avoid some
* types of accidental changes to this extra data.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
const T1& get_extra_data( const ArrayRCP<T2>& p, const std::string& name );
/** \brief Get a pointer to non-const extra data (if it exists) associated
* with a <tt>ArrayRCP</tt> object.
*
* \param p [in] Smart pointer object that extra data is being extracted from.
*
* \param name [in] Name of the extra data.
*
* \returns Returns a non-const pointer to the extra_data object.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* </ul>
*
* <b>Postconditions:</b><ul>
* <li> If <tt>name</tt> and <tt>T1</tt> have been used in a previous
* call to <tt>set_extra_data()</tt> then <tt>return !=NULL</tt>
* and otherwise <tt>return == NULL</tt>.
* </ul>
*
* Note, this function must be a non-member function since the client
* must manually select the first template argument.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
T1* get_optional_extra_data( ArrayRCP<T2>& p, const std::string& name );
/** \brief Get a pointer to const extra data (if it exists) associated with a <tt>ArrayRCP</tt> object.
*
* \param p [in] Smart pointer object that extra data is being extracted from.
*
* \param name [in] Name of the extra data.
*
* \returns Returns a const pointer to the extra_data object if it exists.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* </ul>
*
* <b>Postconditions:</b><ul>
* <li> If <tt>name</tt> and <tt>T1</tt> have been used in a previous
* call to <tt>set_extra_data()</tt> then <tt>return !=NULL</tt>
* and otherwise <tt>return == NULL</tt>.
* </ul>
*
* Note, this function must be a non-member function since the client
* must manually select the first template argument.
*
* Also note that this const version is a false sense of security
* since a client can always copy a const <tt>ArrayRCP</tt> object
* into a non-const object and then use the non-const version to
* change the data. However, its presence will help to avoid some
* types of accidental changes to this extra data.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
const T1* get_optional_extra_data( const ArrayRCP<T2>& p, const std::string& name );
/** \brief Return a non-<tt>const</tt> reference to the underlying deallocator object.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* <li> The deallocator object type used to construct <tt>p</tt> is same as <tt>Dealloc_T</tt>
* (throws <tt>NullReferenceError</tt>)
* </ul>
*
* \relates ArrayRCP
*/
template<class Dealloc_T, class T>
Dealloc_T& get_nonconst_dealloc( const ArrayRCP<T>& p );
/** \brief Return a <tt>const</tt> reference to the underlying deallocator object.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* <li> The deallocator object type used to construct <tt>p</tt> is same as <tt>Dealloc_T</tt>
* (throws <tt>NullReferenceError</tt>)
* </ul>
*
* Note that the <tt>const</tt> version of this function provides only
* a very ineffective attempt to avoid accidental changes to the
* deallocation object. A client can always just create a new
* non-<tt>const</tt> <tt>ArrayRCP<T></tt> object from any
* <tt>const</tt> <tt>ArrayRCP<T></tt> object and then call the
* non-<tt>const</tt> version of this function.
*
* \relates ArrayRCP
*/
template<class Dealloc_T, class T>
const Dealloc_T& get_dealloc( const ArrayRCP<T>& p );
/** \brief Return a pointer to the underlying non-<tt>const</tt> deallocator
* object if it exists.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* </ul>
*
* <b>Postconditions:</b><ul>
* <li> If the deallocator object type used to construct <tt>p</tt> is same as <tt>Dealloc_T</tt>
* then <tt>return!=NULL</tt>, otherwise <tt>return==NULL</tt>
* </ul>
*
* \relates ArrayRCP
*/
template<class Dealloc_T, class T>
const Dealloc_T* get_optional_dealloc( const ArrayRCP<T>& p );
/** \brief Return a pointer to the underlying <tt>const</tt> deallocator
* object if it exists.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* </ul>
*
* <b>Postconditions:</b><ul>
* <li> If the deallocator object type used to construct <tt>p</tt> is same as <tt>Dealloc_T</tt>
* then <tt>return!=NULL</tt>, otherwise <tt>return==NULL</tt>
* </ul>
*
* Note that the <tt>const</tt> version of this function provides only
* a very ineffective attempt to avoid accidental changes to the
* deallocation object. A client can always just create a new
* non-<tt>const</tt> <tt>ArrayRCP<T></tt> object from any
* <tt>const</tt> <tt>ArrayRCP<T></tt> object and then call the
* non-<tt>const</tt> version of this function.
*
* \relates ArrayRCP
*/
template<class Dealloc_T, class T>
Dealloc_T* get_optional_nonconst_dealloc( const ArrayRCP<T>& p );
/** \brief Get a const reference to an embedded object that was set by calling
* <tt>arcpWithEmbeddedObjPreDestroy()</tt>,
* <tt>arcpWithEmbeddedObjPostDestory()</tt>, or <tt>arcpWithEmbeddedObj()</tt>.
*
* \relates ArrayRCP
*/
template<class TOrig, class Embedded, class T>
const Embedded& getEmbeddedObj( const ArrayRCP<T>& p );
/** \brief Get a const reference to an embedded object that was set by calling
* <tt>arcpWithEmbeddedObjPreDestroy()</tt>,
* <tt>arcpWithEmbeddedObjPostDestory()</tt>, or <tt>arcpWithEmbeddedObj()</tt>.
*
* \relates ArrayRCP
*/
template<class TOrig, class Embedded, class T>
Embedded& getNonconstEmbeddedObj( const ArrayRCP<T>& p );
/** \brief Output stream inserter.
*
* The implementation of this function just print pointer addresses and
* therefore puts not restrictions on the data types involved.
*
* \relates ArrayRCP
*/
template<class T>
std::ostream& operator<<( std::ostream& out, const ArrayRCP<T>& p );
} // end namespace Teuchos
#endif // TEUCHOS_ARRAY_RCP_DECL_HPP
|