This file is indexed.

/usr/include/trilinos/shylu_internal_gmres.h is in libtrilinos-shylu-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
//*****************************************************************
// Iterative template routine -- GMRES
//
// GMRES solves the unsymmetric linear system Ax = b using the
// Generalized Minimum Residual method
//
// GMRES follows the algorithm described on p. 20 of the
// SIAM Templates book.
//
// The return value indicates convergence within max_iter (input)
// iterations (0), or no convergence within max_iter iterations (1).
//
// Upon successful return, output arguments have the following values:
//
//        x  --  approximate solution to Ax = b
// max_iter  --  the number of iterations performed before the
//               tolerance was reached
//      tol  --  the residual after the final iteration
//
//*****************************************************************

#ifndef IQR_GMRES_H
#define IQR_GMRES_H

#include <cmath>
#include <iostream>

#include <shylu_internal_gmres_tools.h>

namespace IQR
{

struct IdPreconditioner
{
    void ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y)
    {
        Y = X;
    }
};

//! Generate i-th Given rotation Gi. Note Qn= G0 * ... * Gn
template <typename Scalar>
void GeneratePlaneRotation(const Scalar &dx, const Scalar &dy, Scalar &cs,
                           Scalar &sn)
{
    if (dy == 0.0) {
        cs = 1.0;
        sn = 0.0;
    } else if (std::abs(dy) > std::abs(dx)) {
        Scalar temp = dx / dy;
        sn = 1.0 / std::sqrt( 1.0 + temp * temp );
        cs = temp * sn;
    } else {
        Scalar temp = dy / dx;
        cs = 1.0 / std::sqrt( 1.0 + temp * temp );
        sn = temp * cs;
    }
}

//! Apply i-th Given rotation Gi. Note Qn= G0 * ... * Gn
//! Gi = \left( \begin{array}[ccc] I 0 0
template <typename Scalar>
void ApplyPlaneRotation(Scalar &dx, Scalar &dy, const Scalar &cs,
                        const Scalar &sn)
{
    Scalar temp  =  cs * dx + sn * dy;
    dy = -sn * dx + cs * dy;
    dx = temp;
}


//! solving R_{k+1} y_{k+1} = bp and setting x = x + Q_{k+1} y_{k+1}
template < typename LocalMatrix, typename LocalVector, typename MultiVector >
void Update(MultiVector &x, const int k, const LocalMatrix &h,
            const LocalVector &s, const MultiVector &v)
{
    LocalVector y(s);

    // Backsolve:
    for (int i = k; i >= 0; i--) {
        y[i] /= h[i][i];
        for (int j = i - 1; j >= 0; j--) {
            y[j] -= h[j][i] * y[i];
        }
    }

    for (int j = 0; j <= k; j++) {
        x.Update(y[j], *v(j), 1.0);
    }
}

template < typename Operator, typename MultiVector, typename LeftPrec,
           typename RightPrec, typename GMRESManager, typename LocalVector,
           typename Scalar>
int GMRES(const Operator &A, MultiVector &x, const MultiVector &b,
          LeftPrec *L, RightPrec *M, GMRESManager &G, int &max_iter,
          Scalar &tol)
{
    // Storing a reference to the parallel map
  //auto& b.Map() = b.Map();
  //int myPID = b.Map().Comm().MyPID();

    Scalar resid;
    int i(0), j(1), k(0);
    // The following initial guess was wrong! Indeed it was altering the whole QR factorization
    // initial guess from previous solves : compute x
    //M->ApplyInverse(b, x);

    LocalVector s(G.restart + 1);
    MultiVector w(b.Map(), 1, true);

    Scalar normb;
    L->ApplyInverse(b, w);
    w.Norm2(&normb);

    MultiVector t(b.Map(), 1, true);
    A.Apply(x, t);
    w.Update(1.0, b, -1.0, t, 0.0);

    MultiVector r(b.Map(), 1, true);
    L->ApplyInverse(w, r);
    Scalar beta;
    r.Norm2(&beta);

    if (normb == 0.0) {
        normb = 1;
    }

    if ((resid = beta / normb) <= tol) { // qui ho migliorato
        tol = resid;
        max_iter = 0;
        return 0;
    }

    while (j <= max_iter) {
        MultiVector* v0 = (*G.v)(0);
        v0->Update(1.0 / beta, r, 0.0);
        s.assign(G.restart + 1, 0.0);
        s[0] = beta;

        for (i = 0; i < G.restart && j <= max_iter; i++, j++) {
            M->ApplyInverse(*((*G.v)(i)), t);
            A.Apply(t, r);
            L->ApplyInverse(r, w);

            for (k = 0; k <= i; k++) {
                MultiVector* vk = (*G.v)(k);
                w.Dot(*vk, &(G.H[k][i]));
                w.Update(-G.H[k][i], *vk, 1.0);
            }
            w.Norm2(&(G.H[i + 1][i]));
            MultiVector* vi1 = (*G.v)(i + 1);
            // Set (*G.v)(i + 1) to w/||w||
            vi1->Scale(1.0 / G.H[i + 1][i], w);

            for (k = 0; k < i; k++) {
                ApplyPlaneRotation(G.H[k][i], G.H[k + 1][i], G.cs[k], G.sn[k]);
            }

      // Generate i-th Given rotation Gi. Note Qn= G0 * ... * Gn
            GeneratePlaneRotation(G.H[i][i], G.H[i + 1][i], G.cs[i], G.sn[i]);
      // Apply Gi
            ApplyPlaneRotation(G.H[i][i], G.H[i + 1][i], G.cs[i], G.sn[i]);
            ApplyPlaneRotation(s[i], s[i + 1], G.cs[i], G.sn[i]);

//            if (! myPID) std::cout << "iter: " << j << ", residual: " << resid << std::endl;

            if ((resid = abs(s[i + 1]) / normb) < tol) {
                MultiVector y(b.Map(), 1, true);
                Update(y, i, G.H, s, *(G.v));
                M->ApplyInverse(y, t);
                x.Update(1.0, t, 1.0);
                tol = resid;
                max_iter = j;
                G.m = i;
                return 2;
            }
        }

        MultiVector y(b.Map(), 1, true);
        Update(y, i - 1, G.H, s, *(G.v));
        M->ApplyInverse(y, t);
        x.Update(1.0, t, 1.0);
        A.Apply(x, t);
        w.Update(1.0, b, -1.0, t, 0.0);
        L->ApplyInverse(w, r);
        r.Norm2(&beta);

        if ((resid = beta / normb) < tol) {
            tol = resid;
            max_iter = j;
            G.m = i;
            return 3;
        }
    }

    tol = resid;
    G.m = i;
    return 1;
}

} // namespace IQR

#endif // IQR_GMRES_H