/usr/include/trilinos/Sacado_LFad_LogicalSparseOps.hpp is in libtrilinos-sacado-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 | // @HEADER
// ***********************************************************************
//
// Sacado Package
// Copyright (2006) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact David M. Gay (dmgay@sandia.gov) or Eric T. Phipps
// (etphipp@sandia.gov).
//
// ***********************************************************************
//
// The forward-mode AD classes in Sacado are a derivative work of the
// expression template classes in the Fad package by Nicolas Di Cesare.
// The following banner is included in the original Fad source code:
//
// ************ DO NOT REMOVE THIS BANNER ****************
//
// Nicolas Di Cesare <Nicolas.Dicesare@ann.jussieu.fr>
// http://www.ann.jussieu.fr/~dicesare
//
// CEMRACS 98 : C++ courses,
// templates : new C++ techniques
// for scientific computing
//
//********************************************************
//
// A short implementation ( not all operators and
// functions are overloaded ) of 1st order Automatic
// Differentiation in forward mode (FAD) using
// EXPRESSION TEMPLATES.
//
//********************************************************
// @HEADER
#ifndef SACADO_LFAD_LOGICALSPARSEOPS_HPP
#define SACADO_LFAD_LOGICALSPARSEOPS_HPP
#include <cmath>
#include <algorithm> // for std::min and std::max
#include <ostream> // for std::ostream
#define FAD_UNARYOP_MACRO(OPNAME,OP,VALUE) \
namespace Sacado { \
namespace LFad { \
\
template <typename ExprT> \
class OP {}; \
\
template <typename ExprT> \
class Expr< OP<ExprT> > { \
public: \
\
typedef typename ExprT::value_type value_type; \
typedef typename ExprT::scalar_type scalar_type; \
typedef typename ExprT::base_expr_type base_expr_type; \
typedef typename ExprT::logical_type logical_type; \
\
Expr(const ExprT& expr_) : expr(expr_) {} \
\
int size() const { return expr.size(); } \
\
bool hasFastAccess() const { return expr.hasFastAccess(); } \
\
bool isPassive() const { return expr.isPassive();} \
\
value_type val() const { \
return VALUE; \
} \
\
logical_type dx(int i) const { \
return expr.dx(i); \
} \
\
logical_type fastAccessDx(int i) const { \
return expr.fastAccessDx(i); \
} \
\
protected: \
\
const ExprT& expr; \
}; \
\
template <typename T> \
inline Expr< OP< Expr<T> > > \
OPNAME (const Expr<T>& expr) \
{ \
typedef OP< Expr<T> > expr_t; \
\
return Expr<expr_t>(expr); \
} \
} \
}
FAD_UNARYOP_MACRO(operator+,
UnaryPlusOp,
expr.val())
FAD_UNARYOP_MACRO(operator-,
UnaryMinusOp,
-expr.val())
FAD_UNARYOP_MACRO(exp,
ExpOp,
std::exp(expr.val()))
FAD_UNARYOP_MACRO(log,
LogOp,
std::log(expr.val()))
FAD_UNARYOP_MACRO(log10,
Log10Op,
std::log10(expr.val()))
FAD_UNARYOP_MACRO(sqrt,
SqrtOp,
std::sqrt(expr.val()))
FAD_UNARYOP_MACRO(cos,
CosOp,
std::cos(expr.val()))
FAD_UNARYOP_MACRO(sin,
SinOp,
std::sin(expr.val()))
FAD_UNARYOP_MACRO(tan,
TanOp,
std::tan(expr.val()))
FAD_UNARYOP_MACRO(acos,
ACosOp,
std::acos(expr.val()))
FAD_UNARYOP_MACRO(asin,
ASinOp,
std::asin(expr.val()))
FAD_UNARYOP_MACRO(atan,
ATanOp,
std::atan(expr.val()))
FAD_UNARYOP_MACRO(cosh,
CoshOp,
std::cosh(expr.val()))
FAD_UNARYOP_MACRO(sinh,
SinhOp,
std::sinh(expr.val()))
FAD_UNARYOP_MACRO(tanh,
TanhOp,
std::tanh(expr.val()))
FAD_UNARYOP_MACRO(acosh,
ACoshOp,
acosh(expr.val()))
FAD_UNARYOP_MACRO(asinh,
ASinhOp,
asinh(expr.val()))
FAD_UNARYOP_MACRO(atanh,
ATanhOp,
atanh(expr.val()))
FAD_UNARYOP_MACRO(abs,
AbsOp,
std::abs(expr.val()))
FAD_UNARYOP_MACRO(fabs,
FAbsOp,
std::fabs(expr.val()))
#ifdef HAVE_SACADO_CXX11
FAD_UNARYOP_MACRO(cbrt,
CbrtOp,
std::cbrt(expr.val()))
#endif
#undef FAD_UNARYOP_MACRO
#define FAD_BINARYOP_MACRO(OPNAME,OP,VALUE,DX,FASTACCESSDX,VAL_CONST_DX_1,VAL_CONST_DX_2,CONST_DX_1,CONST_DX_2,CONST_FASTACCESSDX_1,CONST_FASTACCESSDX_2) \
namespace Sacado { \
namespace LFad { \
\
template <typename ExprT1, typename ExprT2> \
class OP {}; \
\
template <typename T1, typename T2> \
class Expr< OP< Expr<T1>, Expr<T2> > > { \
\
public: \
\
typedef Expr<T1> ExprT1; \
typedef Expr<T2> ExprT2; \
typedef typename ExprT1::value_type value_type_1; \
typedef typename ExprT2::value_type value_type_2; \
typedef typename Sacado::Promote<value_type_1, \
value_type_2>::type value_type; \
\
typedef typename ExprT1::scalar_type scalar_type_1; \
typedef typename ExprT2::scalar_type scalar_type_2; \
typedef typename Sacado::Promote<scalar_type_1, \
scalar_type_2>::type scalar_type; \
\
typedef typename ExprT1::base_expr_type base_expr_type_1; \
typedef typename ExprT2::base_expr_type base_expr_type_2; \
typedef typename Sacado::Promote<base_expr_type_1, \
base_expr_type_2>::type base_expr_type; \
\
typedef typename ExprT1::logical_type logical_type; \
\
Expr(const ExprT1& expr1_, const ExprT2& expr2_) : \
expr1(expr1_), expr2(expr2_) {} \
\
int size() const { \
int sz1 = expr1.size(), sz2 = expr2.size(); \
return sz1 > sz2 ? sz1 : sz2; \
} \
\
bool hasFastAccess() const { \
return expr1.hasFastAccess() && expr2.hasFastAccess(); \
} \
\
bool isPassive() const { \
return expr1.isPassive() && expr2.isPassive(); \
} \
\
const value_type val() const { \
return VALUE; \
} \
\
const logical_type dx(int i) const { \
return DX; \
} \
\
const logical_type fastAccessDx(int i) const { \
return FASTACCESSDX; \
} \
\
protected: \
\
const ExprT1& expr1; \
const ExprT2& expr2; \
\
}; \
\
template <typename T1> \
class Expr< OP< Expr<T1>, typename Expr<T1>::value_type> > { \
\
public: \
\
typedef Expr<T1> ExprT1; \
typedef typename ExprT1::value_type value_type; \
typedef typename ExprT1::scalar_type scalar_type; \
typedef typename ExprT1::base_expr_type base_expr_type; \
typedef typename ExprT1::value_type ConstT; \
typedef typename ExprT1::logical_type logical_type; \
\
Expr(const ExprT1& expr1_, const ConstT& c_) : \
expr1(expr1_), c(c_) {} \
\
int size() const { \
return expr1.size(); \
} \
\
bool hasFastAccess() const { \
return expr1.hasFastAccess(); \
} \
\
bool isPassive() const { \
return expr1.isPassive(); \
} \
\
const value_type val() const { \
return VAL_CONST_DX_2; \
} \
\
const logical_type dx(int i) const { \
return CONST_DX_2; \
} \
\
const logical_type fastAccessDx(int i) const { \
return CONST_FASTACCESSDX_2; \
} \
\
protected: \
\
const ExprT1& expr1; \
const ConstT& c; \
}; \
\
template <typename T2> \
class Expr< OP< typename Expr<T2>::value_type, Expr<T2> > > { \
\
public: \
\
typedef Expr<T2> ExprT2; \
typedef typename ExprT2::value_type value_type; \
typedef typename ExprT2::scalar_type scalar_type; \
typedef typename ExprT2::base_expr_type base_expr_type; \
typedef typename ExprT2::value_type ConstT; \
typedef typename ExprT2::logical_type logical_type; \
\
Expr(const ConstT& c_, const ExprT2& expr2_) : \
c(c_), expr2(expr2_) {} \
\
int size() const { \
return expr2.size(); \
} \
\
bool hasFastAccess() const { \
return expr2.hasFastAccess(); \
} \
\
bool isPassive() const { \
return expr2.isPassive(); \
} \
\
const value_type val() const { \
return VAL_CONST_DX_1; \
} \
\
const logical_type dx(int i) const { \
return CONST_DX_1; \
} \
\
const logical_type fastAccessDx(int i) const { \
return CONST_FASTACCESSDX_1; \
} \
\
protected: \
\
const ConstT& c; \
const ExprT2& expr2; \
}; \
\
template <typename T1, typename T2> \
inline Expr< OP< Expr<T1>, Expr<T2> > > \
OPNAME (const Expr<T1>& expr1, const Expr<T2>& expr2) \
{ \
typedef OP< Expr<T1>, Expr<T2> > expr_t; \
\
return Expr<expr_t>(expr1, expr2); \
} \
\
template <typename T> \
inline Expr< OP< Expr<T>, Expr<T> > > \
OPNAME (const Expr<T>& expr1, const Expr<T>& expr2) \
{ \
typedef OP< Expr<T>, Expr<T> > expr_t; \
\
return Expr<expr_t>(expr1, expr2); \
} \
\
template <typename T> \
inline Expr< OP< typename Expr<T>::value_type, Expr<T> > > \
OPNAME (const typename Expr<T>::value_type& c, \
const Expr<T>& expr) \
{ \
typedef typename Expr<T>::value_type ConstT; \
typedef OP< ConstT, Expr<T> > expr_t; \
\
return Expr<expr_t>(c, expr); \
} \
\
template <typename T> \
inline Expr< OP< Expr<T>, typename Expr<T>::value_type > > \
OPNAME (const Expr<T>& expr, \
const typename Expr<T>::value_type& c) \
{ \
typedef typename Expr<T>::value_type ConstT; \
typedef OP< Expr<T>, ConstT > expr_t; \
\
return Expr<expr_t>(expr, c); \
} \
} \
}
FAD_BINARYOP_MACRO(operator+,
AdditionOp,
expr1.val() + expr2.val(),
expr1.dx(i) || expr2.dx(i),
expr1.fastAccessDx(i) || expr2.fastAccessDx(i),
c + expr2.val(),
expr1.val() + c,
expr2.dx(i),
expr1.dx(i),
expr2.fastAccessDx(i),
expr1.fastAccessDx(i))
FAD_BINARYOP_MACRO(operator-,
SubtractionOp,
expr1.val() - expr2.val(),
expr1.dx(i) || expr2.dx(i),
expr1.fastAccessDx(i) || expr2.fastAccessDx(i),
c - expr2.val(),
expr1.val() - c,
expr2.dx(i),
expr1.dx(i),
expr2.fastAccessDx(i),
expr1.fastAccessDx(i))
FAD_BINARYOP_MACRO(operator*,
MultiplicationOp,
expr1.val() * expr2.val(),
expr1.dx(i) || expr2.dx(i),
expr1.fastAccessDx(i) || expr2.fastAccessDx(i),
c * expr2.val(),
expr1.val() * c,
expr2.dx(i),
expr1.dx(i),
expr2.fastAccessDx(i),
expr1.fastAccessDx(i))
FAD_BINARYOP_MACRO(operator/,
DivisionOp,
expr1.val() / expr2.val(),
expr1.dx(i) || expr2.dx(i),
expr1.fastAccessDx(i) || expr2.fastAccessDx(i),
c / expr2.val(),
expr1.val() / c,
expr2.dx(i),
expr1.dx(i),
expr2.fastAccessDx(i),
expr1.fastAccessDx(i))
FAD_BINARYOP_MACRO(atan2,
Atan2Op,
std::atan2(expr1.val(), expr2.val()),
expr1.dx(i) || expr2.dx(i),
expr1.fastAccessDx(i) || expr2.fastAccessDx(i),
std::atan2(c, expr2.val()),
std::atan2(expr1.val(), c),
expr2.dx(i),
expr1.dx(i),
expr2.fastAccessDx(i),
expr1.fastAccessDx(i))
FAD_BINARYOP_MACRO(pow,
PowerOp,
std::pow(expr1.val(), expr2.val()),
expr1.dx(i) || expr2.dx(i),
expr1.fastAccessDx(i) || expr2.fastAccessDx(i),
std::pow(c, expr2.val()),
std::pow(expr1.val(), c),
expr2.dx(i),
expr1.dx(i),
expr2.fastAccessDx(i),
expr1.fastAccessDx(i))
FAD_BINARYOP_MACRO(max,
MaxOp,
std::max(expr1.val(), expr2.val()),
expr1.val() >= expr2.val() ? expr1.dx(i) : expr2.dx(i),
expr1.val() >= expr2.val() ? expr1.fastAccessDx(i) :
expr2.fastAccessDx(i),
std::max(c, expr2.val()),
std::max(expr1.val(), c),
c >= expr2.val() ? logical_type(0) : expr2.dx(i),
expr1.val() >= c ? expr1.dx(i) : logical_type(0),
c >= expr2.val() ? logical_type(0) : expr2.fastAccessDx(i),
expr1.val() >= c ? expr1.fastAccessDx(i) : logical_type(0))
FAD_BINARYOP_MACRO(min,
MinOp,
std::min(expr1.val(), expr2.val()),
expr1.val() <= expr2.val() ? expr1.dx(i) : expr2.dx(i),
expr1.val() <= expr2.val() ? expr1.fastAccessDx(i) :
expr2.fastAccessDx(i),
std::min(c, expr2.val()),
std::min(expr1.val(), c),
c <= expr2.val() ? logical_type(0) : expr2.dx(i),
expr1.val() <= c ? expr1.dx(i) : logical_type(0),
c <= expr2.val() ? logical_type(0) : expr2.fastAccessDx(i),
expr1.val() <= c ? expr1.fastAccessDx(i) : logical_type(0))
#undef FAD_BINARYOP_MACRO
//-------------------------- Relational Operators -----------------------
#define FAD_RELOP_MACRO(OP) \
namespace Sacado { \
namespace LFad { \
template <typename ExprT1, typename ExprT2> \
inline bool \
operator OP (const Expr<ExprT1>& expr1, \
const Expr<ExprT2>& expr2) \
{ \
return expr1.val() OP expr2.val(); \
} \
\
template <typename ExprT2> \
inline bool \
operator OP (const typename Expr<ExprT2>::value_type& a, \
const Expr<ExprT2>& expr2) \
{ \
return a OP expr2.val(); \
} \
\
template <typename ExprT1> \
inline bool \
operator OP (const Expr<ExprT1>& expr1, \
const typename Expr<ExprT1>::value_type& b) \
{ \
return expr1.val() OP b; \
} \
} \
}
FAD_RELOP_MACRO(==)
FAD_RELOP_MACRO(!=)
FAD_RELOP_MACRO(<)
FAD_RELOP_MACRO(>)
FAD_RELOP_MACRO(<=)
FAD_RELOP_MACRO(>=)
FAD_RELOP_MACRO(<<=)
FAD_RELOP_MACRO(>>=)
FAD_RELOP_MACRO(&)
FAD_RELOP_MACRO(|)
#undef FAD_RELOP_MACRO
namespace Sacado {
namespace LFad {
template <typename ExprT>
inline bool operator ! (const Expr<ExprT>& expr)
{
return ! expr.val();
}
} // namespace LFad
} // namespace Sacado
//-------------------------- Boolean Operators -----------------------
namespace Sacado {
namespace LFad {
template <typename ExprT>
bool toBool(const Expr<ExprT>& x) {
bool is_zero = (x.val() == 0.0);
for (int i=0; i<x.size(); i++)
is_zero = is_zero && (x.dx(i) == 0.0);
return !is_zero;
}
} // namespace Fad
} // namespace Sacado
#define FAD_BOOL_MACRO(OP) \
namespace Sacado { \
namespace LFad { \
template <typename ExprT1, typename ExprT2> \
inline bool \
operator OP (const Expr<ExprT1>& expr1, \
const Expr<ExprT2>& expr2) \
{ \
return toBool(expr1) OP toBool(expr2); \
} \
\
template <typename ExprT2> \
inline bool \
operator OP (const typename Expr<ExprT2>::value_type& a, \
const Expr<ExprT2>& expr2) \
{ \
return a OP toBool(expr2); \
} \
\
template <typename ExprT1> \
inline bool \
operator OP (const Expr<ExprT1>& expr1, \
const typename Expr<ExprT1>::value_type& b) \
{ \
return toBool(expr1) OP b; \
} \
} \
}
FAD_BOOL_MACRO(&&)
FAD_BOOL_MACRO(||)
#undef FAD_BOOL_MACRO
//-------------------------- I/O Operators -----------------------
namespace Sacado {
namespace LFad {
template <typename ExprT>
std::ostream& operator << (std::ostream& os, const Expr<ExprT>& x) {
os << x.val() << " [";
for (int i=0; i< x.size(); i++) {
os << " " << x.dx(i);
}
os << " ]";
return os;
}
} // namespace LFad
} // namespace Sacado
#endif // SACADO_LFAD_LOGICALSPARSEOPS_HPP
|