This file is indexed.

/usr/include/trilinos/Rythmos_TimeStepNonlinearSolver_def.hpp is in libtrilinos-rythmos-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
//@HEADER
// ***********************************************************************
//
//                           Rythmos Package
//                 Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Todd S. Coffey (tscoffe@sandia.gov)
//
// ***********************************************************************
//@HEADER


#ifndef RYTHMOS_TIME_STEP_NONLINEAR_SOLVER_DEF_HPP
#define RYTHMOS_TIME_STEP_NONLINEAR_SOLVER_DEF_HPP

#include "Rythmos_TimeStepNonlinearSolver_decl.hpp"

#include "Thyra_TestingTools.hpp"
#include "Thyra_ModelEvaluatorHelpers.hpp"
#include "Teuchos_VerboseObjectParameterListHelpers.hpp"
#include "Teuchos_StandardParameterEntryValidators.hpp"
#include "Teuchos_as.hpp"

namespace Rythmos {


// ////////////////////////
// Defintions


// Static members


template<class Scalar>
const std::string
TimeStepNonlinearSolver<Scalar>::DefaultTol_name_ = "Default Tol";

template<class Scalar>
const double
TimeStepNonlinearSolver<Scalar>::DefaultTol_default_ = 1e-2;


template<class Scalar>
const std::string
TimeStepNonlinearSolver<Scalar>::DefaultMaxIters_name_ = "Default Max Iters";

template<class Scalar>
const int
TimeStepNonlinearSolver<Scalar>::DefaultMaxIters_default_ = 3;


template<class Scalar>
const std::string
TimeStepNonlinearSolver<Scalar>::NonlinearSafetyFactor_name_
= "Nonlinear Safety Factor";

template<class Scalar>
const double
TimeStepNonlinearSolver<Scalar>::NonlinearSafetyFactor_default_ = 0.1;


template<class Scalar>
const std::string
TimeStepNonlinearSolver<Scalar>::LinearSafetyFactor_name_ = "Linear Safety Factor";

template<class Scalar>
const double
TimeStepNonlinearSolver<Scalar>::LinearSafetyFactor_default_ = 0.05;


template<class Scalar>
const std::string
TimeStepNonlinearSolver<Scalar>::RMinFraction_name_ = "R Min Fraction";

template<class Scalar>
const double
TimeStepNonlinearSolver<Scalar>::RMinFraction_default_ = 0.3;


template<class Scalar>
const std::string
TimeStepNonlinearSolver<Scalar>::ThrownOnLinearSolveFailure_name_
= "Thrown on Linear Solve Failure";

template<class Scalar>
const bool
TimeStepNonlinearSolver<Scalar>::ThrownOnLinearSolveFailure_default_ = false;


// Constructors/Intializers/Misc


template <class Scalar>
TimeStepNonlinearSolver<Scalar>::TimeStepNonlinearSolver()
  :J_is_current_(false),
   defaultTol_(DefaultTol_default_),
   defaultMaxIters_(DefaultMaxIters_default_),
   nonlinearSafetyFactor_(NonlinearSafetyFactor_default_),
   linearSafetyFactor_(LinearSafetyFactor_default_),
   RMinFraction_(RMinFraction_default_),
   throwOnLinearSolveFailure_(ThrownOnLinearSolveFailure_default_)
{}


// Overridden from ParameterListAcceptor


template<class Scalar>
void TimeStepNonlinearSolver<Scalar>::setParameterList(
  RCP<ParameterList> const& paramList
  )
{
  using Teuchos::get;
  TEUCHOS_TEST_FOR_EXCEPT(is_null(paramList));
  paramList->validateParametersAndSetDefaults(*getValidParameters(),0);
  paramList_ = paramList;
  defaultTol_ = get<double>(*paramList_,DefaultTol_name_);
  defaultMaxIters_ = get<int>(*paramList_,DefaultMaxIters_name_);
  nonlinearSafetyFactor_ = get<double>(*paramList_,NonlinearSafetyFactor_name_);
  linearSafetyFactor_ = get<double>(*paramList_,LinearSafetyFactor_name_);
  RMinFraction_ = get<double>(*paramList_,RMinFraction_name_);
  throwOnLinearSolveFailure_ = get<bool>(
    *paramList_,ThrownOnLinearSolveFailure_name_);
  Teuchos::readVerboseObjectSublist(&*paramList_,this);
#ifdef HAVE_RYTHMOS_DEBUG
  paramList_->validateParameters(*getValidParameters(),0);
#endif // HAVE_RYTHMOS_DEBUG
}


template<class Scalar>
RCP<ParameterList>
TimeStepNonlinearSolver<Scalar>::getNonconstParameterList()
{
  return paramList_;
}


template<class Scalar>
RCP<ParameterList>
TimeStepNonlinearSolver<Scalar>::unsetParameterList()
{
  RCP<ParameterList> _paramList = paramList_;
  paramList_ = Teuchos::null;
  return _paramList;
}


template<class Scalar>
RCP<const ParameterList>
TimeStepNonlinearSolver<Scalar>::getParameterList() const
{
  return paramList_;
}


template<class Scalar>
RCP<const ParameterList>
TimeStepNonlinearSolver<Scalar>::getValidParameters() const
{
  using Teuchos::setDoubleParameter; using Teuchos::setIntParameter;
  static RCP<const ParameterList> validPL;
  if (is_null(validPL)) {
    RCP<ParameterList> pl = Teuchos::parameterList();
    setDoubleParameter(
      DefaultTol_name_, DefaultTol_default_,
      "The default base tolerance for the nonlinear timestep solve.\n"
      "This tolerance can be overridden ???",
      &*pl );
    setIntParameter(
      DefaultMaxIters_name_, DefaultMaxIters_default_,
      "The default maximum number of Newton iterations to perform.\n"
      "This default can be overridden ???",
      &*pl );
    setDoubleParameter(
      NonlinearSafetyFactor_name_, NonlinearSafetyFactor_default_,
      "The factor (< 1.0) to multiply tol to bound R*||dx|||.\n"
      "The exact nonlinear convergence test is:\n"
      "  R*||dx|| <= \"" + NonlinearSafetyFactor_name_ + "\" * tol.",
      &*pl );
    setDoubleParameter(
      LinearSafetyFactor_name_, LinearSafetyFactor_default_,
      "This factor multiplies the nonlinear safety factor which multiplies\n"
      "tol when determining the linear solve tolerence.\n"
      "The exact linear convergence tolerance is:\n"
      "  ||J*dx+f||/||f|| <= \"" + LinearSafetyFactor_name_ + "\" * "
      "\"" + NonlinearSafetyFactor_name_ + "\" * tol.",
      &*pl );
    setDoubleParameter(
      RMinFraction_name_, RMinFraction_default_,
      "The faction below which the R factor is not allowed to drop\n"
      "below each Newton iteration.  The R factor is related to the\n"
      "ratio of ||dx||/||dx_last|| between nonlinear iterations.",
      &*pl );
    pl->set(
      ThrownOnLinearSolveFailure_name_, ThrownOnLinearSolveFailure_default_,
      "If set to true (\"1\"), then an Thyra::CatastrophicSolveFailure\n"
      "exception will be thrown when a linear solve fails to meet it's tolerance."
      );
    Teuchos::setupVerboseObjectSublist(&*pl);
    validPL = pl;
  }
  return validPL;
}


// Overridden from NonlinearSolverBase


template <class Scalar>
void TimeStepNonlinearSolver<Scalar>::setModel(
  const RCP<const Thyra::ModelEvaluator<Scalar> > &model
  )
{
  TEUCHOS_TEST_FOR_EXCEPT(model.get()==NULL);
  model_ = model;
  J_ = Teuchos::null;
  current_x_ = Teuchos::null;
  J_is_current_ = false;
}


template <class Scalar>
RCP<const Thyra::ModelEvaluator<Scalar> >
TimeStepNonlinearSolver<Scalar>::getModel() const
{
  return model_;
}

template <class Scalar>
Thyra::SolveStatus<Scalar>
TimeStepNonlinearSolver<Scalar>::solve(
  Thyra::VectorBase<Scalar> *x,
  const Thyra::SolveCriteria<Scalar> *solveCriteria,
  Thyra::VectorBase<Scalar> *delta
  )
{
  
  RYTHMOS_FUNC_TIME_MONITOR("Rythmos:TimeStepNonlinearSolver::solve");

  using std::endl;
  using Teuchos::incrVerbLevel;
  using Teuchos::describe;
  using Teuchos::as;
  using Teuchos::rcp;
  using Teuchos::OSTab;
  using Teuchos::getFancyOStream;
  typedef Thyra::ModelEvaluatorBase MEB;
  typedef Teuchos::VerboseObjectTempState<MEB> VOTSME;
  typedef Thyra::LinearOpWithSolveBase<Scalar> LOWSB;
  typedef Teuchos::VerboseObjectTempState<LOWSB> VOTSLOWSB;

#ifdef HAVE_RYTHMOS_DEBUG
  TEUCHOS_TEST_FOR_EXCEPT(0==x);
  THYRA_ASSERT_VEC_SPACES(
    "TimeStepNonlinearSolver<Scalar>::solve(...)",
    *x->space(),*model_->get_x_space() );
  TEUCHOS_TEST_FOR_EXCEPT(
    0!=solveCriteria && "ToDo: Support passed in solve criteria!" );
#endif

  const RCP<Teuchos::FancyOStream> out = this->getOStream();
  const Teuchos::EVerbosityLevel verbLevel = this->getVerbLevel();
  const bool showNewtonDetails =
    (!is_null(out) && (as<int>(verbLevel) >= as<int>(Teuchos::VERB_MEDIUM)));
  const bool dumpAll =
    (!is_null(out) && (as<int>(verbLevel) == as<int>(Teuchos::VERB_EXTREME))); 
  TEUCHOS_OSTAB;
  VOTSME stateModel_outputTempState(model_,out,incrVerbLevel(verbLevel,-1));

  if (showNewtonDetails)
    *out
      << "\nEntering TimeStepNonlinearSolver::solve(...) ...\n"
      << "\nmodel = " << Teuchos::describe(*model_,verbLevel);

  if(dumpAll) {
    *out << "\nInitial guess:\n";
    *out << "\nx = " << *x;
  }

  // Initialize storage for algorithm
  if(!J_.get()) J_ = model_->create_W();
  TEUCHOS_TEST_FOR_EXCEPTION( Teuchos::is_null(J_), std::logic_error,
      "Error!  model->create_W() returned a null pointer!\n"
      );
  RCP<Thyra::VectorBase<Scalar> > f = createMember(model_->get_f_space());
  RCP<Thyra::VectorBase<Scalar> > dx = createMember(model_->get_x_space());
  RCP<Thyra::VectorBase<Scalar> > dx_last = createMember(model_->get_x_space());
  RCP<Thyra::VectorBase<Scalar> > x_curr = createMember(model_->get_x_space());
  if (delta != NULL)
    Thyra::V_S(ptr(delta),ST::zero()); // delta stores the cumulative update to x over the whole Newton solve.
  Thyra::assign(x_curr.ptr(),*x);
  J_is_current_ = false;
  current_x_ = Teuchos::null;

  // Initialize convergence criteria
  ScalarMag R = SMT::one();
  ScalarMag linearTolSafety = linearSafetyFactor_ * nonlinearSafetyFactor_;
  int maxIters = defaultMaxIters_;
  ScalarMag tol = defaultTol_;
  // ToDo: Get above from solveCriteria!

  // Do the undampened Newton iterations
  bool converged = false;
  bool sawFailedLinearSolve = false;
  Thyra::SolveStatus<Scalar> failedLinearSolveStatus;
  ScalarMag nrm_dx = SMT::nan();
  ScalarMag nrm_dx_last = SMT::nan();
  int iter = 1;
  for( ; iter <= maxIters; ++iter ) {
    if (showNewtonDetails)
      *out << "\n*** newtonIter = " << iter << endl;
    if (showNewtonDetails)
      *out << "\nEvaluating the model f and W ...\n";
    Thyra::eval_f_W( *model_, *x_curr, &*f, &*J_ );
    if (showNewtonDetails)
      *out << "\nSolving the system J*dx = -f ...\n";
    Thyra::V_S(dx.ptr(),ST::zero()); // Initial guess is needed!
    Thyra::SolveCriteria<Scalar>
      linearSolveCriteria(
        Thyra::SolveMeasureType(
          Thyra::SOLVE_MEASURE_NORM_RESIDUAL, Thyra::SOLVE_MEASURE_NORM_RHS
          ),
        linearTolSafety*tol
        );
    VOTSLOWSB J_outputTempState(J_,out,incrVerbLevel(verbLevel,-1));
    Thyra::SolveStatus<Scalar> linearSolveStatus
      = J_->solve(Thyra::NOTRANS, *f, dx.ptr(), Teuchos::ptr(&linearSolveCriteria) );
    if (showNewtonDetails)
      *out << "\nLinear solve status:\n" << linearSolveStatus;
    Thyra::Vt_S(dx.ptr(),Scalar(-ST::one()));
    if (dumpAll)
      *out << "\ndx = " << Teuchos::describe(*dx,verbLevel);
    if (delta != NULL) {
      Thyra::Vp_V(ptr(delta),*dx);
      if (dumpAll)
        *out << "\ndelta = " << Teuchos::describe(*delta,verbLevel);
    }
    // Check the linear solve
    if(linearSolveStatus.solveStatus != Thyra::SOLVE_STATUS_CONVERGED) {
      sawFailedLinearSolve = true;
      failedLinearSolveStatus = linearSolveStatus;
      if (throwOnLinearSolveFailure_) {
        TEUCHOS_TEST_FOR_EXCEPTION(
          throwOnLinearSolveFailure_, Thyra::CatastrophicSolveFailure,
          "Error, the linear solver did not converge!"
          );
      }
      if (showNewtonDetails)
        *out << "\nWarning, linear solve did not converge!  Continuing anyway :-)\n";
    }
    // Update the solution: x_curr = x_curr + dx
    Vp_V( x_curr.ptr(), *dx );
    if (dumpAll)
      *out << "\nUpdated solution x = " << Teuchos::describe(*x_curr,verbLevel);
    // Convergence test
    nrm_dx = Thyra::norm(*dx);
    if ( R*nrm_dx <= nonlinearSafetyFactor_*tol )
      converged = true;
    if (showNewtonDetails)
      *out
        << "\nConvergence test:\n"
        << "  R*||dx|| = " << R << "*" << nrm_dx
        << " = " << (R*nrm_dx) << "\n"
        << "    <= nonlinearSafetyFactor*tol = " << nonlinearSafetyFactor_ << "*" << tol
        << " = " << (nonlinearSafetyFactor_*tol)
        << " : " << ( converged ? "converged!" : " unconverged" )
        << endl;
    if(converged)
      break; // We have converged!!!
    // Update convergence criteria for the next iteration ...
    if(iter > 1) {
      const Scalar
        MinR = RMinFraction_*R,
        nrm_dx_ratio = nrm_dx/nrm_dx_last;
      R = std::max(MinR,nrm_dx_ratio);
      if (showNewtonDetails)
      *out
        << "\nUpdated R\n"
        << "  = max(RMinFraction*R,||dx||/||dx_last||)\n"
        << "  = max("<<RMinFraction_<<"*"<<R<<","<<nrm_dx<<"/"<<nrm_dx_last<<")\n"
        << "  = max("<<MinR<<","<<nrm_dx_ratio<<")\n"
        << "  = " << R << endl;
    }
    // Save to old
    std::swap(dx_last,dx);
    nrm_dx_last = nrm_dx;
  }

  // Set the solution
  Thyra::assign(ptr(x),*x_curr);
  
  if (dumpAll)
    *out << "\nFinal solution x = " << Teuchos::describe(*x,verbLevel);

  // Check the status

  Thyra::SolveStatus<Scalar> solveStatus;

  std::ostringstream oss;
  Teuchos::FancyOStream omsg(rcp(&oss,false));

  omsg << "Solver: " << this->description() << endl;

  if(converged) {
    solveStatus.solveStatus = Thyra::SOLVE_STATUS_CONVERGED;
    omsg << "CVODE status test converged!\n";
  }
  else {
    solveStatus.solveStatus = Thyra::SOLVE_STATUS_UNCONVERGED;
    omsg << "CVODE status test failed!\n";
  }

  if (sawFailedLinearSolve) {
    omsg << "Warning!  A failed linear solve was encountered with status:\n";
    OSTab tab(omsg);
    omsg << failedLinearSolveStatus;
  }

  omsg
    << "R*||dx|| = " << R << "*" << nrm_dx
    << " <= nonlinearSafetyFactor*tol = " << nonlinearSafetyFactor_ << "*" << tol << " : "
    << ( converged ? "converged!" : " unconverged" ) << endl;

  omsg
    << "Iterations = " << iter;
  // Above, we leave off the last newline since this is the convention for the
  // SolveStatus::message string!

  solveStatus.message = oss.str();

  // Update the solution state for external clients
  current_x_ = x->clone_v();
  J_is_current_ = false;
  // 2007/09/04: rabartl: Note, above the Jacobian J is always going to be out
  // of date since this algorithm computes x_curr = x_curr + dx for at least
  // one solve for dx = -inv(J)*f.  Therefore, J is never at the updated
  // x_curr, only the old x_curr!

  if (showNewtonDetails)
    *out << "\nLeaving TimeStepNonlinearSolver::solve(...) ...\n";

  return solveStatus;

}


template <class Scalar>
bool TimeStepNonlinearSolver<Scalar>::supportsCloning() const
{
  return true;
}


template <class Scalar>
RCP<Thyra::NonlinearSolverBase<Scalar> >
TimeStepNonlinearSolver<Scalar>::cloneNonlinearSolver() const
{
  RCP<TimeStepNonlinearSolver<Scalar> >
    nonlinearSolver = Teuchos::rcp(new TimeStepNonlinearSolver<Scalar>);
  nonlinearSolver->model_ = model_; // Shallow copy is okay, model is stateless
  nonlinearSolver->defaultTol_ = defaultTol_;
  nonlinearSolver->defaultMaxIters_ = defaultMaxIters_;
  nonlinearSolver->nonlinearSafetyFactor_ = nonlinearSafetyFactor_;
  nonlinearSolver->linearSafetyFactor_ = linearSafetyFactor_;
  nonlinearSolver->RMinFraction_ = RMinFraction_;
  nonlinearSolver->throwOnLinearSolveFailure_ = throwOnLinearSolveFailure_;
  // Note: The specification of this virtual function in the interface class
  // allows us to just copy the algorithm, not the entire state so we are
  // done!
  return nonlinearSolver;
}


template <class Scalar>
RCP<const Thyra::VectorBase<Scalar> >
TimeStepNonlinearSolver<Scalar>::get_current_x() const
{
  return current_x_;
}


template <class Scalar>
bool TimeStepNonlinearSolver<Scalar>::is_W_current() const
{
  return J_is_current_;
}


template <class Scalar>
RCP<Thyra::LinearOpWithSolveBase<Scalar> >
TimeStepNonlinearSolver<Scalar>::get_nonconst_W(const bool forceUpToDate)
{
  if (is_null(J_))
    return Teuchos::null;
  if (forceUpToDate) {
#ifdef HAVE_RYTHMOS_DEBUG
    TEUCHOS_TEST_FOR_EXCEPT(is_null(current_x_));
#endif
    Thyra::eval_f_W<Scalar>( *model_, *current_x_, 0, &*J_ );
    J_is_current_ = true;
  }
  return J_;
}


template <class Scalar>
RCP<const Thyra::LinearOpWithSolveBase<Scalar> >
TimeStepNonlinearSolver<Scalar>::get_W() const
{
  return J_;
}


template <class Scalar>
void TimeStepNonlinearSolver<Scalar>::set_W_is_current(bool W_is_current)
{
  J_is_current_ = W_is_current;
}


} // namespace Rythmos


// Nonmember constructors


template <class Scalar>
Teuchos::RCP<Rythmos::TimeStepNonlinearSolver<Scalar> >
Rythmos::timeStepNonlinearSolver()
{
  return Teuchos::rcp(new TimeStepNonlinearSolver<Scalar>);
}


template <class Scalar>
Teuchos::RCP<Rythmos::TimeStepNonlinearSolver<Scalar> >
Rythmos::timeStepNonlinearSolver(const RCP<ParameterList> &pl)
{
  const RCP<Rythmos::TimeStepNonlinearSolver<Scalar> >
    solver = timeStepNonlinearSolver<Scalar>();
  solver->setParameterList(pl);
  return solver;
}


// 
// Explicit Instantiation macro
//
// Must be expanded from within the Rythmos namespace!
//

#define RYTHMOS_TIME_STEP_NONLINEAR_SOLVER_INSTANT(SCALAR) \
  \
  template class TimeStepNonlinearSolver< SCALAR >; \
  \
  template RCP<TimeStepNonlinearSolver< SCALAR > > timeStepNonlinearSolver(); \
  \
  template RCP<TimeStepNonlinearSolver<SCALAR > > \
  timeStepNonlinearSolver(const RCP<ParameterList> &pl);



#endif // RYTHMOS_TIME_STEP_NONLINEAR_SOLVER_DEF_HPP