/usr/include/trilinos/Rythmos_ExplicitTaylorPolynomialStepper.hpp is in libtrilinos-rythmos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 | //@HEADER
// ***********************************************************************
//
// Rythmos Package
// Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Todd S. Coffey (tscoffe@sandia.gov)
//
// ***********************************************************************
//@HEADER
#ifndef RYTHMOS_EXPLICIT_TAYLOR_POLYNOMIAL_STEPPER_H
#define RYTHMOS_EXPLICIT_TAYLOR_POLYNOMIAL_STEPPER_H
#include "Rythmos_StepperBase.hpp"
#include "Rythmos_StepperHelpers.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_VerboseObjectParameterListHelpers.hpp"
#include "Thyra_VectorBase.hpp"
#include "Thyra_ModelEvaluator.hpp"
#include "Thyra_ModelEvaluatorHelpers.hpp"
#include "Thyra_PolynomialVectorTraits.hpp"
#include "RTOpPack_RTOpTHelpers.hpp"
namespace Rythmos {
//! Reduction operator for a logarithmic infinity norm
/*!
* This class implements a reduction operator for computing the
* logarithmic infinity norm of a vector:
* \f[
* \|1 + log(x)\|_\infty.
* \f]
*/
RTOP_ROP_1_REDUCT_SCALAR( ROpLogNormInf,
typename ScalarTraits<Scalar>::magnitudeType, // Reduction object type
RTOpPack::REDUCT_TYPE_MAX // Reduction object reduction
)
{
using Teuchos::as;
typedef ScalarTraits<Scalar> ST;
typedef typename ST::magnitudeType ScalarMag;
const ScalarMag mag = std::log(as<ScalarMag>(1e-100) + ST::magnitude(v0));
reduct = TEUCHOS_MAX( mag, reduct );
}
/*!
* \brief Implementation of Rythmos::Stepper for explicit Taylor polynomial
* time integration of ODEs.
*/
/*!
* Let
* \f[
* \frac{dx}{dt} = f(x,t), \quad x(t_0) = a
* \f]
* be an ODE initial-value problem. This class implements a single time
* step of an explicit Taylor polynomial time integration method for
* computing numerical solutions to the IVP. The method consists of
* computing a local truncated Taylor series solution to the ODE (section
* \ref Rythmos_ETI_local_TS), estimating a step size within the radius
* of convergence of the Taylor series (section \ref Rythmos_ETI_stepsize)
* and then summing the polynomial at that step to compute the next
* point in the numerical integration (section \ref Rythmos_ETI_sum).
* The algorithmic parameters to the method are controlled through the
* <tt> params </tt> argument to the constructor which are described in
* section \ref Rythmos_ETI_params.
*
* \section Rythmos_ETI_local_TS Computing the Taylor Polynomial
*
* Let
* \f[
* x(t) = \sum_{k=0}^\infty x_k (t-t_0)^k
* \f]
* be a power series solution to the IVP above. Then \f$f(x(t))\f$ can
* be expaned in a power series along the solution curve \f$x(t)\f$:
* \f[
* f(x(t),t) = \sum_{k=0}^\infty f_k (t-t_0)^k
* \f]
* where
* \f[
* f_k = \left.\frac{1}{k!}\frac{d^k}{dt^k} f(x(t),t)\right|_{t=t_0}.
* \f]
* By differentiating the power series for \f$x(t)\f$ to compute a power
* series for \f$dx/dt\f$ and then comparing coefficients in the
* equation \f$dx/dt=f(x(t),t)\f$ we find the following recurrence
* relationship for the Taylor coefficients \f$\{x_k\}\f$:
* \f[
* x_{k+1} = \frac{1}{k+1} f_k, \quad k=0,1,\dots
* \f]
* where each coefficient \f$f_k\f$ is a function only of
* \f$x_0,\dots,x_k\f$ and can be efficiently computed using the Taylor
* polynomial mode of automatic differentation. This allows the Taylor
* coefficients to be iteratively computed starting with the initial point
* \f$x_0\f$ up to some fixed degree \f$d\f$ to yield a local truncated
* Taylor polynomial approximating the solution to the IVP.
*
* \section Rythmos_ETI_stepsize Computing a Step Size
*
* With the truncated Taylor polynomial solution
* \f$\tilde{x}(t) = \sum_{k=0}^d x_k (t-t_0)^k\f$ in hand, a step size
* is chosen by estimating the truncation error in the polynomial solution
* and forcing this error to be less than some prescribed tolerance. Let
* \f[
* \rho = \max_{d/2\leq k\leq d} (1+\|x_k\|_\infty)^{1/k}
* \f]
* so \f$\|x_k\|_\infty\leq\rho^k\f$ for \f$d/2\leq k \leq d\f$. Assume
* \f$\|x_k\|\leq\rho^k\f$ for \f$k>d\f$ as well, then for any \f$h<1/\rho\f$
* it can be shown that the truncation error is bounded by
* \f[
* \frac{(\rho h)^{d+1}}{1-\rho h}.
* \f]
* A step size \f$h\f$ is then given by
* \f[
* h = \exp\left(\frac{1}{d+1}\log\varepsilon-\log\rho\right)
* \f]
* for some error tolerance \f$\varepsilon\f$ given an error of approximatly
* \f$\varepsilon\f$.
*
* \section Rythmos_ETI_sum Summing the Polynomial
*
* With a step size \f$h\f$ computed,
* \f[
* x^\ast = \sum_{k=0}^d x_k h^k
* \f]
* is used as the next integration point where a new Taylor series is
* calculated. Local error per step can also be controlled by computing
* \f$\|dx^\ast/dt - f(x^\ast)\|_\infty\f$. If this error is too large,
* the step size can be reduced to an appropriate size.
*
* \section Rythmos_ETI_params Parameters
*
* This method recognizes the following algorithmic parameters that can
* be set in the <tt> params </tt> argument to the constructor:
* <ul>
* <li> "Initial Time" (Scalar) [Default = 0] Initial integration time
* <li> "Final Time" (Scalar) [Default = 1] Final integration time
* <li> "Local Error Tolerance" (Magnitude) [Default = 1.0e-10] Error tolerance on \f$\|dx^\ast/dt - f(x^\ast)\|_\infty\f$ as described above.
* <li> "Minimum Step Size" (Scalar) [Default = 1.0e-10] Minimum step size
* <li> "Maximum Step Size" (Scalar) [Default = 1.0] Maximum step size
* <li> "Taylor Polynomial Degree" (int) [Default = 40] Degree of local Taylor polynomial approximation.
* </ul>
*/
template<class Scalar>
class ExplicitTaylorPolynomialStepper : virtual public StepperBase<Scalar>
{
public:
//! Typename of magnitude of scalars
typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType ScalarMag;
//! Constructor
ExplicitTaylorPolynomialStepper();
//! Destructor
~ExplicitTaylorPolynomialStepper();
//! Return the space for <tt>x</tt> and <tt>x_dot</tt>
RCP<const Thyra::VectorSpaceBase<Scalar> > get_x_space() const;
//! Set model
void setModel(const RCP<const Thyra::ModelEvaluator<Scalar> >& model);
//! Set model
void setNonconstModel(const RCP<Thyra::ModelEvaluator<Scalar> >& model);
/** \brief . */
RCP<const Thyra::ModelEvaluator<Scalar> > getModel() const;
/** \brief . */
RCP<Thyra::ModelEvaluator<Scalar> > getNonconstModel();
/** \brief . */
void setInitialCondition(
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &initialCondition
);
/** \brief . */
Thyra::ModelEvaluatorBase::InArgs<Scalar> getInitialCondition() const;
//! Take a time step of magnitude \c dt
Scalar takeStep(Scalar dt, StepSizeType flag);
/** \brief . */
const StepStatus<Scalar> getStepStatus() const;
/// Redefined from Teuchos::ParameterListAcceptor
/** \brief . */
void setParameterList(RCP<Teuchos::ParameterList> const& paramList);
/** \brief . */
RCP<Teuchos::ParameterList> getNonconstParameterList();
/** \brief . */
RCP<Teuchos::ParameterList> unsetParameterList();
/** \brief . */
RCP<const Teuchos::ParameterList> getValidParameters() const;
/** \brief . */
std::string description() const;
/** \brief . */
void describe(
Teuchos::FancyOStream &out,
const Teuchos::EVerbosityLevel verbLevel = Teuchos::Describable::verbLevel_default
) const;
/// Redefined from InterpolationBufferBase
/// Add points to buffer
void addPoints(
const Array<Scalar>& time_vec
,const Array<RCP<const Thyra::VectorBase<Scalar> > >& x_vec
,const Array<RCP<const Thyra::VectorBase<Scalar> > >& xdot_vec
);
/// Get values from buffer
void getPoints(
const Array<Scalar>& time_vec
,Array<RCP<const Thyra::VectorBase<Scalar> > >* x_vec
,Array<RCP<const Thyra::VectorBase<Scalar> > >* xdot_vec
,Array<ScalarMag>* accuracy_vec) const;
/// Fill data in from another interpolation buffer
void setRange(
const TimeRange<Scalar>& range,
const InterpolationBufferBase<Scalar> & IB
);
/** \brief . */
TimeRange<Scalar> getTimeRange() const;
/// Get interpolation nodes
void getNodes(Array<Scalar>* time_vec) const;
/// Remove interpolation nodes
void removeNodes(Array<Scalar>& time_vec);
/// Get order of interpolation
int getOrder() const;
private:
//! Default initialize all data
void defaultInitializAll_();
//! Computes a local Taylor series solution to the ODE
void computeTaylorSeriesSolution_();
/*!
* \brief Computes of log of the estimated radius of convergence of the
* Taylor series.
*/
ScalarMag estimateLogRadius_();
//! Underlying model
RCP<const Thyra::ModelEvaluator<Scalar> > model_;
//! Parameter list
RCP<Teuchos::ParameterList> parameterList_;
//! Current solution vector
RCP<Thyra::VectorBase<Scalar> > x_vector_;
//! Previous solution vector
RCP<Thyra::VectorBase<Scalar> > x_vector_old_;
//! Vector store approximation to \f$dx/dt\f$
RCP<Thyra::VectorBase<Scalar> > x_dot_vector_;
//! Previous Vector store approximation to \f$dx/dt\f$
RCP<Thyra::VectorBase<Scalar> > x_dot_vector_old_;
//! Vector store ODE residual
RCP<Thyra::VectorBase<Scalar> > f_vector_;
//! Polynomial for x
RCP<Teuchos::Polynomial<Thyra::VectorBase<Scalar> > > x_poly_;
//! Polynomial for f
RCP<Teuchos::Polynomial<Thyra::VectorBase<Scalar> > > f_poly_;
//! Base point set by setInitialCondition
Thyra::ModelEvaluatorBase::InArgs<Scalar> basePoint_;
//! Initial Condition Flag
bool haveInitialCondition_;
//! Number of steps taken
int numSteps_;
//! Current time
Scalar t_;
//! Current step size
Scalar dt_;
//! Initial integration time
Scalar t_initial_;
//! Final integration time
Scalar t_final_;
//! Local error tolerance for each time step
ScalarMag local_error_tolerance_;
//! Smallest acceptable time step size
Scalar min_step_size_;
//! Largest acceptable time step size
Scalar max_step_size_;
//! Degree of local Taylor series expansion
unsigned int degree_;
//! Used in time step size computation
Scalar linc_;
};
//! Computs logarithmic infinity norm of a vector using ROpLogNormInf.
template <typename Scalar>
typename Teuchos::ScalarTraits<Scalar>::magnitudeType
log_norm_inf(const Thyra::VectorBase<Scalar>& x)
{
ROpLogNormInf<Scalar> log_norm_inf_op;
RCP<RTOpPack::ReductTarget> log_norm_inf_targ =
log_norm_inf_op.reduct_obj_create();
Thyra::applyOp<Scalar>(log_norm_inf_op,
Teuchos::tuple(Teuchos::ptrFromRef(x))(), Teuchos::null,
log_norm_inf_targ.ptr());
return log_norm_inf_op(*log_norm_inf_targ);
}
// Non-member constructor
template<class Scalar>
RCP<ExplicitTaylorPolynomialStepper<Scalar> > explicitTaylorPolynomialStepper()
{
RCP<ExplicitTaylorPolynomialStepper<Scalar> > stepper = rcp(new ExplicitTaylorPolynomialStepper<Scalar>());
return stepper;
}
template<class Scalar>
ExplicitTaylorPolynomialStepper<Scalar>::ExplicitTaylorPolynomialStepper()
{
this->defaultInitializAll_();
numSteps_ = 0;
}
template<class Scalar>
ExplicitTaylorPolynomialStepper<Scalar>::~ExplicitTaylorPolynomialStepper()
{
}
template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::defaultInitializAll_()
{
typedef Teuchos::ScalarTraits<Scalar> ST;
Scalar nan = ST::nan();
model_ = Teuchos::null;
parameterList_ = Teuchos::null;
x_vector_ = Teuchos::null;
x_vector_old_ = Teuchos::null;
x_dot_vector_ = Teuchos::null;
x_dot_vector_old_ = Teuchos::null;
f_vector_ = Teuchos::null;
x_poly_ = Teuchos::null;
f_poly_ = Teuchos::null;
haveInitialCondition_ = false;
numSteps_ = -1;
t_ = nan;
dt_ = nan;
t_initial_ = nan;
t_final_ = nan;
local_error_tolerance_ = nan;
min_step_size_ = nan;
max_step_size_ = nan;
degree_ = 0;
linc_ = nan;
}
template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::setModel(
const RCP<const Thyra::ModelEvaluator<Scalar> >& model
)
{
TEUCHOS_TEST_FOR_EXCEPT( is_null(model) );
assertValidModel( *this, *model );
model_ = model;
f_vector_ = Thyra::createMember(model_->get_f_space());
}
template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::setNonconstModel(
const RCP<Thyra::ModelEvaluator<Scalar> >& model
)
{
this->setModel(model); // TODO 09/09/09 tscoffe: use ConstNonconstObjectContainer!
}
template<class Scalar>
RCP<const Thyra::ModelEvaluator<Scalar> >
ExplicitTaylorPolynomialStepper<Scalar>::getModel() const
{
return model_;
}
template<class Scalar>
RCP<Thyra::ModelEvaluator<Scalar> >
ExplicitTaylorPolynomialStepper<Scalar>::getNonconstModel()
{
return Teuchos::null;
}
template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::setInitialCondition(
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &initialCondition
)
{
typedef Teuchos::ScalarTraits<Scalar> ST;
typedef Thyra::ModelEvaluatorBase MEB;
basePoint_ = initialCondition;
if (initialCondition.supports(MEB::IN_ARG_t)) {
t_ = initialCondition.get_t();
} else {
t_ = ST::zero();
}
dt_ = ST::zero();
x_vector_ = initialCondition.get_x()->clone_v();
x_dot_vector_ = x_vector_->clone_v();
x_vector_old_ = x_vector_->clone_v();
x_dot_vector_old_ = x_dot_vector_->clone_v();
haveInitialCondition_ = true;
}
template<class Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
ExplicitTaylorPolynomialStepper<Scalar>::getInitialCondition() const
{
return basePoint_;
}
template<class Scalar>
Scalar
ExplicitTaylorPolynomialStepper<Scalar>::takeStep(Scalar dt, StepSizeType flag)
{
typedef Teuchos::ScalarTraits<Scalar> ST;
TEUCHOS_ASSERT( haveInitialCondition_ );
TEUCHOS_ASSERT( !is_null(model_) );
TEUCHOS_ASSERT( !is_null(parameterList_) ); // parameters are nan otherwise
V_V(outArg(*x_vector_old_),*x_vector_); // x_vector_old = x_vector
V_V(outArg(*x_dot_vector_old_),*x_dot_vector_); // x_dot_vector_old = x_dot_vector
if (x_poly_ == Teuchos::null) {
x_poly_ = Teuchos::rcp(new Teuchos::Polynomial<Thyra::VectorBase<Scalar> >(0,*x_vector_,degree_));
}
if (f_poly_ == Teuchos::null) {
f_poly_ = Teuchos::rcp(new Teuchos::Polynomial<Thyra::VectorBase<Scalar> >(0, *f_vector_, degree_));
}
if (flag == STEP_TYPE_VARIABLE) {
// If t_ > t_final_, we're done
if (t_ > t_final_) {
dt_ = ST::zero();
return dt_;
}
// Compute a local truncated Taylor series solution to system
computeTaylorSeriesSolution_();
// Estimate log of radius of convergence of Taylor series
Scalar rho = estimateLogRadius_();
// Set step size
Scalar shadowed_dt = std::exp(linc_ - rho);
// If step size is too big, reduce
if (shadowed_dt > max_step_size_) {
shadowed_dt = max_step_size_;
}
// If step goes past t_final_, reduce
if (t_+shadowed_dt > t_final_) {
shadowed_dt = t_final_-t_;
}
ScalarMag local_error;
do {
// compute x(t_+shadowed_dt), xdot(t_+shadowed_dt)
x_poly_->evaluate(shadowed_dt, x_vector_.get(), x_dot_vector_.get());
// compute f( x(t_+shadowed_dt), t_+shadowed_dt )
eval_model_explicit<Scalar>(*model_,basePoint_,*x_vector_,t_+shadowed_dt,Teuchos::outArg(*f_vector_));
// compute || xdot(t_+shadowed_dt) - f( x(t_+shadowed_dt), t_+shadowed_dt ) ||
Thyra::Vp_StV(x_dot_vector_.ptr(), -ST::one(),
*f_vector_);
local_error = norm_inf(*x_dot_vector_);
if (local_error > local_error_tolerance_) {
shadowed_dt *= 0.7;
}
} while (local_error > local_error_tolerance_ && shadowed_dt > min_step_size_);
// Check if minimum step size was reached
TEUCHOS_TEST_FOR_EXCEPTION(shadowed_dt < min_step_size_,
std::runtime_error,
"ExplicitTaylorPolynomialStepper<Scalar>::takeStep(): "
<< "Step size reached minimum step size "
<< min_step_size_ << ". Failing step." );
// Increment t_
t_ += shadowed_dt;
numSteps_++;
dt_ = shadowed_dt;
return shadowed_dt;
} else {
// If t_ > t_final_, we're done
if (t_ > t_final_) {
dt_ = Teuchos::ScalarTraits<Scalar>::zero();
return dt_;
}
// Compute a local truncated Taylor series solution to system
computeTaylorSeriesSolution_();
// If step size is too big, reduce
if (dt > max_step_size_) {
dt = max_step_size_;
}
// If step goes past t_final_, reduce
if (t_+dt > t_final_) {
dt = t_final_-t_;
}
// compute x(t_+dt)
x_poly_->evaluate(dt, x_vector_.get());
// Increment t_
t_ += dt;
numSteps_++;
dt_ = dt;
return dt;
}
}
template<class Scalar>
const StepStatus<Scalar>
ExplicitTaylorPolynomialStepper<Scalar>::getStepStatus() const
{
// typedef Teuchos::ScalarTraits<Scalar> ST; // unused
StepStatus<Scalar> stepStatus;
if (!haveInitialCondition_) {
stepStatus.stepStatus = STEP_STATUS_UNINITIALIZED;
}
else if (numSteps_ == 0) {
stepStatus.stepStatus = STEP_STATUS_UNKNOWN;
stepStatus.stepSize = dt_;
stepStatus.order = this->getOrder();
stepStatus.time = t_;
stepStatus.solution = x_vector_;
stepStatus.solutionDot = x_dot_vector_;
if (!is_null(model_)) {
stepStatus.residual = f_vector_;
}
}
else {
stepStatus.stepStatus = STEP_STATUS_CONVERGED;
stepStatus.stepSize = dt_;
stepStatus.order = this->getOrder();
stepStatus.time = t_;
stepStatus.solution = x_vector_;
stepStatus.solutionDot = x_dot_vector_;
stepStatus.residual = f_vector_;
}
return(stepStatus);
}
template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::setParameterList(RCP<Teuchos::ParameterList> const& paramList)
{
typedef Teuchos::ScalarTraits<Scalar> ST;
TEUCHOS_TEST_FOR_EXCEPT(is_null(paramList));
paramList->validateParameters(*this->getValidParameters());
parameterList_ = paramList;
Teuchos::readVerboseObjectSublist(&*parameterList_,this);
// Get initial time
t_initial_ = parameterList_->get("Initial Time", ST::zero());
// Get final time
t_final_ = parameterList_->get("Final Time", ST::one());
// Get local error tolerance
local_error_tolerance_ =
parameterList_->get("Local Error Tolerance", ScalarMag(1.0e-10));
// Get minimum step size
min_step_size_ = parameterList_->get("Minimum Step Size", Scalar(1.0e-10));
// Get maximum step size
max_step_size_ = parameterList_->get("Maximum Step Size", Scalar(1.0));
// Get degree_ of Taylor polynomial expansion
degree_ = parameterList_->get("Taylor Polynomial Degree", Teuchos::as<unsigned int>(40));
linc_ = Scalar(-16.0*std::log(10.0)/degree_);
t_ = t_initial_;
}
template<class Scalar>
RCP<Teuchos::ParameterList>
ExplicitTaylorPolynomialStepper<Scalar>::getNonconstParameterList()
{
return parameterList_;
}
template<class Scalar>
RCP<Teuchos::ParameterList>
ExplicitTaylorPolynomialStepper<Scalar>:: unsetParameterList()
{
RCP<Teuchos::ParameterList> temp_param_list = parameterList_;
parameterList_ = Teuchos::null;
return temp_param_list;
}
template<class Scalar>
RCP<const Teuchos::ParameterList>
ExplicitTaylorPolynomialStepper<Scalar>::getValidParameters() const
{
typedef ScalarTraits<Scalar> ST;
static RCP<const ParameterList> validPL;
if (is_null(validPL)) {
RCP<ParameterList> pl = Teuchos::parameterList();
pl->set<Scalar>("Initial Time", ST::zero());
pl->set<Scalar>("Final Time", ST::one());
pl->set<ScalarMag>("Local Error Tolerance", ScalarMag(1.0e-10));
pl->set<Scalar>("Minimum Step Size", Scalar(1.0e-10));
pl->set<Scalar>("Maximum Step Size", Scalar(1.0));
pl->set<unsigned int>("Taylor Polynomial Degree", 40);
Teuchos::setupVerboseObjectSublist(&*pl);
validPL = pl;
}
return validPL;
}
template<class Scalar>
std::string ExplicitTaylorPolynomialStepper<Scalar>::description() const
{
std::string name = "Rythmos::ExplicitTaylorPolynomialStepper";
return name;
}
template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::describe(
Teuchos::FancyOStream &out,
const Teuchos::EVerbosityLevel verbLevel
) const
{
if (verbLevel == Teuchos::VERB_EXTREME) {
out << description() << "::describe" << std::endl;
out << "model_ = " << std::endl;
out << Teuchos::describe(*model_, verbLevel) << std::endl;
out << "x_vector_ = " << std::endl;
out << Teuchos::describe(*x_vector_, verbLevel) << std::endl;
out << "x_dot_vector_ = " << std::endl;
out << Teuchos::describe(*x_dot_vector_, verbLevel) << std::endl;
out << "f_vector_ = " << std::endl;
out << Teuchos::describe(*f_vector_, verbLevel) << std::endl;
out << "x_poly_ = " << std::endl;
out << Teuchos::describe(*x_poly_, verbLevel) << std::endl;
out << "f_poly_ = " << std::endl;
out << Teuchos::describe(*f_poly_, verbLevel) << std::endl;
out << "t_ = " << t_ << std::endl;
out << "t_initial_ = " << t_initial_ << std::endl;
out << "t_final_ = " << t_final_ << std::endl;
out << "local_error_tolerance_ = " << local_error_tolerance_ << std::endl;
out << "min_step_size_ = " << min_step_size_ << std::endl;
out << "max_step_size_ = " << max_step_size_ << std::endl;
out << "degree_ = " << degree_ << std::endl;
out << "linc_ = " << linc_ << std::endl;
}
}
template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::addPoints(
const Array<Scalar>& time_vec
,const Array<RCP<const Thyra::VectorBase<Scalar> > >& x_vec
,const Array<RCP<const Thyra::VectorBase<Scalar> > >& xdot_vec
)
{
TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,"Error, addPoints is not implemented for the ExplicitTaylorPolynomialStepper.\n");
}
template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::getPoints(
const Array<Scalar>& time_vec
,Array<RCP<const Thyra::VectorBase<Scalar> > >* x_vec
,Array<RCP<const Thyra::VectorBase<Scalar> > >* xdot_vec
,Array<ScalarMag>* accuracy_vec) const
{
TEUCHOS_ASSERT( haveInitialCondition_ );
using Teuchos::constOptInArg;
using Teuchos::null;
defaultGetPoints<Scalar>(
t_-dt_,constOptInArg(*x_vector_old_),constOptInArg(*x_dot_vector_old_),
t_,constOptInArg(*x_vector_),constOptInArg(*x_dot_vector_),
time_vec,ptr(x_vec),ptr(xdot_vec),ptr(accuracy_vec),
Ptr<InterpolatorBase<Scalar> >(null)
);
}
template<class Scalar>
TimeRange<Scalar> ExplicitTaylorPolynomialStepper<Scalar>::getTimeRange() const
{
if (!haveInitialCondition_) {
return invalidTimeRange<Scalar>();
} else {
return(TimeRange<Scalar>(t_-dt_,t_));
}
}
template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::getNodes(Array<Scalar>* time_vec) const
{
TEUCHOS_ASSERT( time_vec != NULL );
time_vec->clear();
if (!haveInitialCondition_) {
return;
} else {
time_vec->push_back(t_);
}
if (numSteps_ > 0) {
time_vec->push_back(t_-dt_);
}
}
template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::removeNodes(Array<Scalar>& time_vec)
{
TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,"Error, removeNodes is not implemented for the ExplicitTaylorPolynomialStepper.\n");
}
template<class Scalar>
int ExplicitTaylorPolynomialStepper<Scalar>::getOrder() const
{
return degree_;
}
//
// Definitions of protected methods
//
template<class Scalar>
void
ExplicitTaylorPolynomialStepper<Scalar>::computeTaylorSeriesSolution_()
{
RCP<Thyra::VectorBase<Scalar> > tmp;
// Set degree_ of polynomials to 0
x_poly_->setDegree(0);
f_poly_->setDegree(0);
// Set degree_ 0 coefficient
x_poly_->setCoefficient(0, *x_vector_);
for (unsigned int k=1; k<=degree_; k++) {
// compute [f] = f([x])
eval_model_explicit_poly(*model_, basePoint_, *x_poly_, t_, Teuchos::outArg(*f_poly_));
x_poly_->setDegree(k);
f_poly_->setDegree(k);
// x[k] = f[k-1] / k
tmp = x_poly_->getCoefficient(k);
copy(*(f_poly_->getCoefficient(k-1)), tmp.ptr());
scale(Scalar(1.0)/Scalar(k), tmp.ptr());
}
}
template<class Scalar>
typename ExplicitTaylorPolynomialStepper<Scalar>::ScalarMag
ExplicitTaylorPolynomialStepper<Scalar>::estimateLogRadius_()
{
ScalarMag rho = 0;
ScalarMag tmp;
for (unsigned int k=degree_/2; k<=degree_; k++) {
tmp = log_norm_inf(*(x_poly_->getCoefficient(k))) / k;
if (tmp > rho) {
rho = tmp;
}
}
return rho;
}
template<class Scalar>
RCP<const Thyra::VectorSpaceBase<Scalar> > ExplicitTaylorPolynomialStepper<Scalar>::get_x_space() const
{
if (haveInitialCondition_) {
return(x_vector_->space());
} else {
return Teuchos::null;
}
}
} // namespace Rythmos
#endif // RYTHMOS_EXPLICIT_TAYLOR_POLYNOMIAL_STEPPER_H
|