/usr/include/trilinos/Rythmos_AdjointModelEvaluator.hpp is in libtrilinos-rythmos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 | //@HEADER
// ***********************************************************************
//
// Rythmos Package
// Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Todd S. Coffey (tscoffe@sandia.gov)
//
// ***********************************************************************
//@HEADER
#ifndef RYTHMOS_ADJOINT_MODEL_EVALUATOR_HPP
#define RYTHMOS_ADJOINT_MODEL_EVALUATOR_HPP
#include "Rythmos_IntegratorBase.hpp"
#include "Thyra_ModelEvaluator.hpp" // Interface
#include "Thyra_StateFuncModelEvaluatorBase.hpp" // Implementation
#include "Thyra_ModelEvaluatorDelegatorBase.hpp"
#include "Thyra_DefaultScaledAdjointLinearOp.hpp"
#include "Thyra_DefaultAdjointLinearOpWithSolve.hpp"
#include "Thyra_VectorStdOps.hpp"
#include "Thyra_MultiVectorStdOps.hpp"
#include "Teuchos_implicit_cast.hpp"
#include "Teuchos_Assert.hpp"
namespace Rythmos {
/** \brief Standard concrete adjoint ModelEvaluator for time-constant mass
* matrix models.
*
* \section Rythmos_AdjointModelEvaluator_Overview_sec Overview
*
* This concrete ModelEvalautor subclass takes any suitable ModelEvalautor
* object and creates the adjoint model for use by any appropriate time
* integration method..
*
* When the mass matrix <tt>d(f)/d(x_dot)</tt> is not a function of <tt>t</tt>
* (which this class assumes), then the adjoint model can be represented as:
\verbatim
d(f)/d(x_dot)^T * lambda_dot - d(f)/d(x)^T * lambda + d(g)/d(x)^T
\endverbatim
* This model is stated in reverse time <tt>t_bar <:
* [0,t_final-t_initial]</tt> (with <tt>d/d(t) = -d/d(t_bar)</tt>) which
* results in the new adjoint formuation
\verbatim
f_bar(x_bar_dot, x_bar, t_bar)
= d(f)/d(x_dot)^T * lambda_rev_dot + d(f)/d(x)^T * lambda - d(g)/d(x)^T
\endverbatim
* Where:<ul>
*
* <li> <tt>t_bar <: [0,t_final-t_initial]</tt> is reverse time defined so
* that <tt>t = t_final - t_bar<tt> and <tt>d/d(t) = -d/d(t_bar)</tt>
*
* <li> <tt>x_bar = lambda</tt> is the original adjoint
*
* <li> <tt>x_bar_dot = lambda_rev_dot</tt> is the reverse-time adjoint time
* derivative where <tt>lambda_dot = -lambda_rev_dot</tt>.
*
* <li> <tt>d(f)/d(x_dot)</tt> and <tt>d(f)/d(x)</tt> are evaluated at
* <tt>x_dot(t_final-t_bar)</tt> and <tt>x(t_final-t_bar)</tt>.
*
* The forward state values <tt>x</tt> and <tt>x_dot</tt> are given through an
* <tt>InterpolationBufferBase</tt> object that is provided by the client.
*
* </ul>
*
* <b>WARNING!</b> When interacting with this interface you must take note
* that reverse time is being used as defined above! This is especially
* important if you are going to use lambda_dot for anything. You have been
* warned!
*
* \section Rythmos_AdjointModelEvaluator_ImplementationNotes_sec Implementation Notes
*
* Here, we describe how the residual of the adjoint system
* <tt>f_bar(...)</tt> is actually computed from the capabilities of the
* underlying forward model.
*
* First, note that
\verbatim
W_bar = alpha_bar * d(f_bar)/d(x_bar_dot) + beta_bar * d(f_bar)/d(x_bar)
= alpha_bar * d(f)/d(x_dot)^T + beta_bar * d(f)/d(x)^T
\endverbatim
* This means that <tt>W_bar</tt> can be computed directly as
* <tt>W_bar_adj</tt> on the underlying forward state ModelEvaluator object as:
\verbatim
W_bar_adj = alpha_bar * d(f)/d(x_dot) + beta_bar * d(f)/d(x)
\endverbatim
* by passing in <tt>alpha = alpha_bar</tt> and <tt>beta = beta_bar</tt>. We
* then use the subclass <tt>Thyra::DefaultAdjointLinearOpWithSolve</tt> to
* create <tt>W_bar = adjoint(W_bar_adj)</tt> and that is it.
*
* Now, given that the client will request the form of <tt>W_bar =
* adjoint(W_bar_adj)</tt> described above, we want to use this
* <tt>W_bar_adj</tt> object in computing the adjoint equation residual
* <tt>f_bar</tt>. To see how to do this, note that from the above definition
* of <tt>W_bar</tt> that we have:
\verbatim
d(f)/d(x)^T = 1/beta_bar * W_bar_adj^T
- alpha_bar/beta_bar * d(f)/d(x_dot)^T
\endverbatim
* By using the above equation for <tt>d(f)/d(x)^T</tt>, we can eliminate
* <tt>d(f)/d(x)</tt> from <tt>f_bar</tt> to yield:
\verbatim
f_bar = d(f)/d(x_dot)^T * lambda_hat + 1/beta_bar * W_bar_adj^T * lambda
- d(g)/d(x)^T
where:
lambda_hat = lambda_rev_dot - alpha_bar/beta_bar * lambda
\endverbatim
* Above, we see we need to compute <tt>d(f)/d(x_dot)</tt> sperately from
* <tt>W_bar_adj</tt> from the underlying forward ModelEvaluator. Note that
* for many forward models, that <tt>d(f)/d(x_dot)</tt> will actually be
* constant and can be computed up front and reused throughout.
*
* \todo Add support to response function derivative source d(g)/d(x)^T.
*
* \todo Add support for more than one adjoint through the
* DefaultMultiVectorProductVector[Space] sublasses.
*
* \todo Add functionality to the Thyra::ModelEvaluator::OutArgs class to
* communicate the dependence of a function on its input arguments. We need
* to know the exact dependance of <tt>f(...)<tt> on <tt>x_dot</tt>,
* <tt>x</tt>, and <tt>t</tt> to know if this class can be used and what
* shortcuts can be used with it.
*/
template<class Scalar>
class AdjointModelEvaluator
: virtual public Thyra::StateFuncModelEvaluatorBase<Scalar>
{
public:
/** \name Constructors/Intializers/Accessors */
//@{
/** \brief . */
AdjointModelEvaluator();
/** \brief Set the underlying forward model and base point. */
void setFwdStateModel(
const RCP<const Thyra::ModelEvaluator<Scalar> > &fwdStateModel,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &basePoint );
/** \brief Set the forward time range that this adjoint model will be
* defined over.
*/
void setFwdTimeRange( const TimeRange<Scalar> &fwdTimeRange );
/** \brief Set the interpolation buffer that will return values of the state
* solution <tt>x</tt> and <tt>x_dot</tt> at various points <tt>t</tt> as
* the adjoint is integrated backwards in time.
*
* NOTE: If the model is linear in <tt>x</tt> and <tt>x_dot</tt>, then the
* client can avoid setting this interpolation buffer since it will never be
* called.
*
* NOTE: This object need be fully initialized at this point. It only needs
* to be fully initialized before this->evalModel(...) is called. This just
* sets up the basic link to this object.
*/
void setFwdStateSolutionBuffer(
const RCP<const InterpolationBufferBase<Scalar> > &fwdStateSolutionBuffer );
//@}
/** \name Public functions overridden from ModelEvaulator. */
//@{
/** \brief . */
RCP<const Thyra::VectorSpaceBase<Scalar> > get_x_space() const;
/** \brief . */
RCP<const Thyra::VectorSpaceBase<Scalar> > get_f_space() const;
/** \brief . */
Thyra::ModelEvaluatorBase::InArgs<Scalar> getNominalValues() const;
/** \brief . */
RCP<Thyra::LinearOpWithSolveBase<Scalar> > create_W() const;
/** \brief . */
RCP<Thyra::LinearOpBase<Scalar> > create_W_op() const;
/** \brief . */
Thyra::ModelEvaluatorBase::InArgs<Scalar> createInArgs() const;
//@}
private:
/** \name Private functions overridden from ModelEvaulatorDefaultBase. */
//@{
/** \brief . */
Thyra::ModelEvaluatorBase::OutArgs<Scalar> createOutArgsImpl() const;
/** \brief . */
void evalModelImpl(
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &inArgs_bar,
const Thyra::ModelEvaluatorBase::OutArgs<Scalar> &outArgs_bar
) const;
//@}
private:
// /////////////////////////
// Private data members
RCP<const Thyra::ModelEvaluator<Scalar> > fwdStateModel_;
Thyra::ModelEvaluatorBase::InArgs<Scalar> basePoint_;
TimeRange<Scalar> fwdTimeRange_;
RCP<const InterpolationBufferBase<Scalar> > fwdStateSolutionBuffer_;
mutable bool isInitialized_;
mutable Thyra::ModelEvaluatorBase::InArgs<Scalar> prototypeInArgs_bar_;
mutable Thyra::ModelEvaluatorBase::OutArgs<Scalar> prototypeOutArgs_bar_;
mutable Thyra::ModelEvaluatorBase::InArgs<Scalar> adjointNominalValues_;
mutable RCP<Thyra::LinearOpBase<Scalar> > my_W_bar_adj_op_;
mutable RCP<Thyra::LinearOpBase<Scalar> > my_d_f_d_x_dot_op_;
// /////////////////////////
// Private member functions
// Just-in-time initialization function
void initialize() const;
};
/** \brief Nonmember constructor.
*
* \relates AdjointModelEvaluator
*/
template<class Scalar>
RCP<AdjointModelEvaluator<Scalar> >
adjointModelEvaluator(
const RCP<const Thyra::ModelEvaluator<Scalar> > &fwdStateModel,
const TimeRange<Scalar> &fwdTimeRange
)
{
RCP<AdjointModelEvaluator<Scalar> >
adjointModel = Teuchos::rcp(new AdjointModelEvaluator<Scalar>);
adjointModel->setFwdStateModel(fwdStateModel, fwdStateModel->getNominalValues());
adjointModel->setFwdTimeRange(fwdTimeRange);
return adjointModel;
}
// /////////////////////////////////
// Implementations
// Constructors/Intializers/Accessors
template<class Scalar>
AdjointModelEvaluator<Scalar>::AdjointModelEvaluator()
:isInitialized_(false)
{}
template<class Scalar>
void AdjointModelEvaluator<Scalar>::setFwdStateModel(
const RCP<const Thyra::ModelEvaluator<Scalar> > &fwdStateModel,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &basePoint
)
{
TEUCHOS_TEST_FOR_EXCEPT(is_null(fwdStateModel));
fwdStateModel_ = fwdStateModel;
basePoint_ = basePoint;
isInitialized_ = false;
}
template<class Scalar>
void AdjointModelEvaluator<Scalar>::setFwdTimeRange(
const TimeRange<Scalar> &fwdTimeRange )
{
fwdTimeRange_ = fwdTimeRange;
}
template<class Scalar>
void AdjointModelEvaluator<Scalar>::setFwdStateSolutionBuffer(
const RCP<const InterpolationBufferBase<Scalar> > &fwdStateSolutionBuffer )
{
TEUCHOS_TEST_FOR_EXCEPT(is_null(fwdStateSolutionBuffer));
fwdStateSolutionBuffer_ = fwdStateSolutionBuffer;
}
// Public functions overridden from ModelEvaulator
template<class Scalar>
RCP<const Thyra::VectorSpaceBase<Scalar> >
AdjointModelEvaluator<Scalar>::get_x_space() const
{
initialize();
return fwdStateModel_->get_f_space();
}
template<class Scalar>
RCP<const Thyra::VectorSpaceBase<Scalar> >
AdjointModelEvaluator<Scalar>::get_f_space() const
{
initialize();
return fwdStateModel_->get_x_space();
}
template<class Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
AdjointModelEvaluator<Scalar>::getNominalValues() const
{
initialize();
return adjointNominalValues_;
}
template<class Scalar>
RCP<Thyra::LinearOpWithSolveBase<Scalar> >
AdjointModelEvaluator<Scalar>::create_W() const
{
initialize();
return Thyra::nonconstAdjointLows<Scalar>(fwdStateModel_->create_W());
}
template<class Scalar>
RCP<Thyra::LinearOpBase<Scalar> >
AdjointModelEvaluator<Scalar>::create_W_op() const
{
initialize();
return Thyra::nonconstAdjoint<Scalar>(fwdStateModel_->create_W_op());
}
template<class Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
AdjointModelEvaluator<Scalar>::createInArgs() const
{
initialize();
return prototypeInArgs_bar_;
}
// Private functions overridden from ModelEvaulatorDefaultBase
template<class Scalar>
Thyra::ModelEvaluatorBase::OutArgs<Scalar>
AdjointModelEvaluator<Scalar>::createOutArgsImpl() const
{
initialize();
return prototypeOutArgs_bar_;
}
template<class Scalar>
void AdjointModelEvaluator<Scalar>::evalModelImpl(
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &inArgs_bar,
const Thyra::ModelEvaluatorBase::OutArgs<Scalar> &outArgs_bar
) const
{
using Teuchos::rcp_dynamic_cast;
using Teuchos::describe;
typedef Teuchos::ScalarTraits<Scalar> ST;
typedef Thyra::ModelEvaluatorBase MEB;
typedef Thyra::DefaultScaledAdjointLinearOp<Scalar> DSALO;
typedef Thyra::DefaultAdjointLinearOpWithSolve<Scalar> DALOWS;
typedef Teuchos::VerboseObjectTempState<Thyra::ModelEvaluatorBase> VOTSME;
//
// A) Header stuff
//
THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_GEN_BEGIN(
"AdjointModelEvaluator", inArgs_bar, outArgs_bar, Teuchos::null );
initialize();
VOTSME fwdStateModel_outputTempState(fwdStateModel_,out,verbLevel);
//const bool trace = includesVerbLevel(verbLevel, Teuchos::VERB_LOW);
const bool dumpAll = includesVerbLevel(localVerbLevel, Teuchos::VERB_EXTREME);
//
// B) Unpack the input and output arguments to see what we have to compute
//
// B.1) InArgs
const Scalar t_bar = inArgs_bar.get_t();
const RCP<const Thyra::VectorBase<Scalar> >
lambda_rev_dot = inArgs_bar.get_x_dot().assert_not_null(), // x_bar_dot
lambda = inArgs_bar.get_x().assert_not_null(); // x_bar
const Scalar alpha_bar = inArgs_bar.get_alpha();
const Scalar beta_bar = inArgs_bar.get_beta();
if (dumpAll) {
*out << "\nlambda_rev_dot = " << describe(*lambda_rev_dot, Teuchos::VERB_EXTREME);
*out << "\nlambda = " << describe(*lambda, Teuchos::VERB_EXTREME);
*out << "\nalpha_bar = " << alpha_bar << "\n";
*out << "\nbeta_bar = " << beta_bar << "\n";
}
// B.2) OutArgs
const RCP<Thyra::VectorBase<Scalar> > f_bar = outArgs_bar.get_f();
RCP<DALOWS> W_bar;
if (outArgs_bar.supports(MEB::OUT_ARG_W))
W_bar = rcp_dynamic_cast<DALOWS>(outArgs_bar.get_W(), true);
RCP<DSALO> W_bar_op;
if (outArgs_bar.supports(MEB::OUT_ARG_W_op))
W_bar_op = rcp_dynamic_cast<DSALO>(outArgs_bar.get_W_op(), true);
if (dumpAll) {
if (!is_null(W_bar)) {
*out << "\nW_bar = " << describe(*W_bar, Teuchos::VERB_EXTREME);
}
if (!is_null(W_bar_op)) {
*out << "\nW_bar_op = " << describe(*W_bar_op, Teuchos::VERB_EXTREME);
}
}
//
// C) Evaluate the needed quantities from the underlying forward Model
//
MEB::InArgs<Scalar> fwdInArgs = fwdStateModel_->createInArgs();
// C.1) Set the required input arguments
fwdInArgs = basePoint_;
if (!is_null(fwdStateSolutionBuffer_)) {
const Scalar t = fwdTimeRange_.length() - t_bar;
RCP<const Thyra::VectorBase<Scalar> > x, x_dot;
get_x_and_x_dot<Scalar>( *fwdStateSolutionBuffer_, t,
outArg(x), outArg(x_dot) );
fwdInArgs.set_x(x);
fwdInArgs.set_x_dot(x);
}
else {
// If we don't have an IB object to get the state from, we will assume
// that the problem is linear and, therefore, we can pass in any old value
// of x, x_dot, and t and get the W_bar_adj object that we need. For this
// purpose, we will assume the model's base point will do.
// 2008/05/14: rabartl: ToDo: Implement real variable dependancy
// communication support to make sure that this is okay! If the model is
// really nonlinear we need to check for this and throw if the user did
// not set up a fwdStateSolutionBuffer object!
}
// C.2) Evaluate W_bar_adj if needed
RCP<Thyra::LinearOpWithSolveBase<Scalar> > W_bar_adj;
RCP<Thyra::LinearOpBase<Scalar> > W_bar_adj_op;
{
MEB::OutArgs<Scalar> fwdOutArgs = fwdStateModel_->createOutArgs();
// Get or create W_bar_adj or W_bar_adj_op if needed
if (!is_null(W_bar)) {
// If we have W_bar, the W_bar_adj was already created in
// this->create_W()
W_bar_adj = W_bar->getNonconstOp();
W_bar_adj_op = W_bar_adj;
}
else if (!is_null(W_bar_op)) {
// If we have W_bar_op, the W_bar_adj_op was already created in
// this->create_W_op()
W_bar_adj_op = W_bar_op->getNonconstOp();
}
else if (!is_null(f_bar)) {
TEUCHOS_TEST_FOR_EXCEPT_MSG(true, "ToDo: Unit test this code!");
// If the user did not pass in W_bar or W_bar_op, then we need to create
// our own local LOB form W_bar_adj_op of W_bar_adj in order to evaluate
// the residual f_bar
if (is_null(my_W_bar_adj_op_)) {
my_W_bar_adj_op_ = fwdStateModel_->create_W_op();
}
W_bar_adj_op = my_W_bar_adj_op_;
}
// Set W_bar_adj or W_bar_adj_op on the OutArgs object
if (!is_null(W_bar_adj)) {
fwdOutArgs.set_W(W_bar_adj);
}
else if (!is_null(W_bar_adj_op)) {
fwdOutArgs.set_W_op(W_bar_adj_op);
}
// Set alpha and beta on OutArgs object
if (!is_null(W_bar_adj) || !is_null(W_bar_adj_op)) {
fwdInArgs.set_alpha(alpha_bar);
fwdInArgs.set_beta(beta_bar);
}
// Evaluate the model
if (!is_null(W_bar_adj) || !is_null(W_bar_adj_op)) {
fwdStateModel_->evalModel( fwdInArgs, fwdOutArgs );
}
// Print the objects if requested
if (!is_null(W_bar_adj) && dumpAll)
*out << "\nW_bar_adj = " << describe(*W_bar_adj, Teuchos::VERB_EXTREME);
if (!is_null(W_bar_adj_op) && dumpAll)
*out << "\nW_bar_adj_op = " << describe(*W_bar_adj_op, Teuchos::VERB_EXTREME);
}
// C.3) Evaluate d(f)/d(x_dot) if needed
RCP<Thyra::LinearOpBase<Scalar> > d_f_d_x_dot_op;
if (!is_null(f_bar)) {
if (is_null(my_d_f_d_x_dot_op_)) {
my_d_f_d_x_dot_op_ = fwdStateModel_->create_W_op();
}
d_f_d_x_dot_op = my_d_f_d_x_dot_op_;
MEB::OutArgs<Scalar> fwdOutArgs = fwdStateModel_->createOutArgs();
fwdOutArgs.set_W_op(d_f_d_x_dot_op);
fwdInArgs.set_alpha(ST::one());
fwdInArgs.set_beta(ST::zero());
fwdStateModel_->evalModel( fwdInArgs, fwdOutArgs );
if (dumpAll) {
*out << "\nd_f_d_x_dot_op = " << describe(*d_f_d_x_dot_op, Teuchos::VERB_EXTREME);
}
}
//
// D) Evaluate the adjoint equation residual:
//
// f_bar = d(f)/d(x_dot)^T * lambda_hat + 1/beta_bar * W_bar_adj^T * lambda
// - d(g)/d(x)^T
//
if (!is_null(f_bar)) {
// D.1) lambda_hat = lambda_rev_dot - alpha_bar/beta_bar * lambda
const RCP<Thyra::VectorBase<Scalar> >
lambda_hat = createMember(lambda_rev_dot->space());
Thyra::V_VpStV<Scalar>( outArg(*lambda_hat),
*lambda_rev_dot, -alpha_bar/beta_bar, *lambda );
if (dumpAll)
*out << "\nlambda_hat = " << describe(*lambda_hat, Teuchos::VERB_EXTREME);
// D.2) f_bar = d(f)/d(x_dot)^T * lambda_hat
Thyra::apply<Scalar>( *d_f_d_x_dot_op, Thyra::CONJTRANS, *lambda_hat,
outArg(*f_bar) );
// D.3) f_bar += 1/beta_bar * W_bar_adj^T * lambda
Thyra::apply<Scalar>( *W_bar_adj_op, Thyra::CONJTRANS, *lambda,
outArg(*f_bar), 1.0/beta_bar, ST::one() );
// D.4) f_bar += - d(g)/d(x)^T
// 2008/05/15: rabart: ToDo: Implement once we add support for
// distributed response functions
if (dumpAll)
*out << "\nf_bar = " << describe(*f_bar, Teuchos::VERB_EXTREME);
}
if (dumpAll) {
if (!is_null(W_bar)) {
*out << "\nW_bar = " << describe(*W_bar, Teuchos::VERB_EXTREME);
}
if (!is_null(W_bar_op)) {
*out << "\nW_bar_op = " << describe(*W_bar_op, Teuchos::VERB_EXTREME);
}
}
//
// E) Do any remaining post processing
//
THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_END();
}
// private
template<class Scalar>
void AdjointModelEvaluator<Scalar>::initialize() const
{
typedef Thyra::ModelEvaluatorBase MEB;
if (isInitialized_)
return;
//
// A) Validate the that forward Model is of the correct form!
//
MEB::InArgs<Scalar> fwdStateModelInArgs = fwdStateModel_->createInArgs();
MEB::OutArgs<Scalar> fwdStateModelOutArgs = fwdStateModel_->createOutArgs();
#ifdef HAVE_RYTHMOS_DEBUG
TEUCHOS_ASSERT( fwdStateModelInArgs.supports(MEB::IN_ARG_x_dot) );
TEUCHOS_ASSERT( fwdStateModelInArgs.supports(MEB::IN_ARG_x) );
TEUCHOS_ASSERT( fwdStateModelInArgs.supports(MEB::IN_ARG_t) );
TEUCHOS_ASSERT( fwdStateModelInArgs.supports(MEB::IN_ARG_alpha) );
TEUCHOS_ASSERT( fwdStateModelInArgs.supports(MEB::IN_ARG_beta) );
TEUCHOS_ASSERT( fwdStateModelOutArgs.supports(MEB::OUT_ARG_f) );
TEUCHOS_ASSERT( fwdStateModelOutArgs.supports(MEB::OUT_ARG_W) );
#endif
//
// B) Set up the prototypical InArgs and OutArgs
//
{
MEB::InArgsSetup<Scalar> inArgs_bar;
inArgs_bar.setModelEvalDescription(this->description());
inArgs_bar.setSupports( MEB::IN_ARG_x_dot );
inArgs_bar.setSupports( MEB::IN_ARG_x );
inArgs_bar.setSupports( MEB::IN_ARG_t );
inArgs_bar.setSupports( MEB::IN_ARG_alpha );
inArgs_bar.setSupports( MEB::IN_ARG_beta );
prototypeInArgs_bar_ = inArgs_bar;
}
{
MEB::OutArgsSetup<Scalar> outArgs_bar;
outArgs_bar.setModelEvalDescription(this->description());
outArgs_bar.setSupports(MEB::OUT_ARG_f);
if (fwdStateModelOutArgs.supports(MEB::OUT_ARG_W) ) {
outArgs_bar.setSupports(MEB::OUT_ARG_W);
outArgs_bar.set_W_properties(fwdStateModelOutArgs.get_W_properties());
}
if (fwdStateModelOutArgs.supports(MEB::OUT_ARG_W_op) ) {
outArgs_bar.setSupports(MEB::OUT_ARG_W_op);
outArgs_bar.set_W_properties(fwdStateModelOutArgs.get_W_properties());
}
prototypeOutArgs_bar_ = outArgs_bar;
}
//
// D) Set up the nominal values for the adjoint
//
// Copy structure
adjointNominalValues_ = prototypeInArgs_bar_;
// Just set a zero initial condition for the adjoint
const RCP<Thyra::VectorBase<Scalar> > zero_lambda_vec =
createMember(fwdStateModel_->get_f_space());
V_S( zero_lambda_vec.ptr(), ScalarTraits<Scalar>::zero() );
adjointNominalValues_.set_x_dot(zero_lambda_vec);
adjointNominalValues_.set_x(zero_lambda_vec);
//
// E) Wipe out other cached objects
//
my_W_bar_adj_op_ = Teuchos::null;
my_d_f_d_x_dot_op_ = Teuchos::null;
//
// F) We are initialized!
//
isInitialized_ = true;
}
} // namespace Rythmos
#endif // RYTHMOS_ADJOINT_MODEL_EVALUATOR_HPP
|