This file is indexed.

/usr/include/trilinos/ROL_InteriorPointPenalty.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_INTERIORPOINTPENALTY_H
#define ROL_INTERIORPOINTPENALTY_H

#include "ROL_Objective.hpp"
#include "ROL_BoundConstraint.hpp"

/** @ingroup func_group
    \class ROL::InteriorPointPenalty
    \brief Provides the interface to evaluate the Interior Pointy 
           log barrier penalty function with upper and lower bounds on 
           some elements

    ---
*/

namespace ROL {

template<class Real> 
class InteriorPointPenalty : public Objective<Real> {

  typedef Vector<Real>             V;
  typedef Objective<Real>          OBJ;
  typedef BoundConstraint<Real>    BND;

  typedef Elementwise::ValueSet<Real>   ValueSet;

private:
  
  const Teuchos::RCP<OBJ>       obj_;
  const Teuchos::RCP<BND>       bnd_;
  const Teuchos::RCP<V>         lo_;
  const Teuchos::RCP<V>         up_;

  Teuchos::RCP<V>   g_;       // Gradient of penalized objective

  Teuchos::RCP<V>   maskL_;   // Elements are 1 when xl>-INF, zero for xl = -INF
  Teuchos::RCP<V>   maskU_;   // Elements are 1 when xu< INF, zero for xu =  INF

  Teuchos::RCP<V>   a_;       // Scratch vector
  Teuchos::RCP<V>   b_;       // Scratch vector
  Teuchos::RCP<V>   c_;       // Scratch vector

  bool useLinearDamping_;     // Add linear damping terms to the penalized objective
                              // to prevent the problems such as when the log barrier
                              // contribution is unbounded below on the feasible set

  Real mu_;                   // Penalty parameter
  Real kappaD_;               // Linear damping coefficient
  Real fval_;                 // Unpenalized objective value

  int nfval_;
  int ngval_;



  // x <- f(x) = { log(x) if x >  0 
  //             { 0      if x <= 0
  class ModifiedLogarithm : public Elementwise::UnaryFunction<Real> {
  public:
    Real apply( const Real &x ) const {
      return (x>0) ? std::log(x) : Real(0.0);
    }   
  }; // class ModifiedLogarithm

  // x <- f(x) = { 1/x  if  x >  0 
  //             { 0    if  x <= 0
  class ModifiedReciprocal : public Elementwise::UnaryFunction<Real> {
  public:
    Real apply( const Real &x ) const {
      return (x>0) ? 1.0/x : Real(0.0); 
    }

  }; // class ModifiedReciprocal

  // x <- f(x,y) = { y/x  if  x >  0
  //               { 0    if  x <= 0
  class ModifiedDivide : public Elementwise::BinaryFunction<Real> {
  public: 
    Real apply( const Real &x, const Real &y ) const {
      return (x>0) ? y/x : Real(0.0);
    }
  }; // class ModifiedDivide

  // x <- f(x,y) = { x  if  y != 0, complement == false
  //               { 0  if  y == 0, complement == false
  //               { 0  if  y != 0, complement == true
  //               { x  if  y == 0, complement == true
  class Mask : public Elementwise::BinaryFunction<Real> {
  private: 
    bool complement_;
  public: 
    Mask( bool complement ) : complement_(complement) {}
    Real apply( const Real &x, const Real &y ) const {
      return ( complement_ ^ (y !=0) ) ? 0 : x;
    } 
  }; // class Mask


public:

  ~InteriorPointPenalty() {}

  InteriorPointPenalty( const Teuchos::RCP<Objective<Real> > &obj,
                        const Teuchos::RCP<BoundConstraint<Real> > &con, 
                        Teuchos::ParameterList &parlist ) :
    obj_(obj), bnd_(con), lo_( con->getLowerVectorRCP() ), up_( con->getUpperVectorRCP() ) {

    Real one(1.0);
    Real zero(0.0);

    // Determine the index sets where the 
    ValueSet isBoundedBelow( ROL_NINF<Real>(), ValueSet::GREATER_THAN, one, zero );
    ValueSet isBoundedAbove( ROL_INF<Real>(),  ValueSet::LESS_THAN,    one, zero );
   
    maskL_ = lo_->clone();
    maskU_ = up_->clone();     

    maskL_->applyBinary(isBoundedBelow,*lo_);
    maskU_->applyBinary(isBoundedAbove,*up_);

    Teuchos::ParameterList &iplist = parlist.sublist("Step").sublist("Primal Dual Interior Point");
    Teuchos::ParameterList &lblist = iplist.sublist("Barrier Objective");

    useLinearDamping_ = lblist.get("Use Linear Damping",true);
    kappaD_ = lblist.get("Linear Damping Coefficient",1.e-4);
    mu_ = lblist.get("Initial Barrier Parameter",0.1);


    a_ = lo_->clone();
    b_ = up_->clone();
    g_ = lo_->dual().clone();

    if( useLinearDamping_ ) {
      c_ = lo_->clone();
    }
  }

  Real getObjectiveValue(void) const {
    return fval_;
  }

  Teuchos::RCP<Vector<Real> > getGradient(void) const {
    return g_;
  }

  int getNumberFunctionEvaluations(void) const {
    return nfval_;
  }

  int getNumberGradientEvaluations(void) const {
    return ngval_;
  }

  Teuchos::RCP<const Vector<Real> > getLowerMask(void) const {
    return maskL_;
  }

  Teuchos::RCP<const Vector<Real> > getUpperMask(void) const {
    return maskU_;
  }

  /** \brief Update the interior point penalized objective. 

      This function updates the log barrier penalized function at new iterations. 
      @param[in]          x      is the new iterate. 
      @param[in]          flag   is true if the iterate has changed.
      @param[in]          iter   is the outer algorithm iterations count.
  */
  void update( const Vector<Real> &x, bool flag = true, int iter = -1 ) {
    obj_->update(x,flag,iter);
    bnd_->update(x,flag,iter);
  }

  /** \brief Compute value.

      This function returns the log barrier penalized objective value.

      \f[ \varphi_\mu(x) = f(x) - \mu \sum\limits_{i\int I_L} \ln(x_i-l_i) 
                                - \mu \sum\limits_{i\in I_Y} \ln(u_i-x_i) \f]
      Where \f$ I_L=\{i:l_i>-\infty\} \f$ and \f$ I_U = \{i:u_i<\infty\}\f$

      @param[in]          x   is the current iterate.
      @param[in]          tol is a tolerance for interior point penalty computation.
  */
  Real value( const Vector<Real> &x, Real &tol ) {

    ModifiedLogarithm                mlog;
    Elementwise::ReductionSum<Real>  sum;
    Elementwise::Multiply<Real>      mult;

    // Compute the unpenalized objective value
    fval_ = obj_->value(x,tol);
    nfval_++;

    Real fval = fval_;
    Real linearTerm = 0.0;   // Linear damping contribution

    a_->set(x);                             // a_i = x_i
    a_->axpy(-1.0,*lo_);                    // a_i = x_i-l_i

    if( useLinearDamping_ ) {

      c_->set(*maskL_);                     // c_i = { 1 if l_i > NINF
                                            //       { 0 otherwise
      c_->applyBinary(Mask(true),*maskU_);  // c_i = { 1 if l_i > NINF and u_i = INF
                                            //       { 0 otherwise
      c_->applyBinary(mult,*a_);            // c_i = { x_i-l_i if l_i > NINF and u_i = INF

      // Penalizes large positive x_i when only a lower bound exists
      linearTerm += c_->reduce(sum);
    }

    a_->applyUnary(mlog);                   // a_i = mlog(x_i-l_i)

    Real aval = a_->dot(*maskL_);

    b_->set(*up_);                          // b_i = u_i
    b_->axpy(-1.0,x);                       // b_i = u_i-x_i

    if( useLinearDamping_ ) {

      c_->set(*maskU_);                     // c_i = { 1 if u_i < INF 
                                            //       { 0 otherwise
      c_->applyBinary(Mask(true),*maskL_);  // c_i = { 1 if u_i < INF and l_i = NINF
                                            //       { 0 otherwise
      c_->applyBinary(mult,*b_);            // c_i = { u_i-x_i if u_i < INF and l_i = NINF
                                            //       { 0 otherwise         

      // Penalizes large negative x_i when only an upper bound exists
      linearTerm += c_->reduce(sum);  

    }

    b_->applyUnary(mlog);                   // b_i = mlog(u_i-x_i)
    
    Real bval = b_->dot(*maskU_);


    fval -= mu_*(aval+bval);   
    fval += kappaD_*mu_*linearTerm;

    return fval;

  }

  /** \brief Compute gradient.

      This function returns the log barrier penalized gradient.
      @param[out]         g   is the gradient.
      @param[in]          x   is the current iterate.
      @param[in]          tol is a tolerance for inexact log barrier penalty computation.
  */
    
  void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) {
    // Compute gradient of objective function
    obj_->gradient(*g_,x,tol);
    ngval_++;
    g.set(*g_);

    // Add gradient of the log barrier penalty
    ModifiedReciprocal mrec;
    
    a_->set(x);                             // a = x
    a_->axpy(-1.0,*lo_);                    // a = x-l

    a_->applyUnary(mrec);                   // a_i = 1/(x_i-l_i) for i s.t. x_i > l_i, 0 otherwise
    a_->applyBinary(Mask(true),*maskL_);   // zero elements where l = NINF   

    b_->set(*up_);                          // b = u 
    b_->axpy(-1.0,x);                       // b = u-x
    b_->applyUnary(mrec);                   // b_i = 1/(u_i-x_i) for i s.t. u_i > x_i, 0 otherwise
    b_->applyBinary(Mask(true),*maskU_);   // zero elements where u = INF  

    g.axpy(-mu_,*a_);
    g.axpy(mu_,*b_);

    if( useLinearDamping_ ) {

      a_->set(*maskL_);
      a_->applyBinary(Mask(true),*maskU_);  // a_i = { 1 if l_i > NINF and u_i = INF
                                            //       { 0 otherwise
      b_->set(*maskU_);
      b_->applyBinary(Mask(true),*maskL_);  // b_i = { 1 if u_i < INF and l_i = NINF
                                            //       { 0 otherwise
      g.axpy(-mu_*kappaD_,*a_);
      g.axpy( mu_*kappaD_,*b_);

    }
  }  

  /** \brief Compute action of Hessian on vector.

      This function returns the log barrier penalized Hessian acting on a given vector.
      @param[out]         hv  is the Hessian-vector product.
      @param[in]          v   is the given vector.
      @param[in]          x   is the current iterate.
      @param[in]          tol is a tolerance for inexact log barrier penalty computation.
  */

  void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {

    ModifiedReciprocal mrec;
    Elementwise::Multiply<Real> mult;
    Elementwise::Power<Real> square(2.0);

    obj_->hessVec(hv,v,x,tol);
 
    a_->set(x);                             // a = x
    a_->axpy(-1.0,*lo_);                    // a = x-l
    a_->applyUnary(mrec);                   // a_i = 1/(x_i-l_i) for i s.t. x_i > l_i, 0 otherwise
    a_->applyBinary(Mask(true),*maskL_);    // zero elements where l = NINF   
    a_->applyUnary(square);                 // a_i = { (x_i-l_i)^(-2)  if l_i > NINF   
                                            //       { 0               if l_i = NINF 
    a_->applyBinary(mult,v);    

    b_->set(*up_);                          // b = u 
    b_->axpy(-1.0,x);                       // b = u-x
    b_->applyUnary(mrec);                   // b_i = 1/(u_i-x_i) for i s.t. u_i > x_i, 0 otherwise
    b_->applyBinary(Mask(true),*maskU_);    // zero elements where u = INF  
    b_->applyUnary(square);                 // b_i = { (u_i-x_i)^(-2)  if u_i < INF 
                                            //       { 0               if u_i = INF
    b_->applyBinary(mult,v);

    hv.axpy(mu_,*a_);
    hv.axpy(mu_,*b_);
 }

  // Return the unpenalized objective
  const Teuchos::RCP<OBJ> getObjective( void ) { return obj_; }

  // Return the bound constraint
  const Teuchos::RCP<BND> getBoundConstraint( void ) { return bnd_; }

}; // class InteriorPointPenalty

}


#endif // ROL_INTERIORPOINTPENALTY_H