/usr/include/trilinos/NOX_LineSearch_Polynomial.H is in libtrilinos-nox-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 | // $Id$
// $Source$
//@HEADER
// ************************************************************************
//
// NOX: An Object-Oriented Nonlinear Solver Package
// Copyright (2002) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roger Pawlowski (rppawlo@sandia.gov) or
// Eric Phipps (etphipp@sandia.gov), Sandia National Laboratories.
// ************************************************************************
// CVS Information
// $Source$
// $Author$
// $Date$
// $Revision$
// ************************************************************************
//@HEADER
#ifndef NOX_LINESEARCH_POLYNOMIALNEW_H
#define NOX_LINESEARCH_POLYNOMIALNEW_H
#include "NOX_LineSearch_Generic.H" // base class
#include "NOX_LineSearch_Utils_Printing.H" // class data member
#include "NOX_LineSearch_Utils_Counters.H" // class data member
#include "NOX_LineSearch_Utils_Slope.H" // class data member
#include "Teuchos_RCP.hpp" // class data member
// Forward Declarations
namespace NOX {
namespace MeritFunction {
class Generic;
}
}
namespace NOX {
namespace LineSearch {
/*!
\brief
A polynomial line search, either quadratic or cubic.
This line search can be called via NOX::LineSearch::Manager.
The goal of the line search is to find a step \f$\lambda\f$ for the
calculation \f$x_{\rm new} = x_{\rm old} + \lambda d\f$, given
\f$x_{\rm old}\f$ and \f$ d \f$. To accomplish this goal, we
minimize a merit function \f$ \phi(\lambda) \f$ that measures the
"goodness" of the step \f$\lambda\f$. The standard merit function is
\f[
\phi(\lambda) \equiv \frac{1}{2}||F (x_{\rm old} + \lambda s)||^2,
\f]
but a user defined merit function can be used instead (see
computePhi() for details). Our first attempt is
always to try a step \f$ \lambda_0 \f$, and then check the stopping
criteria. The value of \f$ \lambda_0 \f$ is the specified by the
"Default Step" parameter. If the first try doesn't work, then we
successively minimize polynomial approximations, \f$ p_k(\lambda)
\approx \phi(\lambda) \f$.
<b>Stopping Criteria</b>
The inner iterations continue until:
<ul>
<li>The sufficient decrease condition is met; see checkConvergence()
for details.
<li>The maximum iterations are reached; see parameter
"Max Iters".
This is considered a failure and the recovery step is
used; see parameter "Recovery Step".
<li>The minimum step length is reached; see parameter
"Minimum Step".
This is considered a line search failure
and the recovery step is used; see parameter
"Recovery Step".
</ul>
<b> %Polynomial Models of the Merit Function </b>
We compute \f$ p_k(\lambda) \f$ by interpolating \f$f\f$. For the
quadratic fit, we interpolate \f$ \phi(0) \f$, \f$ \phi'(0) \f$, and
\f$ \phi(\lambda_{k-1}) \f$ where \f$ \lambda_{k-1} \f$ is the \f$
k-1 \f$st approximation to the step. For the cubit fit, we
additionally include \f$\phi(\lambda{k-2})\f$.
The steps are calculated iteratively as follows, depending on the
choice of "Interpolation Type".
<ul>
<li> "Quadratic" - We construct a quadratic model of \f$\phi\f$, and solve for \f$\lambda\f$ to get
\f[
\lambda_{k} = \frac{-\phi'(0) \lambda_{k-1}^2 }{2 \left[ \phi(\lambda_{k-1}) - \phi(0)
-\phi'(0) \lambda_{k-1} \right]}
\f]
<li> "Cubic" - We construct a cubic model of \f$\phi\f$, and solve for
\f$\lambda\f$. We use the quadratic model to solve for \f$\lambda_1\f$; otherwise,
\f[
\lambda_k = \frac{-b+\sqrt{b^2-3a \phi'(0)}}{3a}
\f]
where
\f[
\left[ \begin{array}{c} a \\ \\ b \end{array} \right] =
\frac{1}{\lambda_{k-1} - \lambda_{k-2}} \left[ \begin{array}{cc}
\lambda_{k-1}^{-2} & -\lambda_{k-2}^{-2} \\ & \\
-\lambda_{k-2}\lambda_{k-1}^{-2} & \lambda_{k-1}\lambda_{k-2}^{-2}
\end{array} \right]
\left[ \begin{array}{c} \phi(\lambda_{k-1}) - \phi(0) -
\phi'(0)\lambda_{k-1} \\ \\
\phi(\lambda_{k-2}) - \phi(0) -
\phi'(0)\lambda_{k-2} \end{array} \right]
\f]
<li> "Quadratic3" - We construct a quadratic model of \f$\phi\f$ using
\f$\phi(0)\f$, \f$ \phi(\lambda_{k-1}) \f$ , and
\f$\phi(\lambda_{k-2})\f$. No derivative information for \f$\phi\f$
is used. We let \f$\lambda_1 = \frac{1}{2} \lambda_0\f$, and otherwise
\f[
\lambda_k = - \frac{1}{2}
\frac{\lambda_{k-1}^2 [\phi(\lambda_{k-2}) -\phi(0)]
- \lambda_{k-2}^2 [\phi(\lambda_{k-1}) -\phi(0)]}
{\lambda_{k-2} [\phi(\lambda_{k-1}) -\phi(0)]
- \lambda_{k-1} [\phi(\lambda_{k-2}) -\phi(0)]}
\f]
</ul>
For "Quadratic" and "Cubic", see computeSlope() for details on how
\f$ \phi'(0) \f$ is calculated.
<B> Bounds on the step length </B>
We do not allow the step to grow or shrink too quickly by enforcing
the following bounds:
\f[
\gamma_{min} \; \lambda_{k-1} \leq \lambda_k \le \gamma_{max} \; \lambda_{k-1}
\f]
Here \f$ \gamma_{min} \f$ and \f$ \gamma_{max} \f$ are defined by
parameters "Min Bounds Factor" and
"Max Bounds Factor".
<B> Input Parameters </B>
"Line Search":
<ul>
<li>"Method" = "Polynomial" [required]
</ul>
"Line Search"/"Polynomial":
<ul>
<li> "Default Step" - Starting step length, i.e., \f$\lambda_0\f$.
Defaults to 1.0.
<li> "Max Iters" - Maximum number of line search iterations. The
search fails if the number of iterations exceeds this
value. Defaults to 100.
<li> "Minimum Step" - Minimum acceptable step length. The search
fails if the computed \f$\lambda_k\f$ is less than this
value. Defaults to 1.0e-12.
<li> "Recovery Step Type" - Determines the step size to take when the
line search fails. Choices are:
<ul>
<li> "Constant" [default] - Uses a constant value set in "Recovery Step".
<li> "Last Computed Step" - Uses the last value computed by the
line search algorithm.
</ul>
<li> "Recovery Step" - The value of the step to take when the line
search fails. Only used if the "Recovery Step Type" is set to
"Constant". Defaults to value for "Default Step".
<li> "Interpolation Type" - Type of interpolation that should be
used. Choices are
<ul>
<li> "Cubic" [default]
<li> "Quadratic"
<li> "Quadratic3"
</ul>
<li> "Min Bounds Factor" - Choice for \f$ \gamma_{min} \f$, i.e.,
the factor that limits the minimum size of the new step based on
the previous step. Defaults to 0.1.
<li> "Max Bounds Factor" - Choice for \f$ \gamma_{max} \f$, i.e.,
the factor that limits the maximum size of the new step based on
the previous step. Defaults to 0.5.
<li> "Sufficient Decrease Condition" - See checkConvergence() for
details. Choices are:
<ul>
<li> "Armijo-Goldstein" [default]
<li> "Ared/Pred"
<li> "None"
</ul>
<li> "Alpha Factor" - %Parameter choice for sufficient decrease
condition. See checkConvergence() for details. Defaults to 1.0e-4.
<li> "Force Interpolation" (boolean) - Set to true if at least one
interpolation step should be used. The default is false which
means that the line search will stop if the default step length
satisfies the convergence criteria. Defaults to false.
<li> "Use Counters" (boolean) - Set to true if we should use
counters and then output the result to the paramter list as
described in \ref outputparameters "Output Parameters". Defaults to
true.
<li> "Maximum Iteration for Increase" - Maximum index of the
nonlinear iteration for which we allow a relative increase. See
checkConvergence() for further details. Defaults to 0 (zero).
<li> "Allowed Relative Increase" - See checkConvergence() for
details. Defaults to 100.
<li> "User Defined Merit Function" - The user can redefine the merit
function used; see computePhi() and NOX::Parameter::MeritFunction
for details.
<li> "User Defined Norm" - The user can redefine the norm that is
used in the Ared/Pred sufficient decrease condition; see
computeValue() and NOX::Parameter::UserNorm for details.
</ul>
\anchor outputparameters <B> Output Parameters </B>
If the "Use Counters" parameter is set to true, then a sublist
for output parameters called "Output" will be created in the
parameter list used to instantiate or reset the class. Valid output
parameters are:
<ul>
<li> "Total Number of Line Search Calls" - Total number of calls to
the compute() method of this line search.
<li> "Total Number of Non-trivial Line Searches" - Total number of
steps that could not directly take a full step and meet the
required "Sufficient Decrease Condition" (i.e., the line search had to
do at least one interpolation).
<li> "Total Number of Failed Line Searches" - Total number of line
searches that failed and used a recovery step.
<li> "Total Number of Line Search Inner Iterations" - Total number of
inner iterations of all calls to compute().
</ul>
<b>References</b>
This line search is based on materials in the following:
- Section 8.3.1 in C.T. Kelley, "Iterative Methods for %Linear and
Nonlinear Equations", SIAM, 1995.
- Section 6.3.2 and Algorithm 6.3.1 of J. E. Dennis Jr. and Robert
B. Schnabel, "Numerical Methods for Unconstrained Optimization
and Nonlinear Equations," Prentice Hall, 1983.
- Section 3.4 of Jorge Nocedal and Stephen J. Wright, "Numerical
Optimization,"Springer, 1999.
- "An Inexact Newton Method for Fully Coupled Solution of the Navier-Stokes
Equations with Heat and Mass Transfer", Shadid, J. N., Tuminaro, R. S.,
and Walker, H. F., Journal of Computational Physics, 137, 155-185 (1997)
\author Russ Hooper, Roger Pawlowski, Tammy Kolda
*/
class Polynomial : public Generic {
public:
//! Constructor
Polynomial(const Teuchos::RCP<NOX::GlobalData>& gd,
Teuchos::ParameterList& params);
//! Destructor
~Polynomial();
// derived
bool reset(const Teuchos::RCP<NOX::GlobalData>& gd,
Teuchos::ParameterList& params);
// derived
bool compute(NOX::Abstract::Group& newgrp, double& step,
const NOX::Abstract::Vector& dir,
const NOX::Solver::Generic& s);
protected:
//! Returns true if converged.
/*!
We go through the following checks for convergence.
<ol>
<li> If the "Force Interpolation" parameter is true and this is the
first inner iteration (i.e., nIters is 1), then we return \b false.
<li> Next, it checks to see if the "Relative Increase" condition
is satisfied. If so, then we return \b true. The "Relative
Increase" condition is satisfied if \e both of the following two
conditions hold.
- The number of nonlinear iterations is less than or equal to the
value specified in the "Maximum Iteration for Increase"
parameter
- The ratio of newValue to oldValue is less than the value
specified in "Allowed Relative Increase".
<li> Last, we check the sufficient decrease condition. We return
\b true if it's satisfied, and \b false otherwise. The condition
depends on the value of "Sufficient Decrease Condition",
as follows.
<ul>
<li> "Armijo-Goldstein": Return true if
\f[
\phi(\lambda) \leq \phi(0) + \alpha \; \lambda \; \phi'(0)
\f]
<li>"Ared/Pred": Return true if
\f[
\| F(x_{\rm old} + \lambda d )\| \leq \| F(x_{\rm old}) \| (1 - \alpha (1 - \eta))
\f]
<li> "None": Always return true.
</ul>
For the first two cases, \f$\alpha\f$ is specified by the
parameter "Alpha Factor".
</ol>
\param newValue Depends on the "Sufficient Decrease Condition" parameter.
<ul>
<li>"Armijo-Goldstein" - \f$ \phi(\lambda) \f$
<li>"Ared/Pred" - \f$ \| F(x_{\rm old} + \lambda d )\| \f$
<li>"None" - N/A
</ul>
\param oldValue Depends on the "Sufficient Decrease Condition" parameter.
<ul>
<li>"Armijo-Goldstein" - \f$ \phi(0) \f$
<li>"Ared/Pred" - \f$ \| F(x_{\rm old} )\| \f$
<li>"None" - N/A
</ul>
\param oldSlope Only applicable to "Armijo-Goldstein", in which
case it should be \f$\phi'(0)\f$.
\param step The current step, \f$\lambda\f$.
\param eta Only applicable to "Ared/Pred", in which case it
should be the value of \f$\eta\f$ for last forcing term
calculation in NOX::Direction::Newton
\param nIters Number of inner iterations.
\param nNonlinearIters Number of nonlinear iterations.
\note The norm used for "Ared/Pred" can be specified by the user
by using the "User Defined Norm" parameter; this parameter is any
object derived from NOX::Parameter::UserNorm.
*/
bool checkConvergence(double newValue, double oldValue, double oldSlope,
double step, double eta, int nIters, int nNonlinearIters) const;
//! Updates the newGrp by computing a new x and a new F(x)
/*!
Let
- \f$x_{\rm new}\f$ denote the new solution to be calculated (corresponding to \c newGrp)
- \f$x_{\rm old}\f$ denote the previous solution (i.e., the result of oldGrp.getX())
- \f$d\f$ denotes the search direction (\c dir).
- \f$\lambda\f$ denote the step (\c step),
We compute
\f[
x_{\rm new} = x_{\rm old} + \lambda d,
\f]
and \f$ F(x_{\rm new})\f$. The results are stored in \c newGrp.
*/
bool updateGrp(NOX::Abstract::Group& newGrp,
const NOX::Abstract::Group& oldGrp,
const NOX::Abstract::Vector& dir,
double step) const;
//! Compute the value used to determine sufficient decrease
/*!
If the "Sufficient Decrease Condition" is set to "Ared/Pred", then
we do the following. If a "User Defined Norm" parameter is
specified, then the NOX::Parameter::UserNorm::norm function on the
user-supplied merit function is used. If the user does not provide
a norm, we return \f$ \|F(x)\| \f$.
If the "Sufficient Decrease Condition" is <em>not</em> set to
"Ared/Pred", then we simply return phi.
\param phi - Should be equal to computePhi(grp).
*/
double computeValue(const NOX::Abstract::Group& grp, double phi);
//! Used to print opening remarks for each call to compute().
void printOpeningRemarks() const;
//! Prints a warning message saying that the slope is negative
void printBadSlopeWarning(double slope) const;
protected:
//! Types of sufficient decrease conditions used by checkConvergence()
enum SufficientDecreaseType {
//! Armijo-Goldstein conditions
ArmijoGoldstein,
//! Ared/Pred condition
AredPred,
//! No condition
None
};
//! Interpolation types used by compute().
enum InterpolationType {
//! Use quadratic interpolation throughout
Quadratic,
//! Use quadratic interpolation in the first inner iteration and cubic interpolation otherwise
Cubic,
//! Use a 3-point quadratic line search. (The second step is 0.5 times the default step.)
Quadratic3
};
//! Type of recovery step to use
enum RecoveryStepType {
//! Use a constant value
Constant,
//! Use the last value computed in the line search algorithm
LastComputedStep
};
//! Choice for sufficient decrease condition; uses "Sufficient Decrease Condition" parameter
SufficientDecreaseType suffDecrCond;
//! Choice of interpolation type; uses "Interpolation Type" parameter
InterpolationType interpolationType;
//! Choice of the recovery step type; uses "Recovery Step Type" parameter
RecoveryStepType recoveryStepType;
//! Minimum step length (i.e., when we give up); uses "Mimimum Step" parameter
double minStep;
//! Default step; uses "Default Step" parameter
double defaultStep;
//! Default step for linesearch failure; uses "Recovery Step" parameter
double recoveryStep;
//! Maximum iterations; uses "Max Iters" parameter
int maxIters;
/*! \brief The \f$ \alpha \f$ for the Armijo-Goldstein condition, or
the \f$ \alpha \f$ for the Ared/Pred condition; see
checkConvergence(). Uses "Alpha Factor" parameter. */
double alpha;
/*! \brief Factor that limits the minimum size of the new step based
on the previous step; uses "Min Bounds Factor" parameter */
double minBoundFactor;
/*! \brief Factor that limits the maximum size of the new step based
on the previous step; uses "Max Bounds Factor" parameter. */
double maxBoundFactor;
/*! \brief True is we should force at least one interpolation step;
uses "Force Interpolation" parameter. */
bool doForceInterpolation;
/*! \brief No increases are allowed if the number of nonlinear
iterations is greater than this value; uses "Maximum Iterations
for Increase" */
int maxIncreaseIter;
/*! \brief True if we sometimes allow an increase(!) in the decrease
measure, i.e., maxIncreaseIter > 0. */
bool doAllowIncrease;
/*! \brief Maximum allowable relative increase for decrease meausre (if
allowIncrease is true); uses "Allowed Relative Increase" parameter */
double maxRelativeIncrease;
/*! \brief True if we should use #counter and output the results; uses
"Use Counters" parameter.*/
bool useCounter;
//! Global data pointer. Keep this so the parameter list remains valid.
Teuchos::RCP<NOX::GlobalData> globalDataPtr;
//! Pointer to the input parameter list.
/*! We need this to later create an "Output" sublist to store output
parameters from #counter.
*/
Teuchos::ParameterList* paramsPtr;
//! Common line search printing utilities.
NOX::LineSearch::Utils::Printing print;
//! Common common counters for line searches.
NOX::LineSearch::Utils::Counters counter;
//! Common slope calculations for line searches.
NOX::LineSearch::Utils::Slope slopeUtil;
//! Pointer to a user supplied merit function.
Teuchos::RCP<NOX::MeritFunction::Generic> meritFuncPtr;
};
} // namespace LineSearch
} // namespace NOX
#endif
|