This file is indexed.

/usr/include/trilinos/Kokkos_Sparse_CrsMatrix.hpp is in libtrilinos-kokkos-kernels-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
/*
//@HEADER
// ************************************************************************
//
//               KokkosKernels 0.9: Linear Algebra and Graph Kernels
//                 Copyright 2017 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Siva Rajamanickam (srajama@sandia.gov)
//
// ************************************************************************
//@HEADER
*/

/// \file Kokkos_Sparse_CrsMatrix.hpp
/// \brief Local sparse matrix interface
///
/// This file provides KokkosSparse::CrsMatrix.  This implements a
/// local (no MPI) sparse matrix stored in compressed row sparse
/// ("Crs") format.

#ifndef KOKKOS_SPARSE_CRSMATRIX_HPP_
#define KOKKOS_SPARSE_CRSMATRIX_HPP_

#include "Kokkos_Core.hpp"
#include "Kokkos_StaticCrsGraph.hpp"
#include "Kokkos_Sparse_findRelOffset.hpp"
#include <sstream>
#include <stdexcept>
#include <type_traits>

namespace KokkosSparse {

// Macro that tells GCC not to worry if a variable isn't being used.
// Generalized attributes were not implemented in GCC until 4.8:
//
// https://gcc.gnu.org/gcc-4.7/cxx0x_status.html
// https://gcc.gnu.org/gcc-4.8/cxx0x_status.html
//
// Thus, we can't use [[unused]]; we have to use the older GCC syntax
// for variable attributes.  Be careful also of compilers that define
// the __GNUC__ macro but might not necessarily actually be GCC
// compliant.
#if defined(__GNUC__) && ! defined(KOKKOSKERNELS_UNUSED_ATTRIBUTE)
#  define KOKKOSKERNELS_UNUSED_ATTRIBUTE __attribute__((unused))
#else
#  define KOKKOSKERNELS_UNUSED_ATTRIBUTE
#endif // __GNUC__

//! String that tells sparse kernels to use the transpose of the matrix.
static char KOKKOSKERNELS_UNUSED_ATTRIBUTE Transpose[] = "T";
/// \brief String that tells sparse kernels to use the conjugate (NOT
///   transpose) of the matrix.
static char KOKKOSKERNELS_UNUSED_ATTRIBUTE Conjugate[] = "C";
/// \brief String that tells sparse kernels to use the conjugate
///   transpose of the matrix.
static char KOKKOSKERNELS_UNUSED_ATTRIBUTE ConjugateTranspose[] = "H";
/// \brief String that tells sparse kernels not to use the transpose
///   or conjugate of the matrix.
static char KOKKOSKERNELS_UNUSED_ATTRIBUTE NoTranspose[] = "N";

template<class DeviceType>
inline int RowsPerThread(const int NNZPerRow) {
  if(NNZPerRow == 0) return 1;
  int result = 2;
  while(result*NNZPerRow <= 2048) {
    result*=2;
  }
  return result/2;
}
#ifdef KOKKOS_HAVE_CUDA
template<>
inline int RowsPerThread<Kokkos::Cuda>(const int NNZPerRow) {
  return 1;
}
#endif

// A simple struct for storing a kernel launch configuration.
// This is currently used by CrsMatrix to allow the user to have some control
// over how kernels are launched, however it is currently only exercised by
// Stokhos.  This is a simpler case of "state" needed by TPLs, and at this point
// is just a hack until we figure out how to support state in a general,
// extensible way.
struct DeviceConfig {
  struct Dim3 {
    size_t x, y, z;
    Dim3(const size_t x_, const size_t y_ = 1, const size_t z_ = 1) :
      x(x_), y(y_), z(z_) {}
  };

  Dim3 block_dim;
  size_t num_blocks;
  size_t num_threads_per_block;

  DeviceConfig(const size_t num_blocks_ = 0,
               const size_t threads_per_block_x_ = 0,
               const size_t threads_per_block_y_ = 0,
               const size_t threads_per_block_z_ = 1) :
    block_dim(threads_per_block_x_,threads_per_block_y_,threads_per_block_z_),
    num_blocks(num_blocks_),
    num_threads_per_block(block_dim.x * block_dim.y * block_dim.z)
    {}
};

/// \class SparseRowView
/// \brief View of a row of a sparse matrix.
/// \tparam MatrixType Sparse matrix type, such as (but not limited to) CrsMatrix.
///
/// This class provides a generic view of a row of a sparse matrix.
/// We intended this class to view a row of a CrsMatrix, but
/// MatrixType need not necessarily be CrsMatrix.
///
/// The row view is suited for computational kernels like sparse
/// matrix-vector multiply, as well as for modifying entries in the
/// sparse matrix.  Whether the view is const or not, depends on
/// whether MatrixType is a const or nonconst view of the matrix.  If
/// you always want a const view, use SparseRowViewConst (see below).
///
/// Here is an example loop over the entries in the row:
/// \code
/// typedef typename SparseRowView<MatrixType>::value_type value_type;
/// typedef typename SparseRowView<MatrixType>::ordinal_type ordinal_type;
///
/// SparseRowView<MatrixType> A_i = ...;
/// const ordinal_type numEntries = A_i.length;
/// for (ordinal_type k = 0; k < numEntries; ++k) {
///   value_type A_ij = A_i.value (k);
///   ordinal_type j = A_i.colidx (k);
///   // ... do something with A_ij and j ...
/// }
/// \endcode
///
/// MatrixType must provide the \c value_type and \c ordinal_type
/// typedefs.  In addition, it must make sense to use SparseRowView to
/// view a row of MatrixType.  In particular, the values and column
/// indices of a row must be accessible using the <tt>values</tt>
/// resp. <tt>colidx</tt> arrays given to the constructor of this
/// class, with a constant <tt>stride</tt> between successive entries.
/// The stride is one for the compressed sparse row storage format (as
/// is used by CrsMatrix), but may be greater than one for other
/// sparse matrix storage formats (e.g., ELLPACK or jagged diagonal).
template<class MatrixType>
struct SparseRowView {
  //! The type of the values in the row.
  typedef typename MatrixType::value_type value_type;
  //! The type of the column indices in the row.
  typedef typename MatrixType::ordinal_type ordinal_type;

private:
  //! Array of values in the row.
  value_type* values_;
  //! Array of (local) column indices in the row.
  ordinal_type* colidx_;
  /// \brief Stride between successive entries in the row.
  ///
  /// For compressed sparse row (CSR) storage, this is always one.
  /// This might be greater than one for storage formats like ELLPACK
  /// or Jagged Diagonal.  Nevertheless, the stride can never be
  /// greater than the number of rows or columns in the matrix.  Thus,
  /// \c ordinal_type is the correct type.
  const ordinal_type stride_;

public:
  /// \brief Constructor
  ///
  /// \param values [in] Array of the row's values.
  /// \param colidx [in] Array of the row's column indices.
  /// \param stride [in] (Constant) stride between matrix entries in
  ///   each of the above arrays.
  /// \param count [in] Number of entries in the row.
  KOKKOS_INLINE_FUNCTION
  SparseRowView (value_type* const values,
                 ordinal_type* const colidx__,
                 const ordinal_type& stride,
                 const ordinal_type& count) :
    values_ (values), colidx_ (colidx__), stride_ (stride), length (count)
  {}

  /// \brief Constructor with offset into \c colidx array
  ///
  /// \param values [in] Array of the row's values.
  /// \param colidx [in] Array of the row's column indices.
  /// \param stride [in] (Constant) stride between matrix entries in
  ///   each of the above arrays.
  /// \param count [in] Number of entries in the row.
  /// \param idx [in] Start offset into \c colidx array
  ///
  /// \tparam OffsetType The type of \c idx (see above).  Must be a
  ///   built-in integer type.  This may differ from ordinal_type.
  ///   For example, the matrix may have dimensions that fit in int,
  ///   but a number of entries that does not fit in int.
  template<class OffsetType>
  KOKKOS_INLINE_FUNCTION
  SparseRowView (const typename MatrixType::values_type& values,
                 const typename MatrixType::index_type& colidx__,
                 const ordinal_type& stride,
                 const ordinal_type& count,
                 const OffsetType& idx,
                 const typename std::enable_if<std::is_integral<OffsetType>::value, int>::type& = 0) :
    values_ (&values(idx)), colidx_ (&colidx__(idx)), stride_ (stride), length (count)
  {}

  /// \brief Number of entries in the row.
  ///
  /// This is a public const field rather than a public const method,
  /// in order to avoid possible overhead of a method call if the
  /// compiler is unable to inline that method call.
  ///
  /// We assume that rows contain no duplicate entries (i.e., entries
  /// with the same column index).  Thus, a row may have up to
  /// A.numCols() entries.  This means that the correct type of
  /// 'length' is ordinal_type.
  const ordinal_type length;

  /// \brief Reference to the value of entry i in this row of the sparse matrix.
  ///
  /// "Entry i" is not necessarily the entry with column index i, nor
  /// does i necessarily correspond to the (local) row index.
  KOKKOS_INLINE_FUNCTION
  value_type& value (const ordinal_type& i) const {
    return values_[i*stride_];
  }

  /// \brief Reference to the column index of entry i in this row of the sparse matrix.
  ///
  /// "Entry i" is not necessarily the entry with column index i, nor
  /// does i necessarily correspond to the (local) row index.
  KOKKOS_INLINE_FUNCTION
  ordinal_type& colidx (const ordinal_type& i) const {
    return colidx_[i*stride_];
  }
};


/// \class SparseRowViewConst
/// \brief Const view of a row of a sparse matrix.
/// \tparam MatrixType Sparse matrix type, such as (but not limited to) CrsMatrix.
///
/// This class is like SparseRowView, except that it provides a const
/// view.  This class exists in order to let users get a const view of
/// a row of a nonconst matrix.
template<class MatrixType>
struct SparseRowViewConst {
  //! The type of the values in the row.
  typedef const typename MatrixType::non_const_value_type value_type;
  //! The type of the column indices in the row.
  typedef const typename MatrixType::non_const_ordinal_type ordinal_type;

private:
  //! Array of values in the row.
  value_type* values_;
  //! Array of (local) column indices in the row.
  ordinal_type* colidx_;
  /// \brief Stride between successive entries in the row.
  ///
  /// For compressed sparse row (CSR) storage, this is always one.
  /// This might be greater than one for storage formats like ELLPACK
  /// or Jagged Diagonal.  Nevertheless, the stride can never be
  /// greater than the number of rows or columns in the matrix.  Thus,
  /// \c ordinal_type is the correct type.
  const ordinal_type stride_;

public:
  /// \brief Constructor
  ///
  /// \param values [in] Array of the row's values.
  /// \param colidx [in] Array of the row's column indices.
  /// \param stride [in] (Constant) stride between matrix entries in
  ///   each of the above arrays.
  /// \param count [in] Number of entries in the row.
  KOKKOS_INLINE_FUNCTION
  SparseRowViewConst (value_type* const values,
                      ordinal_type* const colidx__,
                      const ordinal_type& stride,
                      const ordinal_type& count) :
    values_ (values), colidx_ (colidx__), stride_ (stride), length (count)
  {}

  /// \brief Constructor with offset into \c colidx array
  ///
  /// \param values [in] Array of the row's values.
  /// \param colidx [in] Array of the row's column indices.
  /// \param stride [in] (Constant) stride between matrix entries in
  ///   each of the above arrays.
  /// \param count [in] Number of entries in the row.
  /// \param idx [in] Start offset into \c colidx array
  ///
  /// \tparam OffsetType The type of \c idx (see above).  Must be a
  ///   built-in integer type.  This may differ from ordinal_type.
  ///   For example, the matrix may have dimensions that fit in int,
  ///   but a number of entries that does not fit in int.
  template<class OffsetType>
  KOKKOS_INLINE_FUNCTION
  SparseRowViewConst (const typename MatrixType::values_type& values,
                      const typename MatrixType::index_type& colidx__,
                      const ordinal_type& stride,
                      const ordinal_type& count,
                      const OffsetType& idx,
                      const typename std::enable_if<std::is_integral<OffsetType>::value, int>::type& = 0) :
    values_ (&values(idx)), colidx_ (&colidx__(idx)), stride_ (stride), length (count)
  {}

  /// \brief Number of entries in the row.
  ///
  /// This is a public const field rather than a public const method,
  /// in order to avoid possible overhead of a method call if the
  /// compiler is unable to inline that method call.
  ///
  /// We assume that rows contain no duplicate entries (i.e., entries
  /// with the same column index).  Thus, a row may have up to
  /// A.numCols() entries.  This means that the correct type of
  /// 'length' is ordinal_type.
  const ordinal_type length;

  /// \brief (Const) reference to the value of entry i in this row of
  ///   the sparse matrix.
  ///
  /// "Entry i" is not necessarily the entry with column index i, nor
  /// does i necessarily correspond to the (local) row index.
  KOKKOS_INLINE_FUNCTION
  value_type& value (const ordinal_type& i) const {
    return values_[i*stride_];
  }

  /// \brief (Const) reference to the column index of entry i in this
  ///   row of the sparse matrix.
  ///
  /// "Entry i" is not necessarily the entry with column index i, nor
  /// does i necessarily correspond to the (local) row index.
  KOKKOS_INLINE_FUNCTION
  ordinal_type& colidx (const ordinal_type& i) const {
    return colidx_[i*stride_];
  }
};

/// \class CrsMatrix
/// \brief Compressed sparse row implementation of a sparse matrix.
/// \tparam ScalarType The type of entries in the sparse matrix.
/// \tparam OrdinalType The type of column indices in the sparse matrix.
/// \tparam Device The Kokkos Device type.
/// \tparam MemoryTraits Traits describing how Kokkos manages and
///   accesses data.  The default parameter suffices for most users.
///
/// "Crs" stands for "compressed row sparse."  This is the phrase
/// Trilinos traditionally uses to describe compressed sparse row
/// storage for sparse matrices, as described, for example, in Saad
/// (2nd ed.).
template<class ScalarType,
         class OrdinalType,
         class Device,
         class MemoryTraits = void,
         class SizeType = typename Kokkos::ViewTraits<OrdinalType*, Device, void, void>::size_type>
class CrsMatrix {
private:
  typedef typename Kokkos::ViewTraits<ScalarType*,Device,void,void>::host_mirror_space host_mirror_space ;
public:
  //! Type of the matrix's execution space.
  typedef typename Device::execution_space execution_space;
  //! Type of the matrix's memory space.
  typedef typename Device::memory_space memory_space;
  //! Type of the matrix's device type.
  typedef Kokkos::Device<execution_space, memory_space> device_type;

  //! Type of each value in the matrix.
  typedef ScalarType value_type;
  //! Type of each (column) index in the matrix.
  typedef OrdinalType ordinal_type;
  typedef MemoryTraits memory_traits;
  /// \brief Type of each entry of the "row map."
  ///
  /// The "row map" corresponds to the \c ptr array of row offsets in
  /// compressed sparse row (CSR) storage.
  typedef SizeType size_type;

  //! Type of a host-memory mirror of the sparse matrix.
  typedef CrsMatrix<ScalarType, OrdinalType, host_mirror_space, MemoryTraits> HostMirror;
  //! Type of the graph structure of the sparse matrix.
  typedef Kokkos::StaticCrsGraph<OrdinalType, Kokkos::LayoutLeft, execution_space, SizeType> StaticCrsGraphType;
  //! Type of column indices in the sparse matrix.
  typedef typename StaticCrsGraphType::entries_type index_type;
  //! Const version of the type of column indices in the sparse matrix.
  typedef typename index_type::non_const_value_type const_ordinal_type;
  //! Nonconst version of the type of column indices in the sparse matrix.
  typedef typename index_type::non_const_value_type non_const_ordinal_type;
  //! Type of the "row map" (which contains the offset for each row's data).
  typedef typename StaticCrsGraphType::row_map_type row_map_type;
  //! Const version of the type of row offsets in the sparse matrix.
  typedef typename row_map_type::non_const_value_type const_size_type;
  //! Nonconst version of the type of row offsets in the sparse matrix.
  typedef typename row_map_type::non_const_value_type non_const_size_type;
  //! Kokkos Array type of the entries (values) in the sparse matrix.
  typedef Kokkos::View<value_type*, Kokkos::LayoutRight, device_type, MemoryTraits> values_type;
  //! Const version of the type of the entries in the sparse matrix.
  typedef typename values_type::const_value_type const_value_type;
  //! Nonconst version of the type of the entries in the sparse matrix.
  typedef typename values_type::non_const_value_type non_const_value_type;

#ifdef KOKKOS_USE_CUSPARSE
  cusparseHandle_t cusparse_handle;
  cusparseMatDescr_t cusparse_descr;
#endif // KOKKOS_USE_CUSPARSE

  /// \name Storage of the actual sparsity structure and values.
  ///
  /// CrsMatrix uses the compressed sparse row (CSR) storage format to
  /// store the sparse matrix.  CSR is also called "compressed row
  /// storage"; hence the name, which it inherits from Tpetra and from
  /// Epetra before it.
  //@{
  //! The graph (sparsity structure) of the sparse matrix.
  StaticCrsGraphType graph;
  //! The 1-D array of values of the sparse matrix.
  values_type values;
  //@}

  /// \brief Launch configuration that can be used by
  ///   overloads/specializations of MV_multiply().
  ///
  /// This is a hack and needs to be replaced by a general
  /// state mechanism.
  DeviceConfig dev_config;

  /// \brief Default constructor; constructs an empty sparse matrix.
  ///
  /// FIXME (mfh 09 Aug 2013) numCols and nnz should be properties of
  /// the graph, not the matrix.  Then CrsMatrix needs methods to get
  /// these from the graph.
  CrsMatrix () :
    numCols_ (0)
  {}

  //! Copy constructor (shallow copy).
  template<typename SType,
           typename OType,
           class DType,
           class MTType,
           typename IType>
  CrsMatrix (const CrsMatrix<SType,OType,DType,MTType,IType> & B) :
    graph (B.graph),
    values (B.values),
    dev_config (B.dev_config),
#ifdef KOKKOS_USE_CUSPARSE
    cusparse_handle (B.cusparse_handle),
    cusparse_descr (B.cusparse_descr),
#endif // KOKKOS_USE_CUSPARSE
    numCols_ (B.numCols ())
  {}

  /// \brief Construct with a graph that will be shared.
  ///
  /// Allocate the values array for subsquent fill.
  CrsMatrix (const std::string& arg_label,
             const StaticCrsGraphType& arg_graph) :
    graph (arg_graph),
    values (arg_label, arg_graph.entries.dimension_0 ()),
    numCols_ (maximum_entry (arg_graph) + 1)
  {}

  /// \brief Constructor that copies raw arrays of host data in
  ///   coordinate format.
  ///
  /// On input, each entry of the sparse matrix is stored in val[k],
  /// with row index rows[k] and column index cols[k].  We assume that
  /// the entries are sorted in increasing order by row index.
  ///
  /// This constructor is mainly useful for benchmarking or for
  /// reading the sparse matrix's data from a file.
  ///
  /// \param label [in] The sparse matrix's label.
  /// \param nrows [in] The number of rows.
  /// \param ncols [in] The number of columns.
  /// \param annz [in] The number of entries.
  /// \param val [in] The entries.
  /// \param rows [in] The row indices.  rows[k] is the row index of
  ///   val[k].
  /// \param cols [in] The column indices.  cols[k] is the column
  ///   index of val[k].
  /// \param pad [in] If true, pad the sparse matrix's storage with
  ///   zeros in order to improve cache alignment and / or
  ///   vectorization.
  ///
  /// FIXME (mfh 21 Jun 2013) The \c pad argument is currently not used.
  CrsMatrix (const std::string &label,
             OrdinalType nrows,
             OrdinalType ncols,
             size_type annz,
             ScalarType* val,
             OrdinalType* rows,
             OrdinalType* cols,
             bool pad = false)
  {
    (void) pad;
    import (label, nrows, ncols, annz, val, rows, cols);

    // FIXME (mfh 09 Aug 2013) Specialize this on the Device type.
    // Only use cuSPARSE for the Cuda Device.
#ifdef KOKKOS_USE_CUSPARSE
    // FIXME (mfh 09 Aug 2013) This is actually static initialization
    // of the library; you should do it once for the whole program,
    // not once per matrix.  We need to protect this somehow.
    cusparseCreate (&cusparse_handle);

    // This is a per-matrix attribute.  It encapsulates things like
    // whether the matrix is lower or upper triangular, etc.  Ditto
    // for other TPLs like MKL.
    cusparseCreateMatDescr (&cusparse_descr);
#endif // KOKKOS_USE_CUSPARSE
  }

  /// \brief Constructor that accepts a row map, column indices, and
  ///   values.
  ///
  /// The matrix will store and use the row map, indices, and values
  /// directly (by view, not by deep copy).
  ///
  /// \param label [in] The sparse matrix's label.
  /// \param nrows [in] The number of rows.
  /// \param ncols [in] The number of columns.
  /// \param annz [in] The number of entries.
  /// \param vals [in/out] The entries.
  /// \param rows [in/out] The row map (containing the offsets to the
  ///   data in each row).
  /// \param cols [in/out] The column indices.
  CrsMatrix (const std::string& label,
             const OrdinalType nrows,
             const OrdinalType ncols,
             const size_type annz,
             const values_type& vals,
             const row_map_type& rows,
             const index_type& cols) :
    graph (cols, rows),
    values (vals),
    numCols_ (ncols)
  {
    const ordinal_type actualNumRows = (rows.dimension_0 () != 0) ?
      static_cast<ordinal_type> (rows.dimension_0 () - static_cast<size_type> (1)) :
      static_cast<ordinal_type> (0);
    if (nrows != actualNumRows) {
      std::ostringstream os;
      os << "Input argument nrows = " << nrows << " != the actual number of "
        "rows " << actualNumRows << " according to the 'rows' input argument.";
      throw std::invalid_argument (os.str ());
    }
    if (annz != nnz ()) {
      std::ostringstream os;
      os << "Input argument annz = " << annz
         << " != this->nnz () = " << nnz () << ".";
      throw std::invalid_argument (os.str ());
    }

#ifdef KOKKOS_USE_CUSPARSE
    cusparseCreate (&cusparse_handle);
    cusparseCreateMatDescr (&cusparse_descr);
#endif // KOKKOS_USE_CUSPARSE
  }

  /// \brief Constructor that accepts a a static graph, and values.
  ///
  /// The matrix will store and use the row map, indices, and values
  /// directly (by view, not by deep copy).
  ///
  /// \param label [in] The sparse matrix's label.
  /// \param nrows [in] The number of rows.
  /// \param ncols [in] The number of columns.
  /// \param annz [in] The number of entries.
  /// \param vals [in/out] The entries.
  /// \param rows [in/out] The row map (containing the offsets to the
  ///   data in each row).
  /// \param cols [in/out] The column indices.
  CrsMatrix (const std::string& label,
             const OrdinalType& ncols,
             const values_type& vals,
             const StaticCrsGraphType& graph_) :
    graph (graph_),
    values (vals),
    numCols_ (ncols)
  {
#ifdef KOKKOS_USE_CUSPARSE
    cusparseCreate (&cusparse_handle);
    cusparseCreateMatDescr (&cusparse_descr);
#endif // KOKKOS_USE_CUSPARSE
  }

  void
  import (const std::string &label,
          const OrdinalType nrows,
          const OrdinalType ncols,
          const size_type annz,
          ScalarType* val,
          OrdinalType* rows,
          OrdinalType* cols);

  KOKKOS_INLINE_FUNCTION
  OrdinalType
  sumIntoValues (const OrdinalType rowi,
                 const OrdinalType cols[],
                 const OrdinalType ncol,
                 const ScalarType vals[],
                 const bool is_sorted = false,
                 const bool force_atomic = false) const
  {
    SparseRowView<CrsMatrix> row_view = this->row (rowi);
    const ordinal_type length = row_view.length;

    ordinal_type hint = 0; // Guess for offset of current column index in row
    ordinal_type numValid = 0; // number of valid local column indices

    for (ordinal_type i = 0; i < ncol; ++i) {
      const ordinal_type offset =
        findRelOffset (&(row_view.colidx(0)), length, cols[i], hint, is_sorted);
      if (offset != length) {
        if (force_atomic) {
          Kokkos::atomic_add (&(row_view.value(offset)), vals[i]);
        }
        else {
          row_view.value(offset) += vals[i];
        }
      }
      hint = offset + 1;
      ++numValid;
    }
    return numValid;
  }


  KOKKOS_INLINE_FUNCTION
  OrdinalType
  replaceValues (const OrdinalType rowi,
                 const OrdinalType cols[],
                 const OrdinalType ncol,
                 const ScalarType vals[],
                 const bool is_sorted = false,
                 const bool force_atomic = false) const
  {
    SparseRowView<CrsMatrix> row_view = this->row (rowi);
    const ordinal_type length = row_view.length;

    ordinal_type hint = 0; // Guess for offset of current column index in row
    ordinal_type numValid = 0; // number of valid local column indices

    for (ordinal_type i = 0; i < ncol; ++i) {
      const ordinal_type offset =
        findRelOffset (&(row_view.colidx(0)), length, cols[i], hint, is_sorted);
      if (offset != length) {
        if (force_atomic) {
          Kokkos::atomic_assign (&(row_view.value(offset)), vals[i]);
        }
        else {
          row_view.value(offset) = vals[i];
        }
      }
      hint = offset + 1;
      ++numValid;
    }
    return numValid;
  }

  //! Attempt to assign the input matrix to \c *this.
  template<typename aScalarType, typename aOrdinalType, class aDevice, class aMemoryTraits,typename aSizeType>
  CrsMatrix&
  operator= (const CrsMatrix<aScalarType, aOrdinalType, aDevice, aMemoryTraits, aSizeType>& mtx)
  {
    numCols_ = mtx.numCols ();
    graph = mtx.graph;
    values = mtx.values;
    dev_config = mtx.dev_config;
    return *this;
  }

  //! The number of rows in the sparse matrix.
  KOKKOS_INLINE_FUNCTION ordinal_type numRows () const {
    return graph.numRows ();
  }

  //! The number of columns in the sparse matrix.
  KOKKOS_INLINE_FUNCTION ordinal_type numCols () const {
    return numCols_;
  }

  //! The number of stored entries in the sparse matrix.
  KOKKOS_INLINE_FUNCTION size_type nnz () const {
    return graph.entries.dimension_0 ();
  }

  friend struct SparseRowView<CrsMatrix>;

  /// \brief Return a view of row i of the matrix.
  ///
  /// If row i does not belong to the matrix, return an empty view.
  ///
  /// The returned object \c view implements the following interface:
  /// <ul>
  /// <li> \c view.length is the number of entries in the row </li>
  /// <li> \c view.value(k) returns a nonconst reference
  ///      to the value of the k-th entry in the row </li>
  /// <li> \c view.colidx(k) returns a nonconst reference to
  ///      the column index of the k-th entry in the row </li>
  /// </ul>
  /// k is not a column index; it just counts from 0 to
  /// <tt>view.length - 1</tt>.
  ///
  /// Users should not rely on the return type of this method.  They
  /// should instead assign to 'auto'.  That allows compile-time
  /// polymorphism for different kinds of sparse matrix formats (e.g.,
  /// ELLPACK or Jagged Diagonal) that we may wish to support in the
  /// future.
  ///
  /// Both row() and rowConst() used to take a "SizeType" template
  /// parameter, which was the type to use for row offsets.  This is
  /// unnecessary, because the CrsMatrix specialization already has
  /// the row offset type available, via the <tt>size_type</tt>
  /// typedef.  Our sparse matrix-vector multiply implementation for
  /// CrsMatrix safely uses <tt>ordinal_type</tt> rather than
  /// <tt>size_type</tt> to iterate over all the entries in a row of
  /// the sparse matrix.  Since <tt>ordinal_type</tt> may be smaller
  /// than <tt>size_type</tt>, compilers may generate more efficient
  /// code.  The row() and rowConst() methods first compute the
  /// difference of consecutive row offsets as <tt>size_type</tt>, and
  /// then cast to <tt>ordinal_type</tt>.  If you want to do this
  /// yourself, here is an example:
  ///
  /// \code
  /// for (ordinal_type lclRow = 0; lclRow < A.numRows (); ++lclRow) {
  ///   const ordinal_type numEnt =
  ///     static_cast<ordinal_type> (A.graph.row_map(i+1) - A.graph.row_map(i));
  ///   for (ordinal_type k = 0; k < numEnt; ++k) {
  ///     // etc.
  ///   }
  /// }
  /// \endcode
  KOKKOS_INLINE_FUNCTION
  SparseRowView<CrsMatrix> row (const ordinal_type i) const {
    const size_type start = graph.row_map(i);
    // count is guaranteed to fit in ordinal_type, as long as no row
    // has duplicate entries.
    const ordinal_type count = static_cast<ordinal_type> (graph.row_map(i+1) - start);

    if (count == 0) {
      return SparseRowView<CrsMatrix> (NULL, NULL, 1, 0);
    } else {
      return SparseRowView<CrsMatrix> (values, graph.entries, 1, count, start);
    }
  }

  /// \brief Return a const view of row i of the matrix.
  ///
  /// If row i does not belong to the matrix, return an empty view.
  ///
  /// The returned object \c view implements the following interface:
  /// <ul>
  /// <li> \c view.length is the number of entries in the row </li>
  /// <li> \c view.value(k) returns a const reference to
  ///      the value of the k-th entry in the row </li>
  /// <li> \c view.colidx(k) returns a const reference to the
  ///      column index of the k-th entry in the row </li>
  /// </ul>
  /// k is not a column index; it just counts from 0 to
  /// <tt>view.length - 1</tt>.
  ///
  /// Users should not rely on the return type of this method.  They
  /// should instead assign to 'auto'.  That allows compile-time
  /// polymorphism for different kinds of sparse matrix formats (e.g.,
  /// ELLPACK or Jagged Diagonal) that we may wish to support in the
  /// future.
  ///
  /// Both row() and rowConst() used to take a "SizeType" template
  /// parameter, which was the type to use for row offsets.  This is
  /// unnecessary, because the CrsMatrix specialization already has
  /// the row offset type available, via the <tt>size_type</tt>
  /// typedef.  Our sparse matrix-vector multiply implementation for
  /// CrsMatrix safely uses <tt>ordinal_type</tt> rather than
  /// <tt>size_type</tt> to iterate over all the entries in a row of
  /// the sparse matrix.  Since <tt>ordinal_type</tt> may be smaller
  /// than <tt>size_type</tt>, compilers may generate more efficient
  /// code.  The row() and rowConst() methods first compute the
  /// difference of consecutive row offsets as <tt>size_type</tt>, and
  /// then cast to <tt>ordinal_type</tt>.  If you want to do this
  /// yourself, here is an example:
  ///
  /// \code
  /// for (ordinal_type lclRow = 0; lclRow < A.numRows (); ++lclRow) {
  ///   const ordinal_type numEnt =
  ///     static_cast<ordinal_type> (A.graph.row_map(i+1) - A.graph.row_map(i));
  ///   for (ordinal_type k = 0; k < numEnt; ++k) {
  ///     // etc.
  ///   }
  /// }
  /// \endcode
  KOKKOS_INLINE_FUNCTION
  SparseRowViewConst<CrsMatrix> rowConst (const ordinal_type i) const {
    const size_type start = graph.row_map(i);
    // count is guaranteed to fit in ordinal_type, as long as no row
    // has duplicate entries.
    const ordinal_type count = static_cast<ordinal_type> (graph.row_map(i+1) - start);

    if (count == 0) {
      return SparseRowViewConst<CrsMatrix> (NULL, NULL, 1, 0);
    } else {
      return SparseRowViewConst<CrsMatrix> (values, graph.entries, 1, count, start);
    }
  }

private:
  ordinal_type numCols_;
};

//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

template< typename ScalarType , typename OrdinalType, class Device, class MemoryTraits, typename SizeType >
void
CrsMatrix<ScalarType , OrdinalType, Device, MemoryTraits, SizeType >::
import (const std::string &label,
        const OrdinalType nrows,
        const OrdinalType ncols,
        const size_type annz,
        ScalarType* val,
        OrdinalType* rows,
        OrdinalType* cols)
{
  std::string str = label;
  values = values_type (str.append (".values"), annz);

  numCols_ = ncols;

  // FIXME (09 Aug 2013) CrsArray only takes std::vector for now.
  // We'll need to fix that.
  std::vector<int> row_lengths (nrows, 0);

  // FIXME (mfh 21 Jun 2013) This calls for a parallel_for kernel.
  for (OrdinalType i = 0; i < nrows; ++i) {
    row_lengths[i] = rows[i + 1] - rows[i];
  }

  str = label;
  graph = Kokkos::create_staticcrsgraph<StaticCrsGraphType> (str.append (".graph"), row_lengths);
  typename values_type::HostMirror h_values = Kokkos::create_mirror_view (values);
  typename index_type::HostMirror h_entries = Kokkos::create_mirror_view (graph.entries);

  // FIXME (mfh 21 Jun 2013) This needs to be a parallel copy.
  // Furthermore, why are the arrays copied twice? -- once here, to a
  // host view, and once below, in the deep copy?
  for (size_type i = 0; i < annz; ++i) {
    if (val) {
      h_values(i) = val[i];
    }
    h_entries(i) = cols[i];
  }

  Kokkos::deep_copy (values, h_values);
  Kokkos::deep_copy (graph.entries, h_entries);
}
}
#endif