/usr/include/trilinos/Kokkos_CrsMatrix.hpp is in libtrilinos-kokkos-kernels-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 | /*
//@HEADER
// ************************************************************************
//
// KokkosKernels 0.9: Linear Algebra and Graph Kernels
// Copyright 2017 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Siva Rajamanickam (srajama@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_CRSMATRIX_H_
#define KOKKOS_CRSMATRIX_H_
/// \file Kokkos_CrsMatrix.hpp
/// \brief Local sparse matrix interface
/// \warning Do NOT include this file. This file is DEPRECATED!!!
/// Include Kokkos_Sparse_CrsMatrix.hpp instead.
#include <algorithm>
#include <Kokkos_Core.hpp>
#include <Kokkos_ArithTraits.hpp>
#include <Kokkos_StaticCrsGraph.hpp>
#ifdef KOKKOS_USE_CUSPARSE
# include <cusparse.h>
# include <Kokkos_CrsMatrix_CuSparse.hpp>
#endif // KOKKOS_USE_CUSPARSE
#ifdef KOKKOS_USE_MKL
# include <mkl.h>
# include <mkl_spblas.h>
# include <Kokkos_CrsMatrix_MKL.hpp>
#endif // KOKKOS_USE_MKL
//#include <Kokkos_Vectorization.hpp>
#include <impl/Kokkos_Error.hpp>
#include <Kokkos_Sparse_CrsMatrix.hpp>
namespace Kokkos {
#if true
using KokkosSparse::CrsMatrix;
using KokkosSparse::RowsPerThread;
using KokkosSparse::SparseRowView;
using KokkosSparse::SparseRowViewConst;
using KokkosSparse::DeviceConfig;
#endif // true
template<class DeviceType, typename ScalarType, int NNZPerRow=27>
struct MV_MultiplyShflThreadsPerRow {
private:
typedef typename Kokkos::Impl::remove_const< ScalarType >::type value_type;
// The shuffle operation only works with CUDA, and only works for
// certain ScalarType types.
#ifdef KOKKOS_HAVE_CUDA
enum { shfl_possible =
Kokkos::Impl::is_same< DeviceType , Kokkos::Cuda >::value &&
(
Kokkos::Impl::is_same< value_type , unsigned int >::value ||
Kokkos::Impl::is_same< value_type , int >::value ||
Kokkos::Impl::is_same< value_type , float >::value ||
Kokkos::Impl::is_same< value_type , double >::value
)};
#else // NOT KOKKOS_HAVE_CUDA
enum { shfl_possible = 0 };
#endif // KOKKOS_HAVE_CUDA
public:
#if defined( __CUDA_ARCH__ )
enum { device_value = shfl_possible && ( 300 <= __CUDA_ARCH__ ) ?
(NNZPerRow<8?2:
(NNZPerRow<16?4:
(NNZPerRow<32?8:
(NNZPerRow<64?16:
32))))
:1 };
#else
enum { device_value = 1 };
#endif
#ifdef KOKKOS_HAVE_CUDA
inline static int host_value()
{ return shfl_possible && ( 300 <= Kokkos::Cuda::device_arch() ) ?
(NNZPerRow<8?2:
(NNZPerRow<16?4:
(NNZPerRow<32?8:
(NNZPerRow<64?16:
32))))
:1; }
#else // NOT KOKKOS_HAVE_CUDA
inline static int host_value() { return 1; }
#endif // KOKKOS_HAVE_CUDA
};
//----------------------------------------------------------------------------
template<class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta>
struct MV_MultiplyFunctor {
typedef typename CrsMatrix::execution_space execution_space;
typedef typename CrsMatrix::size_type size_type;
typedef typename CrsMatrix::ordinal_type ordinal_type;
typedef typename CrsMatrix::non_const_value_type value_type;
typedef typename Kokkos::View<value_type*, execution_space> range_values;
typedef typename Kokkos::TeamPolicy<execution_space> team_policy;
typedef typename team_policy::member_type team_member;
CoeffVector1 beta;
CoeffVector2 alpha;
CrsMatrix m_A;
DomainVector m_x;
RangeVector m_y;
/// \brief The number of columns in the input and output MultiVectors.
///
/// Its approxpriate type is therefore size_type, but we don't
/// expect the input and output MultiVectors to have more columns
/// than the sparse matrix has rows or columns. Thus, we prefer the
/// (likely both smaller and signed, vs. the larger and likely
/// unsigned) size_type.
ordinal_type n;
int rows_per_thread;
MV_MultiplyFunctor (const CoeffVector1 beta_,
const CoeffVector2 alpha_,
const CrsMatrix m_A_,
const DomainVector m_x_,
const RangeVector m_y_,
const ordinal_type n_,
const int rows_per_thread_) :
beta (beta_), alpha (alpha_),
m_A (m_A_), m_x (m_x_), m_y (m_y_), n (n_),
rows_per_thread (rows_per_thread_)
{}
template<int UNROLL>
KOKKOS_INLINE_FUNCTION void
strip_mine (const team_member& dev, const size_type& iRow, const size_type& kk) const
{
value_type sum[UNROLL];
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
// NOTE (mfh 09 Aug 2013) This requires that assignment from int
// (in this case, 0) to value_type be defined. It's not for
// types like arprec and dd_real.
//
// mfh 29 Sep 2013: On the other hand, arprec and dd_real won't
// work on CUDA devices anyway, since their methods aren't
// device functions. arprec has other issues (e.g., dynamic
// memory allocation, and the array-of-structs memory layout
// which is unfavorable to GPUs), but could be dealt with in the
// same way as Sacado's AD types.
sum[k] = 0;
}
const SparseRowViewConst<CrsMatrix> row = m_A.rowConst (iRow);
// NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
// lacks a typedef for determining the type of the return value of
// begin(). I know that it returns int now, but this may change
// at some point.
//
// The correct type of iEntry is ordinal_type. This is because we
// assume that rows have no duplicate entries. As a result, a row
// cannot have more entries than the number of columns in the
// matrix.
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
#ifdef KOKKOS_HAVE_PRAGMA_LOOPCOUNT
#pragma loop count (15)
#endif
#ifdef __CUDA_ARCH__
for (ordinal_type iEntry = static_cast<ordinal_type> (threadIdx.x);
iEntry < static_cast<ordinal_type> (row.length);
iEntry += static_cast<ordinal_type> (blockDim.x)) {
#else
for (ordinal_type iEntry = 0;
iEntry < static_cast<ordinal_type> (row.length);
iEntry ++) {
#endif
const value_type val = row.value(iEntry);
const ordinal_type ind = row.colidx(iEntry);
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
sum[k] += val * m_x(ind, kk + k);
}
}
if (doalpha == -1) {
for (int ii=0; ii < UNROLL; ++ii) {
value_type sumt=sum[ii];
#if defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
if (blockDim.x > 1)
sumt += shfl_down(sumt, 1,blockDim.x);
if (blockDim.x > 2)
sumt += shfl_down(sumt, 2,blockDim.x);
if (blockDim.x > 4)
sumt += shfl_down(sumt, 4,blockDim.x);
if (blockDim.x > 8)
sumt += shfl_down(sumt, 8,blockDim.x);
if (blockDim.x > 16)
sumt += shfl_down(sumt, 16,blockDim.x);
#endif // defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
sum[ii] = - sumt;
}
}
else {
for (int ii=0; ii < UNROLL; ++ii) {
value_type sumt = sum[ii];
#if defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
if (blockDim.x > 1)
sumt += shfl_down(sumt, 1,blockDim.x);
if (blockDim.x > 2)
sumt += shfl_down(sumt, 2,blockDim.x);
if (blockDim.x > 4)
sumt += shfl_down(sumt, 4,blockDim.x);
if (blockDim.x > 8)
sumt += shfl_down(sumt, 8,blockDim.x);
if (blockDim.x > 16)
sumt += shfl_down(sumt, 16,blockDim.x);
#endif // defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
sum[ii] = sumt;
}
}
#if defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
if (threadIdx.x==0) {
#else
if (true) {
#endif // defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
if (doalpha * doalpha != 1) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
sum[k] *= alpha(kk + k);
}
}
if (dobeta == 0) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
m_y(iRow, kk + k) = sum[k];
}
} else if (dobeta == 1) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
m_y(iRow, kk + k) += sum[k];
}
} else if (dobeta == -1) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
m_y(iRow, kk + k) = -m_y(iRow, kk + k) + sum[k];
}
} else {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
m_y(iRow, kk + k) = beta(kk + k) * m_y(iRow, kk + k) + sum[k] ;
}
}
}
}
KOKKOS_INLINE_FUNCTION void
strip_mine_1 (const team_member& dev, const size_type& iRow) const
{
value_type sum = 0;
const SparseRowViewConst<CrsMatrix> row = m_A.rowConst (iRow);
// NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
// lacks a typedef for determining the type of the return value of
// begin(). I know that it returns int now, but this may change
// at some point.
//
// The correct type of iEntry is ordinal_type. This is because we
// assume that rows have no duplicate entries. As a result, a row
// cannot have more entries than the number of columns in the
// matrix.
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
#ifdef KOKKOS_HAVE_PRAGMA_LOOPCOUNT
#pragma loop count (15)
#endif
#ifdef __CUDA_ARCH__
for (ordinal_type iEntry = static_cast<ordinal_type> (threadIdx.x);
iEntry < static_cast<ordinal_type> (row.length);
iEntry += static_cast<ordinal_type> (blockDim.x)) {
#else
for (ordinal_type iEntry = 0;
iEntry < static_cast<ordinal_type> (row.length);
iEntry ++) {
#endif
sum += row.value(iEntry) * m_x(row.colidx(iEntry),0);
}
#if defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
if (blockDim.x > 1)
sum += shfl_down(sum, 1,blockDim.x);
if (blockDim.x > 2)
sum += shfl_down(sum, 2,blockDim.x);
if (blockDim.x > 4)
sum += shfl_down(sum, 4,blockDim.x);
if (blockDim.x > 8)
sum += shfl_down(sum, 8,blockDim.x);
if (blockDim.x > 16)
sum += shfl_down(sum, 16,blockDim.x);
#endif // defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
#ifdef __CUDA_ARCH__
if (threadIdx.x==0) {
#else
if (true) {
#endif
if (doalpha == -1) {
sum *= value_type(-1);
} else if (doalpha * doalpha != 1) {
sum *= alpha(0);
}
if (dobeta == 0) {
m_y(iRow, 0) = sum ;
} else if (dobeta == 1) {
m_y(iRow, 0) += sum ;
} else if (dobeta == -1) {
m_y(iRow, 0) = -m_y(iRow, 0) + sum;
} else {
m_y(iRow, 0) = beta(0) * m_y(iRow, 0) + sum;
}
}
}
KOKKOS_INLINE_FUNCTION void
operator() (const team_member& dev) const
{
for (int loop = 0; loop < rows_per_thread; ++loop) {
// NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
// lacks a typedef for determining the type of the return value
// of global_thread_rank(). I know that it returns int now, but
// this may change at some point.
//
// iRow represents a row of the matrix, so its correct type is
// ordinal_type.
const ordinal_type iRow = (dev.league_rank() * dev.team_size() + dev.team_rank())
* rows_per_thread + loop;
if (iRow >= m_A.numRows ()) {
return;
}
// mfh 20 Mar 2015: This relates to n, so its correct type is
// ordinal_type. Once we can use C++11 without protection, the
// right thing to do would be to use decltype to pick up n's
// type here, rather than assuming that it's ordinal_type.
ordinal_type kk = 0;
#ifdef KOKKOS_FAST_COMPILE
for (; kk + 4 <= n; kk += 4) {
strip_mine<4>(dev, iRow, kk);
}
for( ; kk < n; ++kk) {
strip_mine<1>(dev, iRow, kk);
}
#else
# ifdef __CUDA_ARCH__
if ((n > 8) && (n % 8 == 1)) {
strip_mine<9>(dev, iRow, kk);
kk += 9;
}
for(; kk + 8 <= n; kk += 8)
strip_mine<8>(dev, iRow, kk);
if(kk < n)
switch(n - kk) {
# else // NOT a CUDA device
if ((n > 16) && (n % 16 == 1)) {
strip_mine<17>(dev, iRow, kk);
kk += 17;
}
for (; kk + 16 <= n; kk += 16) {
strip_mine<16>(dev, iRow, kk);
}
if(kk < n)
switch(n - kk) {
case 15:
strip_mine<15>(dev, iRow, kk);
break;
case 14:
strip_mine<14>(dev, iRow, kk);
break;
case 13:
strip_mine<13>(dev, iRow, kk);
break;
case 12:
strip_mine<12>(dev, iRow, kk);
break;
case 11:
strip_mine<11>(dev, iRow, kk);
break;
case 10:
strip_mine<10>(dev, iRow, kk);
break;
case 9:
strip_mine<9>(dev, iRow, kk);
break;
case 8:
strip_mine<8>(dev, iRow, kk);
break;
# endif // __CUDA_ARCH__
case 7:
strip_mine<7>(dev, iRow, kk);
break;
case 6:
strip_mine<6>(dev, iRow, kk);
break;
case 5:
strip_mine<5>(dev, iRow, kk);
break;
case 4:
strip_mine<4>(dev, iRow, kk);
break;
case 3:
strip_mine<3>(dev, iRow, kk);
break;
case 2:
strip_mine<2>(dev, iRow, kk);
break;
case 1:
strip_mine_1(dev, iRow);
break;
}
#endif // KOKKOS_FAST_COMPILE
}
}
};
template<class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta>
struct MV_MultiplySingleFunctor {
typedef typename CrsMatrix::execution_space execution_space;
typedef typename CrsMatrix::ordinal_type ordinal_type;
typedef typename CrsMatrix::non_const_value_type value_type;
typedef typename Kokkos::View<value_type*, typename CrsMatrix::execution_space> range_values;
typedef typename Kokkos::TeamPolicy<execution_space> team_policy;
typedef typename team_policy::member_type team_member;
CoeffVector1 beta;
CoeffVector2 alpha;
CrsMatrix m_A;
DomainVector m_x;
RangeVector m_y;
ordinal_type rows_per_thread;
MV_MultiplySingleFunctor (const CoeffVector1 beta_,
const CoeffVector2 alpha_,
const CrsMatrix m_A_,
const DomainVector m_x_,
const RangeVector m_y_,
const int rows_per_thread_) :
beta (beta_), alpha (alpha_),
m_A (m_A_), m_x (m_x_), m_y (m_y_),
rows_per_thread (rows_per_thread_)
{}
KOKKOS_INLINE_FUNCTION void
operator() (const team_member& dev) const
{
// This should be a thread loop as soon as we can use C++11.
//
// FIXME (mfh 20 Mar 2015, 11 Apr 2015) The correct type of
// 'loop' should be ordinal_type, not int. Ditto for
// rows_per_thread. The cast avoids a build warning.
for (int loop = 0; loop < static_cast<int> (rows_per_thread); ++loop) {
// NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
// lacks a typedef for determining the type of the return
// value of global_thread_rank(). I know that it returns int
// now, but this may change at some point.
//
// iRow represents a row of the matrix, so its correct type is
// ordinal_type.
const ordinal_type iRow = (dev.league_rank() * dev.team_size() + dev.team_rank())
* rows_per_thread + loop;
if (iRow >= m_A.numRows ()) {
return;
}
const SparseRowViewConst<CrsMatrix> row = m_A.rowConst (iRow);
const ordinal_type row_length = static_cast<ordinal_type> (row.length);
value_type sum = 0;
// Use explicit Cuda below to avoid C++11 for now. This should be a vector reduce loop !
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
#ifdef KOKKOS_HAVE_PRAGMA_LOOPCOUNT
#pragma loop count (15)
#endif
#ifdef __CUDA_ARCH__
for (ordinal_type iEntry = static_cast<ordinal_type> (threadIdx.x);
iEntry < static_cast<ordinal_type> (row_length);
iEntry += static_cast<ordinal_type> (blockDim.x)) {
#else
for (ordinal_type iEntry = 0;
iEntry < static_cast<ordinal_type> (row_length);
iEntry ++) {
#endif
sum += row.value(iEntry) * m_x(row.colidx(iEntry));
}
#if defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
if (blockDim.x > 1)
sum += shfl_down(sum, 1,blockDim.x);
if (blockDim.x > 2)
sum += shfl_down(sum, 2,blockDim.x);
if (blockDim.x > 4)
sum += shfl_down(sum, 4,blockDim.x);
if (blockDim.x > 8)
sum += shfl_down(sum, 8,blockDim.x);
if (blockDim.x > 16)
sum += shfl_down(sum, 16,blockDim.x);
if (threadIdx.x==0) {
#else
if (true) {
#endif // defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
if (doalpha == -1) {
sum *= value_type(-1);
} else if (doalpha * doalpha != 1) {
sum *= alpha(0);
}
if (dobeta == 0) {
m_y(iRow) = sum ;
} else if (dobeta == 1) {
m_y(iRow) += sum ;
} else if (dobeta == -1) {
m_y(iRow) = -m_y(iRow) + sum;
} else {
m_y(iRow) = beta(0) * m_y(iRow) + sum;
}
}
}
}
};
namespace Impl {
template <class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2>
void
MV_Multiply_Check_Compatibility (const CoeffVector1 &betav,
const RangeVector &y,
const CoeffVector2 &alphav,
const CrsMatrix &A,
const DomainVector &x,
const int& doalpha,
const int& dobeta)
{
typename DomainVector::size_type numVecs = x.dimension_1();
typename DomainVector::size_type numRows = A.numRows();
typename DomainVector::size_type numCols = A.numCols();
if (y.dimension_1() != numVecs) {
std::ostringstream msg;
msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): 2nd dimensions of y and x do not match\n";
msg << "\t Labels are: y(" << y.tracker().label() << ") b("
<< betav.tracker().label() << ") a("
<< alphav.tracker().label() << ") x("
<< A.values.tracker().label() << ") x("
<< x.tracker().label() << ")\n";
msg << "\t Dimensions are: y(" << y.dimension_0() << "," << y.dimension_1() << ") x(" << x.dimension_0() << "," << x.dimension_1() << ")\n";
Impl::throw_runtime_exception( msg.str() );
}
if (numRows > y.dimension_0()) {
std::ostringstream msg;
msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): dimensions of y and A do not match\n";
msg << "\t Labels are: y(" << y.tracker().label() << ") b("
<< betav.tracker().label() << ") a("
<< alphav.tracker().label() << ") x("
<< A.values.tracker().label() << ") x("
<< x.tracker().label() << ")\n";
msg << "\t Dimensions are: y(" << y.dimension_0() << "," << y.dimension_1() << ") A(" << A.numRows() << "," << A.numCols() << ")\n";
Impl::throw_runtime_exception( msg.str() );
}
if (numCols > x.dimension_0()) {
std::ostringstream msg;
msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): dimensions of x and A do not match\n";
msg << "\t Labels are: y(" << y.tracker().label() << ") b("
<< betav.tracker().label() << ") a("
<< alphav.tracker().label() << ") x("
<< A.values.tracker().label() << ") x("
<< x.tracker().label() << ")\n";
msg << "\t Dimensions are: x(" << x.dimension_0() << "," << x.dimension_1() << ") A(" << A.numRows() << "," << A.numCols() << ")\n";
Impl::throw_runtime_exception( msg.str() );
}
if (dobeta==2) {
if (betav.dimension_0()!=numVecs) {
std::ostringstream msg;
msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): 2nd dimensions of y and b do not match\n";
msg << "\t Labels are: y(" << y.tracker().label() << ") b("
<< betav.tracker().label() << ") a("
<< alphav.tracker().label() << ") x("
<< A.values.tracker().label() << ") x("
<< x.tracker().label() << ")\n";
msg << "\t Dimensions are: y(" << y.dimension_0() << "," << y.dimension_1() << ") b(" << betav.dimension_0() << ")\n";
Impl::throw_runtime_exception( msg.str() );
}
}
if(doalpha==2) {
if(alphav.dimension_0()!=numVecs) {
std::ostringstream msg;
msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): 2nd dimensions of x and b do not match\n";
msg << "\t Labels are: y(" << y.tracker().label() << ") b("
<< betav.tracker().label() << ") a("
<< alphav.tracker().label() << ") x("
<< A.values.tracker().label() << ") x("
<< x.tracker().label() << ")\n";
msg << "\t Dimensions are: x(" << x.dimension_0() << "," << x.dimension_1() << ") b(" << betav.dimension_0() << ")\n";
Impl::throw_runtime_exception( msg.str() );
}
}
}
} // namespace Impl
// This TransposeFunctor is functional, but not necessarily performant.
template<class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta,
bool conjugate = false,
int NNZPerRow = 27>
struct MV_MultiplyTransposeFunctor {
typedef typename CrsMatrix::execution_space execution_space;
typedef typename CrsMatrix::ordinal_type ordinal_type;
typedef typename CrsMatrix::size_type size_type;
typedef typename CrsMatrix::non_const_value_type value_type;
typedef typename Kokkos::View<value_type*, execution_space> range_values;
typedef MV_MultiplyShflThreadsPerRow<execution_space, value_type, NNZPerRow> ShflThreadsPerRow;
CoeffVector1 beta;
CoeffVector2 alpha;
CrsMatrix m_A ;
DomainVector m_x ;
RangeVector m_y ;
ordinal_type n;
// This is an iteration over rows of the matrix (modulo the
// shuffle width), so the correct type of i is ordinal_type.
KOKKOS_INLINE_FUNCTION
void operator() (const ordinal_type i) const {
typedef Kokkos::Details::ArithTraits<value_type> ATV;
const ordinal_type iRow = i / ShflThreadsPerRow::device_value;
const int lane = static_cast<int> (i) % ShflThreadsPerRow::device_value;
const SparseRowViewConst<CrsMatrix> row = m_A.rowConst (iRow);
for (ordinal_type iEntry = static_cast<ordinal_type> (lane);
iEntry < static_cast<ordinal_type> (row.length);
iEntry += static_cast<ordinal_type> (ShflThreadsPerRow::device_value)) {
const value_type val = conjugate ?
ATV::conj (row.value(iEntry)) :
row.value(iEntry);
const ordinal_type ind = row.colidx(iEntry);
if (doalpha != 1) {
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (ordinal_type k = 0; k < n; ++k) {
atomic_add (&m_y(ind,k), value_type(alpha(k) * val * m_x(iRow, k)));
}
} else {
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (ordinal_type k = 0; k < n; ++k) {
atomic_add (&m_y(ind,k), value_type(val * m_x(iRow, k)));
}
}
}
}
};
// This TansposeFunctor is functional, but not necessarily performant.
template<class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta,
bool conjugate = false,
int NNZPerRow = 27 >
struct MV_MultiplyTransposeSingleFunctor {
typedef typename CrsMatrix::execution_space execution_space;
typedef typename CrsMatrix::ordinal_type ordinal_type;
typedef typename CrsMatrix::non_const_value_type value_type;
typedef typename Kokkos::View<value_type*, execution_space> range_values;
typedef MV_MultiplyShflThreadsPerRow< execution_space , value_type , NNZPerRow > ShflThreadsPerRow ;
CoeffVector1 beta;
CoeffVector2 alpha;
CrsMatrix m_A ;
DomainVector m_x ;
RangeVector m_y ;
ordinal_type n;
KOKKOS_INLINE_FUNCTION
void operator() (const ordinal_type i) const {
typedef Kokkos::Details::ArithTraits<value_type> ATV;
const ordinal_type iRow = i / ShflThreadsPerRow::device_value;
const int lane = static_cast<int> (i) % ShflThreadsPerRow::device_value;
const SparseRowViewConst<CrsMatrix> row = m_A.rowConst (iRow);
for (ordinal_type iEntry = static_cast<ordinal_type> (lane);
iEntry < static_cast<ordinal_type> (row.length);
iEntry += static_cast<ordinal_type> (ShflThreadsPerRow::device_value)) {
const value_type val = conjugate ?
ATV::conj (row.value(iEntry)) :
row.value(iEntry);
const ordinal_type ind = row.colidx(iEntry);
if (doalpha != 1) {
atomic_add (&m_y(ind), value_type(alpha(0) * val * m_x(iRow)));
} else {
atomic_add (&m_y(ind), value_type(val * m_x(iRow)));
}
}
}
};
template <class RangeVector,
class TCrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta>
void
MV_MultiplyTranspose (typename Kokkos::Impl::enable_if<DomainVector::Rank == 2, const CoeffVector1>::type& betav,
const RangeVector &y,
const CoeffVector2 &alphav,
const TCrsMatrix &A,
const DomainVector &x,
const bool conjugate = false)
{
typedef typename TCrsMatrix::ordinal_type ordinal_type;
// FIXME (mfh 02 Jan 2015) Is numRows() always signed? More
// importantly, if the calling process owns zero rows in the row
// Map, numRows() should return 0, not -1.
//
//Special case for zero Rows RowMap
if (A.numRows () == static_cast<ordinal_type> (-1)) {
return;
}
if (doalpha == 0) {
if (dobeta == 2) {
MV_MulScalar (y, betav, y);
} else {
MV_MulScalar (y, static_cast<typename RangeVector::const_value_type> (dobeta), y);
}
return;
} else {
typedef View< typename RangeVector::non_const_data_type ,
typename RangeVector::array_layout ,
typename RangeVector::execution_space ,
typename RangeVector::memory_traits >
RangeVectorType;
typedef View< typename DomainVector::const_data_type ,
typename DomainVector::array_layout ,
typename DomainVector::execution_space ,
Kokkos::MemoryRandomAccess >
DomainVectorType;
typedef View< typename CoeffVector1::const_data_type ,
typename CoeffVector1::array_layout ,
typename CoeffVector1::execution_space ,
Kokkos::MemoryRandomAccess >
CoeffVector1Type;
typedef View< typename CoeffVector2::const_data_type ,
typename CoeffVector2::array_layout ,
typename CoeffVector2::execution_space ,
Kokkos::MemoryRandomAccess >
CoeffVector2Type;
typedef CrsMatrix<typename TCrsMatrix::const_value_type,
typename TCrsMatrix::ordinal_type,
typename TCrsMatrix::execution_space,
typename TCrsMatrix::memory_traits,
typename TCrsMatrix::size_type> CrsMatrixType;
// FIXME (mfh 20 Mar 2015) The dimension doesn't have type int.
// On the other hand, this is the number of columns in the input
// (and output) MultiVectors, so it's not likely to be large (the
// typical case is < 100).
int numVecs = x.dimension_1();
CoeffVector1 beta = betav;
CoeffVector2 alpha = alphav;
if (doalpha != 2) {
alpha = CoeffVector2("CrsMatrix::auto_a", numVecs);
typename CoeffVector2::HostMirror h_a = Kokkos::create_mirror_view(alpha);
typename CoeffVector2::value_type s_a = (typename CoeffVector2::value_type) doalpha;
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (alpha, h_a);
}
if (dobeta != 2) {
beta = CoeffVector1("CrsMatrix::auto_b", numVecs);
typename CoeffVector1::HostMirror h_b = Kokkos::create_mirror_view(beta);
typename CoeffVector1::value_type s_b = (typename CoeffVector1::value_type) dobeta;
for (int i = 0; i < numVecs; ++i) {
h_b(i) = s_b;
}
Kokkos::deep_copy (beta, h_b);
}
if (dobeta == 2) {
MV_MulScalar (y, betav, y);
} else {
if (dobeta != 1) {
MV_MulScalar (y, static_cast<typename RangeVector::const_value_type> (dobeta), y);
}
}
const ordinal_type nrow = A.numRows ();
if (conjugate) {
typedef MV_MultiplyTransposeFunctor<RangeVectorType, CrsMatrixType,
DomainVectorType, CoeffVector1Type,
CoeffVector2Type, 2, 2, true> OpType;
OpType op ;
op.m_A = A;
op.m_x = x;
op.m_y = y;
op.beta = beta;
op.alpha = alpha;
op.n = x.dimension_1();
Kokkos::parallel_for (nrow * OpType::ShflThreadsPerRow::host_value (), op);
}
else {
typedef MV_MultiplyTransposeFunctor<RangeVectorType, CrsMatrixType,
DomainVectorType, CoeffVector1Type,
CoeffVector2Type, 2, 2, false> OpType;
OpType op ;
op.m_A = A;
op.m_x = x;
op.m_y = y;
op.beta = beta;
op.alpha = alpha;
op.n = x.dimension_1();
Kokkos::parallel_for (nrow * OpType::ShflThreadsPerRow::host_value (), op);
}
//#endif // KOKKOS_FAST_COMPILE
}
}
template<class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2>
void
MV_MultiplyTranspose (const CoeffVector1& betav,
const RangeVector& y,
const CoeffVector2& alphav,
const CrsMatrix& A,
const DomainVector& x,
int beta,
int alpha,
const bool conjugate = false)
{
if (beta == 0) {
if (alpha == 0) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 0, 0 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == 1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 1, 0 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == -1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, -1, 0 > (betav, y, alphav, A, x, conjugate);
}
else {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 2, 0 > (betav, y, alphav, A, x, conjugate);
}
} else if (beta == 1) {
if (alpha == 0) {
return;
}
else if (alpha == 1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 1, 1 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == -1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, -1, 1 > (betav, y, alphav, A, x, conjugate);
}
else {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 2, 1 > (betav, y, alphav, A, x, conjugate);
}
} else if (beta == -1) {
if (alpha == 0) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 0, -1 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == 1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 1, -1 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == -1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, -1, -1 > (betav, y, alphav, A, x, conjugate);
}
else {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 2, -1 > (betav, y, alphav, A, x, conjugate);
}
} else {
if (alpha == 0) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 0, 2 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == 1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 1, 2 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == -1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, -1, 2 > (betav, y, alphav, A, x, conjugate);
}
else {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 2, 2> (betav, y, alphav, A, x, conjugate);
}
}
}
template<class RangeVector, class CrsMatrix, class DomainVector>
void
MV_MultiplyTranspose (typename RangeVector::const_value_type s_b,
const RangeVector& y,
typename DomainVector::const_value_type s_a,
const CrsMatrix& A,
const DomainVector& x,
const bool conjugate = false)
{
/*#ifdef KOKKOS_USE_CUSPARSE
if (MV_Multiply_Try_CuSparse (s_b, y, s_a, A, x, conjugate)) {
return;
}
#endif // KOKKOSE_USE_CUSPARSE
#ifdef KOKKOS_USE_MKL
if (MV_Multiply_Try_MKL (s_b, y, s_a, A, x, conjugate)) {
return;
}
#endif // KOKKOS_USE_MKL*/
typedef Kokkos::View<typename RangeVector::value_type*,
typename RangeVector::execution_space> aVector;
aVector a;
aVector b;
int numVecs = x.dimension_1();
if (s_b == 0) {
if (s_a == 0)
return MV_MultiplyTranspose (a, y, a, A, x, 0, 0, conjugate);
else if (s_a == 1)
return MV_MultiplyTranspose (a, y, a, A, x, 0, 1, conjugate);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_MultiplyTranspose (a, y, a, A, x, 0, -1, conjugate);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_MultiplyTranspose (a, y, a, A, x, 0, 2, conjugate);
}
} else if (s_b == 1) {
if (s_a == 0)
return MV_MultiplyTranspose (a, y, a, A, x, 1, 0, conjugate);
else if (s_a == 1)
return MV_MultiplyTranspose (a, y, a, A, x, 1, 1, conjugate);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_MultiplyTranspose (a, y, a, A, x, 1, -1, conjugate);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_MultiplyTranspose (a, y, a, A, x, 1, 2, conjugate);
}
} else if (s_b == static_cast<typename RangeVector::const_value_type> (-1)) {
if (s_a == 0)
return MV_MultiplyTranspose (a, y, a, A, x, -1, 0, conjugate);
else if (s_a == 1)
return MV_MultiplyTranspose (a, y, a, A, x, -1, 1, conjugate);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_MultiplyTranspose (a, y, a, A, x, -1, -1, conjugate);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_MultiplyTranspose (a, y, a, A, x, -1, 2, conjugate);
}
} else {
b = aVector("b", numVecs);
typename aVector::HostMirror h_b = Kokkos::create_mirror_view (b);
for (int i = 0; i < numVecs; ++i) {
h_b(i) = s_b;
}
Kokkos::deep_copy (b, h_b);
if (s_a == 0)
return MV_MultiplyTranspose (b, y, a, A, x, 2, 0, conjugate);
else if (s_a == 1)
return MV_MultiplyTranspose (b, y, a, A, x, 2, 1, conjugate);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_MultiplyTranspose (b, y, a, A, x, 2, -1, conjugate);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_MultiplyTranspose (b, y, a, A, x, 2, 2, conjugate);
}
}
}
template<class RangeVector,
class TCrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta>
void
MV_MultiplySingle (typename Kokkos::Impl::enable_if<DomainVector::Rank == 1, const CoeffVector1>::type& betav,
const RangeVector &y,
const CoeffVector2 &alphav,
const TCrsMatrix& A,
const DomainVector& x)
{
typedef typename TCrsMatrix::ordinal_type ordinal_type;
if (A.numRows () <= static_cast<ordinal_type> (0)) {
return;
}
if (doalpha == 0) {
if (dobeta==2) {
V_MulScalar (y, betav, y);
}
else {
V_MulScalar (y, typename RangeVector::value_type (dobeta), y);
}
return;
} else {
typedef View< typename RangeVector::non_const_data_type ,
typename RangeVector::array_layout ,
typename RangeVector::execution_space ,
typename RangeVector::memory_traits >
RangeVectorType;
typedef View< typename DomainVector::const_data_type ,
typename DomainVector::array_layout ,
typename DomainVector::execution_space ,
//typename DomainVector::memory_traits >
Kokkos::MemoryRandomAccess >
DomainVectorType;
typedef View< typename CoeffVector1::const_data_type ,
typename CoeffVector1::array_layout ,
typename CoeffVector1::execution_space ,
Kokkos::MemoryRandomAccess >
CoeffVector1Type;
typedef View< typename CoeffVector2::const_data_type ,
typename CoeffVector2::array_layout ,
typename CoeffVector2::execution_space ,
Kokkos::MemoryRandomAccess >
CoeffVector2Type;
typedef CrsMatrix<typename TCrsMatrix::const_value_type,
typename TCrsMatrix::ordinal_type,
typename TCrsMatrix::execution_space,
typename TCrsMatrix::memory_traits,
typename TCrsMatrix::size_type>
CrsMatrixType;
typedef typename CrsMatrixType::size_type size_type;
Impl::MV_Multiply_Check_Compatibility(betav,y,alphav,A,x,doalpha,dobeta);
// NNZPerRow could be anywhere from 0, to A.numRows()*A.numCols().
// Thus, the appropriate type is size_type.
const size_type NNZPerRow = A.nnz () / A.numRows ();
int vector_length = 1;
while( (static_cast<size_type> (vector_length*2*3) <= NNZPerRow) && (vector_length<32) ) vector_length*=2;
#ifndef KOKKOS_FAST_COMPILE // This uses templated fucntions on doalpha and dobeta and will produce 16 kernels
typedef MV_MultiplySingleFunctor<RangeVectorType, CrsMatrixType, DomainVectorType,
CoeffVector1Type, CoeffVector2Type, doalpha, dobeta > OpType ;
const typename CrsMatrixType::ordinal_type nrow = A.numRows();
OpType op(betav,alphav,A,x,y,RowsPerThread<typename RangeVector::execution_space >(NNZPerRow)) ;
const int rows_per_thread = RowsPerThread<typename RangeVector::execution_space >(NNZPerRow);
const int team_size = Kokkos::TeamPolicy< typename RangeVector::execution_space >::team_size_recommended(op,vector_length);
const int rows_per_team = rows_per_thread * team_size;
const int nteams = (nrow+rows_per_team-1)/rows_per_team;
Kokkos::parallel_for( Kokkos::TeamPolicy< typename RangeVector::execution_space >
( nteams , team_size , vector_length ) , op );
#else // NOT KOKKOS_FAST_COMPILE
typedef MV_MultiplySingleFunctor<RangeVectorType, CrsMatrixType, DomainVectorType,
CoeffVector1Type, CoeffVector2Type, 2, 2> OpType ;
int numVecs = x.dimension_1(); // == 1
CoeffVector1 beta = betav;
CoeffVector2 alpha = alphav;
if(doalpha!=2) {
alpha = CoeffVector2("CrsMatrix::auto_a", numVecs);
typename CoeffVector2::HostMirror h_a = Kokkos::create_mirror_view(alpha);
typename CoeffVector2::value_type s_a = (typename CoeffVector2::value_type) doalpha;
for(int i = 0; i < numVecs; i++)
h_a(i) = s_a;
Kokkos::deep_copy(alpha, h_a);
}
if(dobeta!=2) {
beta = CoeffVector1("CrsMatrix::auto_b", numVecs);
typename CoeffVector1::HostMirror h_b = Kokkos::create_mirror_view(beta);
typename CoeffVector1::value_type s_b = (typename CoeffVector1::value_type) dobeta;
for(int i = 0; i < numVecs; i++)
h_b(i) = s_b;
Kokkos::deep_copy(beta, h_b);
}
const typename CrsMatrixType::ordinal_type nrow = A.numRows();
OpType op(beta,alpha,A,x,y,RowsPerThread<typename RangeVector::execution_space >(NNZPerRow)) ;
const int team_size = Kokkos::TeamPolicy< typename RangeVector::execution_space >::team_size_recommended(op,vector_length);
const int rows_per_team = rows_per_thread * team_size;
const int nteams = (nrow+rows_per_team-1)/rows_per_team;
Kokkos::parallel_for( Kokkos::TeamPolicy< typename RangeVector::execution_space >
( nteams , team_size , vector_length ) , op );
#endif // KOKKOS_FAST_COMPILE
}
}
} // namespace Kokkos
#endif /* KOKKOS_CRSMATRIX_H_ */
|