This file is indexed.

/usr/include/trilinos/Kokkos_CrsMatrix.hpp is in libtrilinos-kokkos-kernels-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
/*
//@HEADER
// ************************************************************************
//
//               KokkosKernels 0.9: Linear Algebra and Graph Kernels
//                 Copyright 2017 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Siva Rajamanickam (srajama@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_CRSMATRIX_H_
#define KOKKOS_CRSMATRIX_H_

/// \file Kokkos_CrsMatrix.hpp
/// \brief Local sparse matrix interface
/// \warning Do NOT include this file.  This file is DEPRECATED!!!
///   Include Kokkos_Sparse_CrsMatrix.hpp instead.

#include <algorithm>

#include <Kokkos_Core.hpp>
#include <Kokkos_ArithTraits.hpp>
#include <Kokkos_StaticCrsGraph.hpp>

#ifdef KOKKOS_USE_CUSPARSE
#  include <cusparse.h>
#  include <Kokkos_CrsMatrix_CuSparse.hpp>
#endif // KOKKOS_USE_CUSPARSE

#ifdef KOKKOS_USE_MKL
#  include <mkl.h>
#  include <mkl_spblas.h>
#  include <Kokkos_CrsMatrix_MKL.hpp>
#endif // KOKKOS_USE_MKL

//#include <Kokkos_Vectorization.hpp>
#include <impl/Kokkos_Error.hpp>
#include <Kokkos_Sparse_CrsMatrix.hpp>
namespace Kokkos {
#if true
  using KokkosSparse::CrsMatrix;
  using KokkosSparse::RowsPerThread;
  using KokkosSparse::SparseRowView;
  using KokkosSparse::SparseRowViewConst;
  using KokkosSparse::DeviceConfig;
#endif // true

template<class DeviceType, typename ScalarType, int NNZPerRow=27>
struct MV_MultiplyShflThreadsPerRow {
private:
  typedef typename Kokkos::Impl::remove_const< ScalarType >::type value_type;

  // The shuffle operation only works with CUDA, and only works for
  // certain ScalarType types.
#ifdef KOKKOS_HAVE_CUDA
  enum { shfl_possible =
    Kokkos::Impl::is_same< DeviceType , Kokkos::Cuda >::value &&
    (
      Kokkos::Impl::is_same< value_type , unsigned int >::value ||
      Kokkos::Impl::is_same< value_type , int >::value ||
      Kokkos::Impl::is_same< value_type , float >::value ||
      Kokkos::Impl::is_same< value_type , double >::value
    )};
#else // NOT KOKKOS_HAVE_CUDA
  enum { shfl_possible = 0 };
#endif // KOKKOS_HAVE_CUDA

public:

#if defined( __CUDA_ARCH__ )
  enum { device_value = shfl_possible && ( 300 <= __CUDA_ARCH__ ) ?
         (NNZPerRow<8?2:
         (NNZPerRow<16?4:
         (NNZPerRow<32?8:
         (NNZPerRow<64?16:
         32))))
         :1 };
#else
  enum { device_value = 1 };
#endif

#ifdef KOKKOS_HAVE_CUDA
  inline static int host_value()
    { return shfl_possible && ( 300 <= Kokkos::Cuda::device_arch() ) ?
         (NNZPerRow<8?2:
         (NNZPerRow<16?4:
         (NNZPerRow<32?8:
         (NNZPerRow<64?16:
         32))))
         :1; }
#else // NOT KOKKOS_HAVE_CUDA
  inline static int host_value() { return 1; }
#endif // KOKKOS_HAVE_CUDA
};

//----------------------------------------------------------------------------

template<class RangeVector,
         class CrsMatrix,
         class DomainVector,
         class CoeffVector1,
         class CoeffVector2,
         int doalpha,
         int dobeta>
struct MV_MultiplyFunctor {
  typedef typename CrsMatrix::execution_space execution_space;
  typedef typename CrsMatrix::size_type       size_type;
  typedef typename CrsMatrix::ordinal_type    ordinal_type;
  typedef typename CrsMatrix::non_const_value_type value_type;
  typedef typename Kokkos::View<value_type*, execution_space> range_values;
  typedef typename Kokkos::TeamPolicy<execution_space>        team_policy;
  typedef typename team_policy::member_type                   team_member;

  CoeffVector1 beta;
  CoeffVector2 alpha;
  CrsMatrix  m_A;
  DomainVector  m_x;
  RangeVector  m_y;
  /// \brief The number of columns in the input and output MultiVectors.
  ///
  /// Its approxpriate type is therefore size_type, but we don't
  /// expect the input and output MultiVectors to have more columns
  /// than the sparse matrix has rows or columns.  Thus, we prefer the
  /// (likely both smaller and signed, vs. the larger and likely
  /// unsigned) size_type.
  ordinal_type n;
  int rows_per_thread;

  MV_MultiplyFunctor (const CoeffVector1 beta_,
                      const CoeffVector2 alpha_,
                      const CrsMatrix m_A_,
                      const DomainVector m_x_,
                      const RangeVector m_y_,
                      const ordinal_type n_,
                      const int rows_per_thread_) :
      beta (beta_), alpha (alpha_),
      m_A (m_A_), m_x (m_x_), m_y (m_y_), n (n_),
      rows_per_thread (rows_per_thread_)
  {}

  template<int UNROLL>
  KOKKOS_INLINE_FUNCTION void
  strip_mine (const team_member& dev, const size_type& iRow, const size_type& kk) const
  {
    value_type sum[UNROLL];

#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
    for (int k = 0; k < UNROLL; ++k) {
      // NOTE (mfh 09 Aug 2013) This requires that assignment from int
      // (in this case, 0) to value_type be defined.  It's not for
      // types like arprec and dd_real.
      //
      // mfh 29 Sep 2013: On the other hand, arprec and dd_real won't
      // work on CUDA devices anyway, since their methods aren't
      // device functions.  arprec has other issues (e.g., dynamic
      // memory allocation, and the array-of-structs memory layout
      // which is unfavorable to GPUs), but could be dealt with in the
      // same way as Sacado's AD types.
      sum[k] = 0;
    }

    const SparseRowViewConst<CrsMatrix> row = m_A.rowConst (iRow);

    // NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
    // lacks a typedef for determining the type of the return value of
    // begin().  I know that it returns int now, but this may change
    // at some point.
    //
    // The correct type of iEntry is ordinal_type.  This is because we
    // assume that rows have no duplicate entries.  As a result, a row
    // cannot have more entries than the number of columns in the
    // matrix.

#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
#ifdef KOKKOS_HAVE_PRAGMA_LOOPCOUNT
#pragma loop count (15)
#endif
#ifdef __CUDA_ARCH__
        for (ordinal_type iEntry = static_cast<ordinal_type> (threadIdx.x);
             iEntry < static_cast<ordinal_type> (row.length);
             iEntry += static_cast<ordinal_type> (blockDim.x)) {
#else
        for (ordinal_type iEntry = 0;
             iEntry < static_cast<ordinal_type> (row.length);
             iEntry ++) {
#endif
      const value_type val = row.value(iEntry);
      const ordinal_type ind = row.colidx(iEntry);

#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
      for (int k = 0; k < UNROLL; ++k) {
        sum[k] +=  val * m_x(ind, kk + k);
      }
    }

    if (doalpha == -1) {
      for (int ii=0; ii < UNROLL; ++ii) {
        value_type sumt=sum[ii];
#if defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
        if (blockDim.x > 1)
          sumt += shfl_down(sumt, 1,blockDim.x);
        if (blockDim.x > 2)
          sumt += shfl_down(sumt, 2,blockDim.x);
        if (blockDim.x > 4)
          sumt += shfl_down(sumt, 4,blockDim.x);
        if (blockDim.x > 8)
          sumt += shfl_down(sumt, 8,blockDim.x);
        if (blockDim.x > 16)
          sumt += shfl_down(sumt, 16,blockDim.x);
#endif // defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
        sum[ii] = - sumt;
      }
    }
    else {
      for (int ii=0; ii < UNROLL; ++ii) {
        value_type sumt = sum[ii];
#if defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
        if (blockDim.x > 1)
          sumt += shfl_down(sumt, 1,blockDim.x);
        if (blockDim.x > 2)
          sumt += shfl_down(sumt, 2,blockDim.x);
        if (blockDim.x > 4)
          sumt += shfl_down(sumt, 4,blockDim.x);
        if (blockDim.x > 8)
          sumt += shfl_down(sumt, 8,blockDim.x);
        if (blockDim.x > 16)
          sumt += shfl_down(sumt, 16,blockDim.x);
#endif // defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
        sum[ii] = sumt;
      }
    }

#if defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
    if (threadIdx.x==0) {
#else
    if (true) {
#endif // defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
      if (doalpha * doalpha != 1) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
        for (int k = 0; k < UNROLL; ++k) {
          sum[k] *= alpha(kk + k);
        }
      }

      if (dobeta == 0) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
        for (int k = 0; k < UNROLL; ++k) {
          m_y(iRow, kk + k) = sum[k];
        }
      } else if (dobeta == 1) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
        for (int k = 0; k < UNROLL; ++k) {
          m_y(iRow, kk + k) += sum[k];
        }
      } else if (dobeta == -1) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
        for (int k = 0; k < UNROLL; ++k) {
          m_y(iRow, kk + k) = -m_y(iRow, kk + k) +  sum[k];
        }
      } else {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
        for (int k = 0; k < UNROLL; ++k) {
          m_y(iRow, kk + k) = beta(kk + k) * m_y(iRow, kk + k) + sum[k] ;
        }
      }
    }
  }

  KOKKOS_INLINE_FUNCTION void
  strip_mine_1 (const team_member& dev, const size_type& iRow) const
  {
    value_type sum = 0;

    const SparseRowViewConst<CrsMatrix> row = m_A.rowConst (iRow);

    // NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
    // lacks a typedef for determining the type of the return value of
    // begin().  I know that it returns int now, but this may change
    // at some point.
    //
    // The correct type of iEntry is ordinal_type.  This is because we
    // assume that rows have no duplicate entries.  As a result, a row
    // cannot have more entries than the number of columns in the
    // matrix.

#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
#ifdef KOKKOS_HAVE_PRAGMA_LOOPCOUNT
#pragma loop count (15)
#endif
#ifdef __CUDA_ARCH__
    for (ordinal_type iEntry = static_cast<ordinal_type> (threadIdx.x);
       iEntry < static_cast<ordinal_type> (row.length);
       iEntry += static_cast<ordinal_type> (blockDim.x)) {
#else
    for (ordinal_type iEntry = 0;
       iEntry < static_cast<ordinal_type> (row.length);
       iEntry ++) {
#endif
      sum += row.value(iEntry) * m_x(row.colidx(iEntry),0);
    }
#if defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
    if (blockDim.x > 1)
      sum += shfl_down(sum, 1,blockDim.x);
    if (blockDim.x > 2)
      sum += shfl_down(sum, 2,blockDim.x);
    if (blockDim.x > 4)
      sum += shfl_down(sum, 4,blockDim.x);
    if (blockDim.x > 8)
      sum += shfl_down(sum, 8,blockDim.x);
    if (blockDim.x > 16)
      sum += shfl_down(sum, 16,blockDim.x);
#endif // defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)

#ifdef __CUDA_ARCH__
    if (threadIdx.x==0) {
#else
    if (true) {
#endif
      if (doalpha == -1) {
        sum *= value_type(-1);
      } else if (doalpha * doalpha != 1) {
        sum *= alpha(0);
      }

      if (dobeta == 0) {
        m_y(iRow, 0) = sum ;
      } else if (dobeta == 1) {
        m_y(iRow, 0) += sum ;
      } else if (dobeta == -1) {
        m_y(iRow, 0) = -m_y(iRow, 0) +  sum;
      } else {
        m_y(iRow, 0) = beta(0) * m_y(iRow, 0) + sum;
      }
    }
  }


  KOKKOS_INLINE_FUNCTION void
  operator() (const team_member& dev) const
  {
    for (int loop = 0; loop < rows_per_thread; ++loop) {

      // NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
      // lacks a typedef for determining the type of the return value
      // of global_thread_rank().  I know that it returns int now, but
      // this may change at some point.
      //
      // iRow represents a row of the matrix, so its correct type is
      // ordinal_type.

      const ordinal_type iRow = (dev.league_rank() * dev.team_size() + dev.team_rank())
                                * rows_per_thread + loop;
      if (iRow >= m_A.numRows ()) {
        return;
      }

      // mfh 20 Mar 2015: This relates to n, so its correct type is
      // ordinal_type.  Once we can use C++11 without protection, the
      // right thing to do would be to use decltype to pick up n's
      // type here, rather than assuming that it's ordinal_type.
      ordinal_type kk = 0;

#ifdef KOKKOS_FAST_COMPILE
      for (; kk + 4 <= n; kk += 4) {
        strip_mine<4>(dev, iRow, kk);
      }
      for( ; kk < n; ++kk) {
        strip_mine<1>(dev, iRow, kk);
      }
#else
#  ifdef __CUDA_ARCH__
      if ((n > 8) && (n % 8 == 1)) {
        strip_mine<9>(dev, iRow, kk);
        kk += 9;
      }
      for(; kk + 8 <= n; kk += 8)
        strip_mine<8>(dev, iRow, kk);
      if(kk < n)
        switch(n - kk) {
#  else // NOT a CUDA device
          if ((n > 16) && (n % 16 == 1)) {
            strip_mine<17>(dev, iRow, kk);
            kk += 17;
          }

          for (; kk + 16 <= n; kk += 16) {
            strip_mine<16>(dev, iRow, kk);
          }

          if(kk < n)
            switch(n - kk) {
            case 15:
              strip_mine<15>(dev, iRow, kk);
              break;

            case 14:
              strip_mine<14>(dev, iRow, kk);
              break;

            case 13:
              strip_mine<13>(dev, iRow, kk);
              break;

            case 12:
              strip_mine<12>(dev, iRow, kk);
              break;

            case 11:
              strip_mine<11>(dev, iRow, kk);
              break;

            case 10:
              strip_mine<10>(dev, iRow, kk);
              break;

            case 9:
              strip_mine<9>(dev, iRow, kk);
              break;

            case 8:
              strip_mine<8>(dev, iRow, kk);
              break;
#  endif // __CUDA_ARCH__
            case 7:
              strip_mine<7>(dev, iRow, kk);
              break;

            case 6:
              strip_mine<6>(dev, iRow, kk);
              break;

            case 5:
              strip_mine<5>(dev, iRow, kk);
              break;

            case 4:
              strip_mine<4>(dev, iRow, kk);
              break;

            case 3:
              strip_mine<3>(dev, iRow, kk);
              break;

            case 2:
              strip_mine<2>(dev, iRow, kk);
              break;

            case 1:
              strip_mine_1(dev, iRow);
              break;
            }
#endif // KOKKOS_FAST_COMPILE
        }
    }
  };


  template<class RangeVector,
           class CrsMatrix,
           class DomainVector,
           class CoeffVector1,
           class CoeffVector2,
           int doalpha,
           int dobeta>
  struct MV_MultiplySingleFunctor {
    typedef typename CrsMatrix::execution_space      execution_space;
    typedef typename CrsMatrix::ordinal_type         ordinal_type;
    typedef typename CrsMatrix::non_const_value_type value_type;
    typedef typename Kokkos::View<value_type*, typename CrsMatrix::execution_space> range_values;
    typedef typename Kokkos::TeamPolicy<execution_space> team_policy;
    typedef typename team_policy::member_type            team_member;

    CoeffVector1 beta;
    CoeffVector2 alpha;
    CrsMatrix  m_A;
    DomainVector m_x;
    RangeVector m_y;

    ordinal_type rows_per_thread;

    MV_MultiplySingleFunctor (const CoeffVector1 beta_,
                              const CoeffVector2 alpha_,
                              const CrsMatrix m_A_,
                              const DomainVector m_x_,
                              const RangeVector m_y_,
                              const int rows_per_thread_) :
      beta (beta_), alpha (alpha_),
      m_A (m_A_), m_x (m_x_), m_y (m_y_),
      rows_per_thread (rows_per_thread_)
    {}

    KOKKOS_INLINE_FUNCTION void
    operator() (const team_member& dev) const
    {
      // This should be a thread loop as soon as we can use C++11.
      //
      // FIXME (mfh 20 Mar 2015, 11 Apr 2015) The correct type of
      // 'loop' should be ordinal_type, not int.  Ditto for
      // rows_per_thread.  The cast avoids a build warning.
      for (int loop = 0; loop < static_cast<int> (rows_per_thread); ++loop) {
        // NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
        // lacks a typedef for determining the type of the return
        // value of global_thread_rank().  I know that it returns int
        // now, but this may change at some point.
        //
        // iRow represents a row of the matrix, so its correct type is
        // ordinal_type.
        const ordinal_type iRow = (dev.league_rank() * dev.team_size() + dev.team_rank())
                                  * rows_per_thread + loop;
        if (iRow >= m_A.numRows ()) {
          return;
        }
        const SparseRowViewConst<CrsMatrix> row = m_A.rowConst (iRow);
        const ordinal_type row_length = static_cast<ordinal_type> (row.length);
        value_type sum = 0;

        // Use explicit Cuda below to avoid C++11 for now. This should be a vector reduce loop !
        #ifdef KOKKOS_HAVE_PRAGMA_IVDEP
        #pragma ivdep
        #endif
        #ifdef KOKKOS_HAVE_PRAGMA_UNROLL
        #pragma unroll
        #endif
        #ifdef KOKKOS_HAVE_PRAGMA_LOOPCOUNT
        #pragma loop count (15)
        #endif
#ifdef __CUDA_ARCH__
        for (ordinal_type iEntry = static_cast<ordinal_type> (threadIdx.x);
             iEntry < static_cast<ordinal_type> (row_length);
             iEntry += static_cast<ordinal_type> (blockDim.x)) {
#else
        for (ordinal_type iEntry = 0;
             iEntry < static_cast<ordinal_type> (row_length);
             iEntry ++) {
#endif
          sum += row.value(iEntry) * m_x(row.colidx(iEntry));
        }

#if defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
        if (blockDim.x > 1)
          sum += shfl_down(sum, 1,blockDim.x);
        if (blockDim.x > 2)
          sum += shfl_down(sum, 2,blockDim.x);
        if (blockDim.x > 4)
          sum += shfl_down(sum, 4,blockDim.x);
        if (blockDim.x > 8)
          sum += shfl_down(sum, 8,blockDim.x);
        if (blockDim.x > 16)
          sum += shfl_down(sum, 16,blockDim.x);

        if (threadIdx.x==0) {
#else
        if (true) {
#endif // defined(__CUDA_ARCH__) && defined(KOKKOS_HAVE_CUDA)
          if (doalpha == -1) {
            sum *= value_type(-1);
          } else if (doalpha * doalpha != 1) {
            sum *= alpha(0);
          }

          if (dobeta == 0) {
            m_y(iRow) = sum ;
          } else if (dobeta == 1) {
            m_y(iRow) += sum ;
          } else if (dobeta == -1) {
            m_y(iRow) = -m_y(iRow) +  sum;
          } else {
            m_y(iRow) = beta(0) * m_y(iRow) + sum;
          }
        }
      }
    }
  };

  namespace Impl {

    template <class RangeVector,
              class CrsMatrix,
              class DomainVector,
              class CoeffVector1,
              class CoeffVector2>
    void
    MV_Multiply_Check_Compatibility (const CoeffVector1 &betav,
                                     const RangeVector &y,
                                     const CoeffVector2 &alphav,
                                     const CrsMatrix &A,
                                     const DomainVector &x,
                                     const int& doalpha,
                                     const int& dobeta)
    {
      typename DomainVector::size_type numVecs = x.dimension_1();
      typename DomainVector::size_type numRows = A.numRows();
      typename DomainVector::size_type numCols = A.numCols();

      if (y.dimension_1() != numVecs) {
        std::ostringstream msg;
        msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): 2nd dimensions of y and x do not match\n";
        msg << "\t Labels are: y(" << y.tracker().label() << ") b("
            << betav.tracker().label() << ") a("
            << alphav.tracker().label() << ") x("
            << A.values.tracker().label() << ") x("
            << x.tracker().label() << ")\n";
        msg << "\t Dimensions are: y(" << y.dimension_0() << "," << y.dimension_1() << ") x(" << x.dimension_0() << "," << x.dimension_1() << ")\n";
        Impl::throw_runtime_exception( msg.str() );
      }
      if (numRows > y.dimension_0()) {
        std::ostringstream msg;
        msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): dimensions of y and A do not match\n";
        msg << "\t Labels are: y(" << y.tracker().label() << ") b("
            << betav.tracker().label() << ") a("
            << alphav.tracker().label() << ") x("
            << A.values.tracker().label() << ") x("
            << x.tracker().label() << ")\n";
        msg << "\t Dimensions are: y(" << y.dimension_0() << "," << y.dimension_1() << ") A(" << A.numRows() << "," << A.numCols() << ")\n";
        Impl::throw_runtime_exception( msg.str() );
      }
      if (numCols > x.dimension_0()) {
        std::ostringstream msg;
        msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): dimensions of x and A do not match\n";
        msg << "\t Labels are: y(" << y.tracker().label() << ") b("
            << betav.tracker().label() << ") a("
            << alphav.tracker().label() << ") x("
            << A.values.tracker().label() << ") x("
            << x.tracker().label() << ")\n";
        msg << "\t Dimensions are: x(" << x.dimension_0() << "," << x.dimension_1() << ") A(" << A.numRows() << "," << A.numCols() << ")\n";
        Impl::throw_runtime_exception( msg.str() );
      }
      if (dobeta==2) {
        if (betav.dimension_0()!=numVecs) {
          std::ostringstream msg;
          msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): 2nd dimensions of y and b do not match\n";
          msg << "\t Labels are: y(" << y.tracker().label() << ") b("
              << betav.tracker().label() << ") a("
              << alphav.tracker().label() << ") x("
              << A.values.tracker().label() << ") x("
              << x.tracker().label() << ")\n";
          msg << "\t Dimensions are: y(" << y.dimension_0() << "," << y.dimension_1() << ") b(" << betav.dimension_0() << ")\n";
          Impl::throw_runtime_exception( msg.str() );
        }
      }
      if(doalpha==2) {
        if(alphav.dimension_0()!=numVecs) {
          std::ostringstream msg;
          msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): 2nd dimensions of x and b do not match\n";
          msg << "\t Labels are: y(" << y.tracker().label() << ") b("
              << betav.tracker().label() << ") a("
              << alphav.tracker().label() << ") x("
              << A.values.tracker().label() << ") x("
              << x.tracker().label() << ")\n";
          msg << "\t Dimensions are: x(" << x.dimension_0() << "," << x.dimension_1() << ") b(" << betav.dimension_0() << ")\n";
          Impl::throw_runtime_exception( msg.str() );
        }
      }
    }
  } // namespace Impl

  // This TransposeFunctor is functional, but not necessarily performant.
  template<class RangeVector,
           class CrsMatrix,
           class DomainVector,
           class CoeffVector1,
           class CoeffVector2,
           int doalpha,
           int dobeta,
           bool conjugate = false,
           int NNZPerRow = 27>
  struct MV_MultiplyTransposeFunctor {
    typedef typename CrsMatrix::execution_space                 execution_space;
    typedef typename CrsMatrix::ordinal_type                    ordinal_type;
    typedef typename CrsMatrix::size_type                       size_type;
    typedef typename CrsMatrix::non_const_value_type            value_type;
    typedef typename Kokkos::View<value_type*, execution_space> range_values;

    typedef MV_MultiplyShflThreadsPerRow<execution_space, value_type, NNZPerRow> ShflThreadsPerRow;

    CoeffVector1 beta;
    CoeffVector2 alpha;
    CrsMatrix  m_A ;
    DomainVector  m_x ;
    RangeVector  m_y ;
    ordinal_type n;

    // This is an iteration over rows of the matrix (modulo the
    // shuffle width), so the correct type of i is ordinal_type.
    KOKKOS_INLINE_FUNCTION
    void operator() (const ordinal_type i) const {
      typedef Kokkos::Details::ArithTraits<value_type> ATV;

      const ordinal_type iRow = i / ShflThreadsPerRow::device_value;
      const int lane = static_cast<int> (i) % ShflThreadsPerRow::device_value;
      const SparseRowViewConst<CrsMatrix> row = m_A.rowConst (iRow);

      for (ordinal_type iEntry = static_cast<ordinal_type> (lane);
           iEntry < static_cast<ordinal_type> (row.length);
           iEntry += static_cast<ordinal_type> (ShflThreadsPerRow::device_value)) {
        const value_type val = conjugate ?
          ATV::conj (row.value(iEntry)) :
          row.value(iEntry);
        const ordinal_type ind = row.colidx(iEntry);

        if (doalpha != 1) {
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
          for (ordinal_type k = 0; k < n; ++k) {
            atomic_add (&m_y(ind,k), value_type(alpha(k) * val * m_x(iRow, k)));
          }
        } else {
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
          for (ordinal_type k = 0; k < n; ++k) {
            atomic_add (&m_y(ind,k), value_type(val * m_x(iRow, k)));
          }
        }
      }
    }
  };

  // This TansposeFunctor is functional, but not necessarily performant.
  template<class RangeVector,
           class CrsMatrix,
           class DomainVector,
           class CoeffVector1,
           class CoeffVector2,
           int doalpha,
           int dobeta,
           bool conjugate = false,
           int NNZPerRow = 27 >
  struct MV_MultiplyTransposeSingleFunctor {
    typedef typename CrsMatrix::execution_space      execution_space;
    typedef typename CrsMatrix::ordinal_type         ordinal_type;
    typedef typename CrsMatrix::non_const_value_type value_type;
    typedef typename Kokkos::View<value_type*, execution_space> range_values;

    typedef MV_MultiplyShflThreadsPerRow< execution_space , value_type , NNZPerRow > ShflThreadsPerRow ;

    CoeffVector1 beta;
    CoeffVector2 alpha;
    CrsMatrix  m_A ;
    DomainVector  m_x ;
    RangeVector  m_y ;
    ordinal_type n;

    KOKKOS_INLINE_FUNCTION
    void operator() (const ordinal_type i) const {
      typedef Kokkos::Details::ArithTraits<value_type> ATV;

      const ordinal_type iRow = i / ShflThreadsPerRow::device_value;
      const int lane = static_cast<int> (i) % ShflThreadsPerRow::device_value;
      const SparseRowViewConst<CrsMatrix> row = m_A.rowConst (iRow);

      for (ordinal_type iEntry = static_cast<ordinal_type> (lane);
           iEntry < static_cast<ordinal_type> (row.length);
           iEntry += static_cast<ordinal_type> (ShflThreadsPerRow::device_value)) {
        const value_type val = conjugate ?
          ATV::conj (row.value(iEntry)) :
          row.value(iEntry);
        const ordinal_type ind = row.colidx(iEntry);

        if (doalpha != 1) {
          atomic_add (&m_y(ind), value_type(alpha(0) * val * m_x(iRow)));
        } else {
          atomic_add (&m_y(ind), value_type(val * m_x(iRow)));
        }
      }
    }
  };

template <class RangeVector,
          class TCrsMatrix,
          class DomainVector,
          class CoeffVector1,
          class CoeffVector2,
          int doalpha,
          int dobeta>
void
MV_MultiplyTranspose (typename Kokkos::Impl::enable_if<DomainVector::Rank == 2, const CoeffVector1>::type& betav,
                      const RangeVector &y,
                      const CoeffVector2 &alphav,
                      const TCrsMatrix &A,
                      const DomainVector &x,
                      const bool conjugate = false)
{
  typedef typename TCrsMatrix::ordinal_type ordinal_type;

  // FIXME (mfh 02 Jan 2015) Is numRows() always signed?  More
  // importantly, if the calling process owns zero rows in the row
  // Map, numRows() should return 0, not -1.
  //
  //Special case for zero Rows RowMap
  if (A.numRows () == static_cast<ordinal_type> (-1)) {
    return;
  }

  if (doalpha == 0) {
    if (dobeta == 2) {
      MV_MulScalar (y, betav, y);
    } else {
      MV_MulScalar (y, static_cast<typename RangeVector::const_value_type> (dobeta), y);
    }
    return;
  } else {
    typedef View< typename RangeVector::non_const_data_type ,
                  typename RangeVector::array_layout ,
                  typename RangeVector::execution_space ,
                  typename RangeVector::memory_traits >
    RangeVectorType;

    typedef View< typename DomainVector::const_data_type ,
                  typename DomainVector::array_layout ,
                  typename DomainVector::execution_space ,
                  Kokkos::MemoryRandomAccess >
    DomainVectorType;

    typedef View< typename CoeffVector1::const_data_type ,
                  typename CoeffVector1::array_layout ,
                  typename CoeffVector1::execution_space ,
                  Kokkos::MemoryRandomAccess >
    CoeffVector1Type;

    typedef View< typename CoeffVector2::const_data_type ,
                  typename CoeffVector2::array_layout ,
                  typename CoeffVector2::execution_space ,
                  Kokkos::MemoryRandomAccess >
    CoeffVector2Type;

    typedef CrsMatrix<typename TCrsMatrix::const_value_type,
                      typename TCrsMatrix::ordinal_type,
                      typename TCrsMatrix::execution_space,
                      typename TCrsMatrix::memory_traits,
                      typename TCrsMatrix::size_type> CrsMatrixType;

    // FIXME (mfh 20 Mar 2015) The dimension doesn't have type int.
    // On the other hand, this is the number of columns in the input
    // (and output) MultiVectors, so it's not likely to be large (the
    // typical case is < 100).
    int numVecs = x.dimension_1();
    CoeffVector1 beta = betav;
    CoeffVector2 alpha = alphav;

    if (doalpha != 2) {
      alpha = CoeffVector2("CrsMatrix::auto_a", numVecs);
      typename CoeffVector2::HostMirror h_a = Kokkos::create_mirror_view(alpha);
      typename CoeffVector2::value_type s_a = (typename CoeffVector2::value_type) doalpha;

      for (int i = 0; i < numVecs; ++i) {
        h_a(i) = s_a;
      }

      Kokkos::deep_copy (alpha, h_a);
    }

    if (dobeta != 2) {
      beta = CoeffVector1("CrsMatrix::auto_b", numVecs);
      typename CoeffVector1::HostMirror h_b = Kokkos::create_mirror_view(beta);
      typename CoeffVector1::value_type s_b = (typename CoeffVector1::value_type) dobeta;

      for (int i = 0; i < numVecs; ++i) {
        h_b(i) = s_b;
      }

      Kokkos::deep_copy (beta, h_b);
    }

    if (dobeta == 2) {
      MV_MulScalar (y, betav, y);
    } else {
      if (dobeta != 1) {
        MV_MulScalar (y, static_cast<typename RangeVector::const_value_type> (dobeta), y);
      }
    }

    const ordinal_type nrow = A.numRows ();

    if (conjugate) {
      typedef MV_MultiplyTransposeFunctor<RangeVectorType, CrsMatrixType,
                                          DomainVectorType, CoeffVector1Type,
                                          CoeffVector2Type, 2, 2, true> OpType;
      OpType op ;
      op.m_A = A;
      op.m_x = x;
      op.m_y = y;
      op.beta = beta;
      op.alpha = alpha;
      op.n = x.dimension_1();
      Kokkos::parallel_for (nrow * OpType::ShflThreadsPerRow::host_value (), op);
    }
    else {
      typedef MV_MultiplyTransposeFunctor<RangeVectorType, CrsMatrixType,
                                          DomainVectorType, CoeffVector1Type,
                                          CoeffVector2Type, 2, 2, false> OpType;
      OpType op ;
      op.m_A = A;
      op.m_x = x;
      op.m_y = y;
      op.beta = beta;
      op.alpha = alpha;
      op.n = x.dimension_1();
      Kokkos::parallel_for (nrow * OpType::ShflThreadsPerRow::host_value (), op);
    }

//#endif // KOKKOS_FAST_COMPILE
  }
}

template<class RangeVector,
         class CrsMatrix,
         class DomainVector,
         class CoeffVector1,
         class CoeffVector2>
void
MV_MultiplyTranspose (const CoeffVector1& betav,
                      const RangeVector& y,
                      const CoeffVector2& alphav,
                      const CrsMatrix& A,
                      const DomainVector& x,
                      int beta,
                      int alpha,
                      const bool conjugate = false)
{
  if (beta == 0) {
    if (alpha == 0) {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, 0, 0 > (betav, y, alphav, A, x, conjugate);
    }
    else if (alpha == 1) {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, 1, 0 > (betav, y, alphav, A, x, conjugate);
    }
    else if (alpha == -1) {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, -1, 0 > (betav, y, alphav, A, x, conjugate);
    }
    else {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, 2, 0 > (betav, y, alphav, A, x, conjugate);
    }
  } else if (beta == 1) {
    if (alpha == 0) {
      return;
    }
    else if (alpha == 1) {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, 1, 1 > (betav, y, alphav, A, x, conjugate);
    }
    else if (alpha == -1) {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, -1, 1 > (betav, y, alphav, A, x, conjugate);
    }
    else {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, 2, 1 > (betav, y, alphav, A, x, conjugate);
    }
  } else if (beta == -1) {
    if (alpha == 0) {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, 0, -1 > (betav, y, alphav, A, x, conjugate);
    }
    else if (alpha == 1) {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, 1, -1 > (betav, y, alphav, A, x, conjugate);
    }
    else if (alpha == -1) {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, -1, -1 > (betav, y, alphav, A, x, conjugate);
    }
    else {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, 2, -1 > (betav, y, alphav, A, x, conjugate);
    }
  } else {
    if (alpha == 0) {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, 0, 2 > (betav, y, alphav, A, x, conjugate);
    }
    else if (alpha == 1) {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, 1, 2 > (betav, y, alphav, A, x, conjugate);
    }
    else if (alpha == -1) {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, -1, 2 > (betav, y, alphav, A, x, conjugate);
    }
    else {
      MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
                           CoeffVector2, 2, 2> (betav, y, alphav, A, x, conjugate);
    }
  }
}

template<class RangeVector, class CrsMatrix, class DomainVector>
void
MV_MultiplyTranspose (typename RangeVector::const_value_type s_b,
                      const RangeVector& y,
                      typename DomainVector::const_value_type s_a,
                      const CrsMatrix& A,
                      const DomainVector& x,
                      const bool conjugate = false)
{
/*#ifdef KOKKOS_USE_CUSPARSE
  if (MV_Multiply_Try_CuSparse (s_b, y, s_a, A, x, conjugate)) {
    return;
  }
#endif // KOKKOSE_USE_CUSPARSE
#ifdef KOKKOS_USE_MKL
  if (MV_Multiply_Try_MKL (s_b, y, s_a, A, x, conjugate)) {
    return;
  }
#endif // KOKKOS_USE_MKL*/
  typedef Kokkos::View<typename RangeVector::value_type*,
                       typename RangeVector::execution_space> aVector;
  aVector a;
  aVector b;
  int numVecs = x.dimension_1();

  if (s_b == 0) {
    if (s_a == 0)
      return MV_MultiplyTranspose (a, y, a, A, x, 0, 0, conjugate);
    else if (s_a == 1)
      return MV_MultiplyTranspose (a, y, a, A, x, 0, 1, conjugate);
    else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
      return MV_MultiplyTranspose (a, y, a, A, x, 0, -1, conjugate);
    else {
      a = aVector("a", numVecs);
      typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
      for (int i = 0; i < numVecs; ++i) {
        h_a(i) = s_a;
      }
      Kokkos::deep_copy (a, h_a);
      return MV_MultiplyTranspose (a, y, a, A, x, 0, 2, conjugate);
    }
  } else if (s_b == 1) {
    if (s_a == 0)
      return MV_MultiplyTranspose (a, y, a, A, x, 1, 0, conjugate);
    else if (s_a == 1)
      return MV_MultiplyTranspose (a, y, a, A, x, 1, 1, conjugate);
    else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
      return MV_MultiplyTranspose (a, y, a, A, x, 1, -1, conjugate);
    else {
      a = aVector("a", numVecs);
      typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
      for (int i = 0; i < numVecs; ++i) {
        h_a(i) = s_a;
      }
      Kokkos::deep_copy (a, h_a);
      return MV_MultiplyTranspose (a, y, a, A, x, 1, 2, conjugate);
    }
  } else if (s_b == static_cast<typename RangeVector::const_value_type> (-1)) {
    if (s_a == 0)
      return MV_MultiplyTranspose (a, y, a, A, x, -1, 0, conjugate);
    else if (s_a == 1)
      return MV_MultiplyTranspose (a, y, a, A, x, -1, 1, conjugate);
    else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
      return MV_MultiplyTranspose (a, y, a, A, x, -1, -1, conjugate);
    else {
      a = aVector("a", numVecs);
      typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
      for (int i = 0; i < numVecs; ++i) {
        h_a(i) = s_a;
      }
      Kokkos::deep_copy (a, h_a);
      return MV_MultiplyTranspose (a, y, a, A, x, -1, 2, conjugate);
    }
  } else {
    b = aVector("b", numVecs);
    typename aVector::HostMirror h_b = Kokkos::create_mirror_view (b);
    for (int i = 0; i < numVecs; ++i) {
      h_b(i) = s_b;
    }
    Kokkos::deep_copy (b, h_b);

    if (s_a == 0)
      return MV_MultiplyTranspose (b, y, a, A, x, 2, 0, conjugate);
    else if (s_a == 1)
      return MV_MultiplyTranspose (b, y, a, A, x, 2, 1, conjugate);
    else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
      return MV_MultiplyTranspose (b, y, a, A, x, 2, -1, conjugate);
    else {
      a = aVector("a", numVecs);
      typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
      for (int i = 0; i < numVecs; ++i) {
        h_a(i) = s_a;
      }
      Kokkos::deep_copy (a, h_a);
      return MV_MultiplyTranspose (b, y, a, A, x, 2, 2, conjugate);
    }
  }
}

  template<class RangeVector,
           class TCrsMatrix,
           class DomainVector,
           class CoeffVector1,
           class CoeffVector2,
           int doalpha,
           int dobeta>
  void
  MV_MultiplySingle (typename Kokkos::Impl::enable_if<DomainVector::Rank == 1, const CoeffVector1>::type& betav,
               const RangeVector &y,
               const CoeffVector2 &alphav,
               const TCrsMatrix& A,
               const DomainVector& x)
  {
    typedef typename TCrsMatrix::ordinal_type ordinal_type;

    if (A.numRows () <= static_cast<ordinal_type> (0)) {
      return;
    }
    if (doalpha == 0) {
      if (dobeta==2) {
        V_MulScalar (y, betav, y);
      }
      else {
        V_MulScalar (y, typename RangeVector::value_type (dobeta), y);
      }
      return;
    } else {
      typedef View< typename RangeVector::non_const_data_type ,
                    typename RangeVector::array_layout ,
                    typename RangeVector::execution_space ,
                    typename RangeVector::memory_traits >
      RangeVectorType;

      typedef View< typename DomainVector::const_data_type ,
                    typename DomainVector::array_layout ,
                    typename DomainVector::execution_space ,
                    //typename DomainVector::memory_traits >
                    Kokkos::MemoryRandomAccess >
      DomainVectorType;

      typedef View< typename CoeffVector1::const_data_type ,
                    typename CoeffVector1::array_layout ,
                    typename CoeffVector1::execution_space ,
                    Kokkos::MemoryRandomAccess >
      CoeffVector1Type;

      typedef View< typename CoeffVector2::const_data_type ,
                    typename CoeffVector2::array_layout ,
                    typename CoeffVector2::execution_space ,
                    Kokkos::MemoryRandomAccess >
      CoeffVector2Type;

      typedef CrsMatrix<typename TCrsMatrix::const_value_type,
                        typename TCrsMatrix::ordinal_type,
                        typename TCrsMatrix::execution_space,
                        typename TCrsMatrix::memory_traits,
                        typename TCrsMatrix::size_type>
      CrsMatrixType;
      typedef typename CrsMatrixType::size_type size_type;

      Impl::MV_Multiply_Check_Compatibility(betav,y,alphav,A,x,doalpha,dobeta);

      // NNZPerRow could be anywhere from 0, to A.numRows()*A.numCols().
      // Thus, the appropriate type is size_type.
      const size_type NNZPerRow = A.nnz () / A.numRows ();

      int vector_length = 1;
      while( (static_cast<size_type> (vector_length*2*3) <= NNZPerRow) && (vector_length<32) ) vector_length*=2;

#ifndef KOKKOS_FAST_COMPILE // This uses templated fucntions on doalpha and dobeta and will produce 16 kernels

      typedef MV_MultiplySingleFunctor<RangeVectorType, CrsMatrixType, DomainVectorType,
                                       CoeffVector1Type, CoeffVector2Type, doalpha, dobeta > OpType ;

      const typename CrsMatrixType::ordinal_type nrow = A.numRows();

      OpType op(betav,alphav,A,x,y,RowsPerThread<typename RangeVector::execution_space >(NNZPerRow)) ;

      const int rows_per_thread = RowsPerThread<typename RangeVector::execution_space >(NNZPerRow);
      const int team_size = Kokkos::TeamPolicy< typename RangeVector::execution_space >::team_size_recommended(op,vector_length);
      const int rows_per_team = rows_per_thread * team_size;
      const int nteams = (nrow+rows_per_team-1)/rows_per_team;
      Kokkos::parallel_for( Kokkos::TeamPolicy< typename RangeVector::execution_space >
         ( nteams , team_size , vector_length ) , op );
#else // NOT KOKKOS_FAST_COMPILE

      typedef MV_MultiplySingleFunctor<RangeVectorType, CrsMatrixType, DomainVectorType,
                               CoeffVector1Type, CoeffVector2Type, 2, 2> OpType ;

      int numVecs = x.dimension_1(); // == 1
      CoeffVector1 beta = betav;
      CoeffVector2 alpha = alphav;

      if(doalpha!=2) {
              alpha = CoeffVector2("CrsMatrix::auto_a", numVecs);
              typename CoeffVector2::HostMirror h_a = Kokkos::create_mirror_view(alpha);
              typename CoeffVector2::value_type s_a = (typename CoeffVector2::value_type) doalpha;

              for(int i = 0; i < numVecs; i++)
                h_a(i) = s_a;

              Kokkos::deep_copy(alpha, h_a);
      }
      if(dobeta!=2) {
              beta = CoeffVector1("CrsMatrix::auto_b", numVecs);
              typename CoeffVector1::HostMirror h_b = Kokkos::create_mirror_view(beta);
              typename CoeffVector1::value_type s_b = (typename CoeffVector1::value_type) dobeta;

              for(int i = 0; i < numVecs; i++)
                h_b(i) = s_b;

              Kokkos::deep_copy(beta, h_b);
      }

      const typename CrsMatrixType::ordinal_type nrow = A.numRows();

      OpType op(beta,alpha,A,x,y,RowsPerThread<typename RangeVector::execution_space >(NNZPerRow)) ;
      const int team_size = Kokkos::TeamPolicy< typename RangeVector::execution_space >::team_size_recommended(op,vector_length);
      const int rows_per_team = rows_per_thread * team_size;
      const int nteams = (nrow+rows_per_team-1)/rows_per_team;
      Kokkos::parallel_for( Kokkos::TeamPolicy< typename RangeVector::execution_space >
         ( nteams , team_size , vector_length ) , op );

#endif // KOKKOS_FAST_COMPILE
    }
  }
} // namespace Kokkos

#endif /* KOKKOS_CRSMATRIX_H_ */