This file is indexed.

/usr/include/trilinos/Kokkos_ArithTraits.hpp is in libtrilinos-kokkos-kernels-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
/*
//@HEADER
// ************************************************************************
//
//               KokkosKernels 0.9: Linear Algebra and Graph Kernels
//                 Copyright 2017 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Siva Rajamanickam (srajama@sandia.gov)
//
// ************************************************************************
//@HEADER
*/

#ifndef KOKKOS_ARITHTRAITS_HPP
#define KOKKOS_ARITHTRAITS_HPP

/// \file Kokkos_ArithTraits.hpp
/// \brief Declaration and definition of Kokkos::Details::ArithTraits

#include <KokkosKernels_config.h>
#include <Kokkos_Complex.hpp>

#ifdef HAVE_KOKKOSKERNELS_QUADMATH
#  include <quadmath.h>
#endif // HAVE_KOKKOSKERNELS_QUADMATH

#include <cfloat>
#include <climits>
#include <cmath>
#include <complex> // std::complex
#include <limits> // std::numeric_limits
#ifdef __CUDACC__
#  include <math_constants.h>
#endif
//
// mfh 24 Dec 2013: Temporary measure for testing; will go away.
//
#ifndef KOKKOS_FORCEINLINE_FUNCTION
#  ifdef __CUDA_ARCH__
#    define KOKKOS_FORCEINLINE_FUNCTION inline __host__ __device__
#  else
#    define KOKKOS_FORCEINLINE_FUNCTION
#  endif // __CUDA_ARCH__
#endif // KOKKOS_FORCEINLINE_FUNCTION

namespace { // anonymous

/// \fn intPowImpl
/// \tparam IntType A built-in integer type.
/// \brief Implementation of intPowSigned and intPowUnsigned.
///
/// \pre x != 0
/// \pre y > 0
///
/// Use intPowSigned or intPowUnsigned for general y.
template<class IntType>
KOKKOS_FORCEINLINE_FUNCTION IntType
intPowImpl (const IntType x, const IntType y)
{
  // Recursion (unrolled into while loop): pow(x, 2y) = (x^y)^2
  IntType prod = x;
  IntType y_cur = 1;
  // If y == 1, then prod stays x.
  while (y_cur < y) {
    prod = prod * prod;
    y_cur = y_cur << 1;
  }
  // abs(y - y_cur) < floor(log2(y)), so it won't hurt asymptotic run
  // time to finish the remainder in a linear iteration.
  if (y > y_cur) {
    const IntType left = y - y_cur;
    for (IntType k = 0; k < left; ++k) {
      prod = prod * x;
    }
  }
  else if (y < y_cur) {
    // There's probably a better way to do this in order to avoid the
    // (expensive) integer division, but I'm not motivated to think of
    // it at the moment.
    const IntType left = y_cur - y;
    for (IntType k = 0; k < left; ++k) {
      prod = prod / x;
    }
  }
  return prod;

  // y = 8:
  //
  // x,1   -> x^2,2
  // x^2,2 -> x^4,4
  // x^4,4 -> x^8,8
  //
  // y = 9:
  //
  // x,1   -> x^2,2
  // x^2,2 -> x^4,4
  // x^4,4 -> x^8,8
  //
  // y - y_cur is what's left over.  Just do it one at a time.
  //
  // y = 3:
  // x,1   -> x^2,2
  // x^2,2 -> x^4,4
}



/// \fn intPowSigned
/// \tparam IntType A built-in signed integer type.
/// \brief Compute x raised to the power y.
///
/// If the arguments are invalid (e.g., if x and y are both zero), the
/// result of this function is undefined.  However, this function will
/// not throw an exception in that case.
template<class IntType>
KOKKOS_FORCEINLINE_FUNCTION IntType
intPowSigned (const IntType x, const IntType y)
{
  // It's not entirely clear what to return if x and y are both zero.
  // In the case of floating-point numbers, 0^0 is NaN.  Here, though,
  // I think it's safe to return 0.
  if (x == 0) {
    return 0;
  } else if (y == 0) {
    return 1;
  } else if (y < 0) {
    if (x == 1) {
      return 1;
    }
    else if (x == -1) {
      return (y % 2 == 0) ? 1 : -1;
    }
    else {
      return 0; // round the fraction to zero
    }
  } else {
    return intPowImpl<IntType> (x, y);
  }
}

/// \fn intPowUnsigned
/// \tparam IntType A built-in unsigned integer type.
/// \brief Compute x raised to the power y.
///
/// If the arguments are invalid (e.g., if x and y are both zero), the
/// result of this function is undefined.  However, this function will
/// not throw an exception in that case.
template<class IntType>
KOKKOS_FORCEINLINE_FUNCTION IntType
intPowUnsigned (const IntType x, const IntType y)
{
  // It's not entirely clear what to return if x and y are both zero.
  // In the case of floating-point numbers, 0^0 is NaN.  Here, though,
  // I think it's safe to return 0.
  if (x == 0) {
    return 0;
  } else if (y == 0) {
    return 1;
  } else {
    return intPowImpl<IntType> (x, y);
  }
}

// It might make sense to use special sqrt() approximations for
// integer arguments, like those presented on the following web site:
//
// http://www.azillionmonkeys.com/qed/sqroot.html#implementations
//
// Note that some of the implementations on the above page break ANSI
// C(++) aliasing rules (by assigning to the results of
// reinterpret_cast-ing between int and float).  It's also just a
// performance optimization and not required for a reasonable
// implementation.

} // namespace (anonymous)

namespace Kokkos {
namespace Details {

/// \class ArithTraits
/// \brief Traits class for arithmetic on type T.
/// \tparam T "Scalar" type of interest
///
/// This is a traits class for the "arithmetic" type T.  "Arithmetic
/// types" include built-in signed and unsigned integer types,
/// floating-point types, complex-valued types, and anything else that
/// looks like these.  This class is useful for implementing numerical
/// algorithms that are generic on the data type.  You may also use
/// this class to query attributes of T, like whether it is signed or
/// complex, or its precision.
///
/// We really did not want to implement this class or expose it to
/// users.  It would be much better to use existing traits classes
/// like std::numeric_limits.  We decided to implement and expose this
/// class for the following reasons:
/// <ol>
/// <li> std::numeric_limits class methods cannot be used in CUDA
///      device functions, since they themselves are not device
///      functions </li>
/// <li> Existing traits classes like std::numeric_limits do not
///      provide enough information to implement algorithms that are
///      agnostic of whether T is real-valued or complex-valued. </li>
/// </ol>
///
/// All class methods must be suitable for parallel kernels, if the
/// type T itself is suitable for parallel kernels.  In particular,
/// specializations for types T that make sense to use on a CUDA
/// device must mark all class methods as device (and host) functions,
/// using the KOKKOS_FORCEINLINE_FUNCTION macro.  All class methods must be
/// callable both inside and outside a parallel kernel (for CUDA, this
/// means they must be marked as both device and host functions).
///
/// \section Kokkos_ArithTraits_compat Compatibility
///
/// Whenever possible, class methods in ArithTraits use the same names
/// as their equivalents in the C++ Standard Library.  If this was not
/// possible, for example with isInf and isNan, we explain why in
/// their documentation.
///
/// This class has redundant typedefs and methods in order to maintain
/// backwards compatibility with Teuchos::ScalarTraits, while
/// preferring forwards (partial) compatibility with
/// std::numeric_limits.  Users should prefer typedefs, \c bool
/// constants, and class methods compatible with std::numeric_limits,
/// to those from Teuchos::ScalarTraits.  The latter may go away at
/// any time.  Furthermore, Teuchos::ScalarTraits contains methods
/// that do not make sense for use as parallel device functions, in
/// particular those relating to pseudorandom number generation that
/// refer to hidden state, so we will never include all class methods
/// from Teuchos::ScalarTraits in ArithTraits.
///
/// \section Kokkos_ArithTraits_unsupp Unsupported types on CUDA devices
///
/// CUDA does not support long double or std::complex<T> in device
/// functions.  ArithTraits does have specializations for these types,
/// but the class methods therein are not marked as device functions.
///
/// \section Kokkos_ArithTraits_whyNotC99 What about C99 integer types?
///
/// C99 and C++11 include typedefs int${N}_t and uint${N}_t, where N
/// is the number of bits in the integer.  These typedefs are useful
/// because they make the length of the type explicit.  Users are
/// welcome to use these types as the template parameter of
/// ArithTraits.
///
/// We chose not to use these types when <i>defining</i> full
/// specializations of ArithTraits.  This is because the C99 integer
/// types are typedefs, not types in themselves.  This makes it
/// impossible to avoid duplicate or missing full specializations of
/// ArithTraits.  For example, on my Mac, for CUDA 5.5, gcc 4.2.1, and
/// Clang 3.2, <tt>int64_t</tt> is a typedef of <tt>long long</tt>,
/// but <tt>long long</tt> and <tt>long</tt> are separate types, even
/// though they have the same length (64 bits).  In contrast, on
/// Windows (even Win64), <tt>long</tt> is a 32-bit type (but a
/// distinct type from <tt>int</tt>), and <tt>long long</tt> is a
/// 64-bit type.  Thus, if we define full specializations of
/// ArithTraits using <i>only</i> the C99 integer types, we will be
/// missing a specialization for <tt>long</tt> on at least one
/// platform.
///
/// Rather than trouble ourselves with trying to figure this out for
/// each platform, we decided to provide specializations only for the
/// integer types in the C89 and C++03 language standards.  This
/// includes signed and unsigned versions of <tt>char</tt>,
/// <tt>short</tt>, <tt>int</tt>, and <tt>long</tt>.  We also include
/// <tt>long long</tt> if your platform supports it.  We may thus have
/// left out some C99 integer type, but this is only possible if the
/// C89 / C++03 integer types do not have complete coverage of all
/// powers of two bits from 8 up to the longest provided length (e.g.,
/// 64 on a 64-bit system).  On all platforms I have encountered,
/// <tt>char</tt> has 8 bits and <tt>short</tt> has 16 bits, so I am
/// not worried about missing specializations for <tt>int16_t</tt> or
/// <tt>uint16_t</tt>.  If you should find that either of these
/// specializations are missing, though, please let us know.
///
/// Note that <tt>char</tt>, <tt>signed char</tt>, and <tt>unsigned
/// char</tt> are distinct types, whether <tt>char</tt> is signed or
/// unsigned.  (The language standards do not specify whether
/// <tt>char</tt> is signed or unsigned.)  That is, <tt>char</tt> is
/// <i>not</i> a typedef of <tt>signed char</tt> or <tt>unsigned
/// char</tt>.  This is why we provide full specializations of
/// ArithTraits for each of these types.  Interestingly enough, on my
/// system, <tt>char</tt> and <tt>int8_t</tt> are different types, but
/// <tt>signed char</tt> and <tt>int8_t</tt> are the same.
///
/// \section Kokkos_ArithTraits_impl Implementation notes
///
/// This section contains notes to developers who which to add a
/// partial specialization of this class for a new type T.  If you
/// decide to write a default templated implementation, it must not
/// declare any methods as device functions.  This ensures correct
/// behavior for arbitrary T, but does require specializations for
/// common types like T = float and double, as well as for other types
/// T that make sense to use on a CUDA device.
template<class T>
class ArithTraits {
public:
  /// \brief A type that acts like T and works with Kokkos.
  ///
  /// This is usually just an alias for T.  However, some types T do
  /// not work well with Kokkos.  In that case, we use a mostly
  /// equivalent type here.  For example, ArithTraits<std::complex<R>
  /// >::val_type is Kokkos::complex<R>.
  typedef T val_type;
  /// \brief The type of the magnitude (absolute value) of T.
  ///
  /// We define this as the type returned by abs() in this class.  If
  /// T is real (not complex), then \c val_type and \c mag_type are
  /// usually the same.  If T is <tt>std::complex<R></tt> for some R,
  /// then R and \c mag_type are usually the same.
  typedef T mag_type;

  //! Whether ArithTraits has a specialization for T.
  static const bool is_specialized = false;
  //! Whether T is a signed type (has negative values).
  static const bool is_signed = false;
  //! Whether T is an integer type.
  static const bool is_integer = false;
  /// \brief Whether T "uses exact representations."
  ///
  /// The opposite of is_exact is "is approximate," that is, "may
  /// commit rounding error."
  static const bool is_exact = false;
  //! Whether T is a complex-valued type.
  static const bool is_complex = false;

  /// \brief Whether x is Inf.
  ///
  /// This can only be true for floating-point types T that support
  /// Inf.  If T is a complex type, we say that a T instance x is Inf
  /// if and only if <tt>isinf(real(x)) || isinf(imag(x))</tt>.
  ///
  /// Unfortunately we can't call this "isinf" (the equivalent C99
  /// function), because CUDA appears to implement that function using
  /// a macro, rather than using a function (as C++11 requires).
  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const T& x);

  /// \brief Whether x is NaN (not a number).
  ///
  /// This can only be true for floating-point types T that support
  /// NaN.  If T is a complex type, we say that a T instance x is NaN
  /// if and only if <tt>isNan(real(x)) || isNan(imag(x))</tt>.
  ///
  /// Unfortunately we can't call this "isnan" (the equivalent C99
  /// function), because CUDA appears to implement that function using
  /// a macro, rather than using a function (as C++11 requires).
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const T& x);

  //! The absolute value (magnitude) of x.
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const T& x);

  //! The zero value of T; the arithmetic identity.
  static KOKKOS_FORCEINLINE_FUNCTION T zero ();

  //! The one value of T; the multiplicative identity.
  static KOKKOS_FORCEINLINE_FUNCTION T one ();

  /// \brief The minimum possible value of T.
  ///
  /// If T is a real floating-point type, then this is the minimum
  /// <i>positive</i> value, as with std::numeric_limits<T>::min().
  static KOKKOS_FORCEINLINE_FUNCTION T min ();

  //! The maximum possible value of T.
  static KOKKOS_FORCEINLINE_FUNCTION T max ();

  /// \brief The real part of x.
  ///
  /// If \c is_complex is false, then this just returns x.
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const T& x);

  /// \brief The imaginary part of x.
  ///
  /// If \c is_complex is false, then this just returns zero().
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const T&);

  /// \brief The complex conjugate of x.
  ///
  /// If \c is_complex is false, then this just returns x.
  static KOKKOS_FORCEINLINE_FUNCTION T conj (const T&);

  //! x raised to the power y.
  static KOKKOS_FORCEINLINE_FUNCTION T pow (const T& x, const T& y);

  /// \brief The square root of x.
  ///
  /// If T is an integer type, this is the floor of the square root.
  /// If T is a complex-valued type, then this method returns the
  /// principal branch of the square root.
  ///
  /// If T is real-valued and x is negative, the result of the square
  /// root is undefined in general.  (CUDA does not allow throwing
  /// exceptions in device functions.)  Implementations should return
  /// NaN if the type T supports this.  Of course, in that case, the
  /// square of the result will not equal x.
  static KOKKOS_FORCEINLINE_FUNCTION T sqrt (const T& x);

  /// \brief The natural (base e) logarithm of x.
  ///
  /// If T is an integer type, this is the floor of the logarithm.  If
  /// T is a complex-valued type, then this method returns the
  /// principal branch of the logarithm.
  ///
  /// If T is real-valued and x is negative, the result of the
  /// logarithm is undefined in general.  (CUDA does not allow
  /// throwing exceptions in device functions.)  Implementations
  /// should return NaN if the type T supports this.  Of course, in
  /// that case, if y is the result, \f$e^y\f$ will not equal x.
  static KOKKOS_FORCEINLINE_FUNCTION T log (const T& x);

  /// \brief The base ten logarithm of the input.
  ///
  /// If T is an integer type, this is the floor of the logarithm.  If
  /// T is a complex-valued type, then this method returns the
  /// principal branch of the logarithm.
  ///
  /// If T is real-valued and x is negative, the result of the
  /// logarithm is undefined in general.  (CUDA does not allow
  /// throwing exceptions in device functions.)  Implementations
  /// should return NaN if the type T supports this.  Of course, in
  /// that case, if y is the result, \f$10^y\f$ will not equal x.
  static KOKKOS_FORCEINLINE_FUNCTION T log10 (const T& x);

  /// \brief Return a silent NaN, if appropriate for T.
  ///
  /// If T does <i>not</i> implement a silent NaN, the return value is
  /// undefined, but calling this method is still allowed.
  static KOKKOS_FORCEINLINE_FUNCTION T nan ();

  /// \brief Machine epsilon.
  ///
  /// If T is an integer type (std::numeric_traits<T>::is_exact is
  /// true), then epsilon() returns 0.  Otherwise, if T is a
  /// floating-point type, it returns machine epsilon that T.
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon ();

  //@{
  /// \name Traits defined for backwards compatibility with Teuchos::ScalarTraits
  ///
  /// All of the typedefs, \c bool constants, and class methods in
  /// this section are defined in order that one may replace most uses
  /// of Teuchos::ScalarTraits with ArithTraits.  Users who do not
  /// have this backwards compatibility requirement should prefer
  /// equivalents in other sections.  Those class methods which have
  /// the same name and meaning in both Teuchos::ScalarTraits and this
  /// class, such as log() and pow(), are not in this section.

  //! Same as mag_type; the type of the absolute value (magnitude) of T.
  typedef T magnitudeType;

  /// \brief The type with "half the precision" of T.
  ///
  /// This typedef only makes sense if T is a floating-point type.
  typedef T halfPrecision;

  /// \brief The type with "twice the the precision" of T.
  ///
  /// This typedef only makes sense if T is a floating-point type.
  typedef T doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = false;
  static const bool isComparable = false;

  /// \brief True if this type T has floating-point parameters.
  ///
  /// This is true if and only if this specialization of ArithTraits
  /// has "machine-specific" parameters eps(), sfmin(), base(),
  /// prec(), t(), rnd(), emin(), rmin(), emax(), and rmax(), relating
  /// to floating-point types.
  static const bool hasMachineParameters = false;

  //! Return relative machine precision.
  static KOKKOS_FORCEINLINE_FUNCTION mag_type eps ();

  //! Return safe minimum (sfmin), such that 1/sfmin does not overflow.
  static KOKKOS_FORCEINLINE_FUNCTION mag_type sfmin ();

  //! Return the base of the scalar type T.
  static KOKKOS_FORCEINLINE_FUNCTION int base ();

  //! Return <tt>eps*base</tt>.
  static KOKKOS_FORCEINLINE_FUNCTION mag_type prec ();

  //! Returns the number of (base) digits in the significand.
  static KOKKOS_FORCEINLINE_FUNCTION int t ();

  //! 1.0 when rounding occurs in addition, else 0.0.
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rnd ();

  //! Returns the minimum exponent before (gradual) underflow.
  static KOKKOS_FORCEINLINE_FUNCTION int emin ();

  //! Returns the underflow threshold: <tt>base^(emin-1)</tt>
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rmin ();

  //! Returns the largest exponent before overflow.
  static KOKKOS_FORCEINLINE_FUNCTION int emax ();

  //! Overflow theshold: <tt>(base^emax)*(1-eps)</tt>
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rmax ();

  //! Same as abs(); return the magnitude of x.
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const T& x);

  //! Same as conj(); return the complex conjugate of x.
  static KOKKOS_FORCEINLINE_FUNCTION T conjugate (const T& x);

  /// \brief Whether x is (silent) NaN or Inf.
  ///
  /// This is the same as <tt>isNan(x) || isInf(x)</tt>.
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const T& x);

  /// \brief The string name of T.
  ///
  /// Note that this is not a device function.
  static std::string name ();

  //! Same as sqrt(x); the square root of x.
  static KOKKOS_FORCEINLINE_FUNCTION T squareroot (const T& x);
  //@}
};


template<>
class ArithTraits<float> {
public:
  typedef float val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const float x) {
    #ifndef __CUDA_ARCH__
    using std::isinf;
    #endif
    return isinf (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const float x) {
    #ifndef __CUDA_ARCH__
    using std::isnan;
    #endif
    return isnan (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const float x) {
    return ::fabs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION float zero () {
    return 0.0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION float one () {
    return 1.0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION float min () {
    return FLT_MIN;
  }
  static KOKKOS_FORCEINLINE_FUNCTION float max () {
    return FLT_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const float x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const float) {
    return 0.0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION float conj (const float x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION float pow (const float x, const float y) {
    return ::pow (x, y);
  }
  static KOKKOS_FORCEINLINE_FUNCTION float sqrt (const float x) {
    return ::sqrt (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION float log (const float x) {
    return ::log (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION float log10 (const float x) {
    return ::log10 (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return FLT_EPSILON;
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  // C++ doesn't have a standard "half-float" type.
  typedef float halfPrecision;
  typedef double doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = false;
  static const bool isComparable = true;
  static const bool hasMachineParameters = true;
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const float x) {
    return isNan (x) || isInf (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const float x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION float conjugate (const float x) {
    return conj (x);
  }
  static std::string name () {
    return "float";
  }
  static KOKKOS_FORCEINLINE_FUNCTION float squareroot (const float x) {
    return sqrt (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION float nan () {
#ifdef __CUDA_ARCH__
    return CUDART_NAN_F;
    //return nan (); //this returns 0???
#else
    return std::numeric_limits<float>::quiet_NaN();
#endif // __CUDA_ARCH__
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type eps () {
    return epsilon ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type sfmin () {
    return FLT_MIN; // ???
  }
  static KOKKOS_FORCEINLINE_FUNCTION int base () {
    return FLT_RADIX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type prec () {
    return eps () * static_cast<mag_type> (base ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION int t () {
    return FLT_MANT_DIG;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rnd () {
    return 1.0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION int emin () {
    return FLT_MIN_EXP;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rmin () {
    return FLT_MIN; // ??? // should be base^(emin-1)
  }
  static KOKKOS_FORCEINLINE_FUNCTION int emax () {
    return FLT_MAX_EXP;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rmax () {
    return FLT_MAX; // ??? // should be (base^emax)*(1-eps)
  }
};


/// \brief Partial specialization for std::complex<RealFloatType>.
///
/// The C++ Standard Library (with C++03 at least) only allows
/// std::complex<RealFloatType> for RealFloatType = float, double, or
/// long double.
template<class RealFloatType>
class ArithTraits<std::complex<RealFloatType> > {
public:
  //! Kokkos internally replaces std::complex with Kokkos::complex.
  typedef ::Kokkos::complex<RealFloatType> val_type;
  typedef RealFloatType mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const bool is_complex = true;

  static bool isInf (const std::complex<RealFloatType>& x) {
    #ifndef __CUDA_ARCH__
    using std::isinf;
    #endif
    return isinf (real (x)) || isinf (imag (x));
  }
  static bool isNan (const std::complex<RealFloatType>& x) {
    #ifndef __CUDA_ARCH__
    using std::isnan;
    #endif
    return isnan (real (x)) || isnan (imag (x));
  }
  static mag_type abs (const std::complex<RealFloatType>& x) {
    return std::abs (x);
  }
  static std::complex<RealFloatType> zero () {
    return std::complex<RealFloatType> (ArithTraits<mag_type>::zero (), ArithTraits<mag_type>::zero ());
  }
  static std::complex<RealFloatType> one () {
    return std::complex<RealFloatType> (ArithTraits<mag_type>::one (), ArithTraits<mag_type>::zero ());
  }
  static std::complex<RealFloatType> min () {
    return std::complex<RealFloatType> (ArithTraits<mag_type>::min (), ArithTraits<mag_type>::zero ());
  }
  static std::complex<RealFloatType> max () {
    return std::complex<RealFloatType> (ArithTraits<mag_type>::max (), ArithTraits<mag_type>::zero ());
  }
  static mag_type real (const std::complex<RealFloatType>& x) {
    return std::real (x);
  }
  static mag_type imag (const std::complex<RealFloatType>& x) {
    return std::imag (x);
  }
  static std::complex<RealFloatType> conj (const std::complex<RealFloatType>& x) {
    return std::conj (x);
  }
  static std::complex<RealFloatType>
  pow (const std::complex<RealFloatType>& x, const std::complex<RealFloatType>& y) {
    // Fix for some weird gcc 4.2.1 inaccuracy.
    if (y == one ()) {
      return x;
    } else if (y == one () + one ()) {
      return x * x;
    } else {
      return std::pow (x, y);
    }
  }
  static std::complex<RealFloatType> sqrt (const std::complex<RealFloatType>& x) {
    return std::sqrt (x);
  }
  static std::complex<RealFloatType> log (const std::complex<RealFloatType>& x) {
    return std::log (x);
  }
  static std::complex<RealFloatType> log10 (const std::complex<RealFloatType>& x) {
    return std::log10 (x);
  }
  static std::complex<RealFloatType> nan () {
    const mag_type mag_nan = ArithTraits<mag_type>::nan ();
    return std::complex<RealFloatType> (mag_nan, mag_nan);
  }
  static mag_type epsilon () {
    return ArithTraits<mag_type>::epsilon ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef std::complex<typename ArithTraits<mag_type>::halfPrecision> halfPrecision;
  typedef std::complex<typename ArithTraits<mag_type>::doublePrecision> doublePrecision;

  static const bool isComplex = true;
  static const bool isOrdinal = false;
  static const bool isComparable = false;
  static const bool hasMachineParameters = true;
  static bool isnaninf (const std::complex<RealFloatType>& x) {
    return isNan (x) || isInf (x);
  }
  static mag_type magnitude (const std::complex<RealFloatType>& x) {
    return abs (x);
  }
  static std::complex<RealFloatType> conjugate (const std::complex<RealFloatType>& x) {
    return conj (x);
  }
  static std::string name () {
    return std::string ("std::complex<") + ArithTraits<mag_type>::name () + ">";
  }
  static std::complex<RealFloatType> squareroot (const std::complex<RealFloatType>& x) {
    return sqrt (x);
  }
  static mag_type eps () {
    return epsilon ();
  }
  static mag_type sfmin () {
    return ArithTraits<mag_type>::sfmin ();
  }
  static int base () {
    return ArithTraits<mag_type>::base ();
  }
  static mag_type prec () {
    return ArithTraits<mag_type>::prec ();
  }
  static int t () {
    return ArithTraits<mag_type>::t ();
  }
  static mag_type rnd () {
    return ArithTraits<mag_type>::one ();
  }
  static int emin () {
    return ArithTraits<mag_type>::emin ();
  }
  static mag_type rmin () {
    return ArithTraits<mag_type>::rmin ();
  }
  static int emax () {
    return ArithTraits<mag_type>::emax ();
  }
  static mag_type rmax () {
    return ArithTraits<mag_type>::rmax ();
  }
};


template<>
class ArithTraits<double> {
public:
  typedef double val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type x) {
    #ifndef __CUDA_ARCH__
    using std::isinf;
    #endif
    return isinf (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type x) {
    #ifndef __CUDA_ARCH__
    using std::isnan;
    #endif
    return isnan (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    return ::fabs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0.0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1.0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return DBL_MIN;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return DBL_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type) {
    return 0.0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type pow (const val_type x, const val_type y) {
    return ::pow (x, y);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
    return ::sqrt (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return ::log (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return ::log10 (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type nan () {
#ifdef __CUDA_ARCH__
    return CUDART_NAN;
    //return nan (); // this returns 0 ???
#else
    return std::numeric_limits<val_type>::quiet_NaN();
#endif // __CUDA_ARCH__
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return DBL_EPSILON;
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef float halfPrecision;
#ifdef __CUDA_ARCH__
  typedef double doublePrecision; // CUDA doesn't support long double, unfortunately
#else
  typedef long double doublePrecision;
#endif // __CUDA_ARCH__
  static const bool isComplex = false;
  static const bool isOrdinal = false;
  static const bool isComparable = true;
  static const bool hasMachineParameters = true;
  static bool isnaninf (const val_type& x) {
    return isNan (x) || isInf (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static std::string name () {
    return "double";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type eps () {
    return epsilon ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type sfmin () {
    return DBL_MIN; // ???
  }
  static KOKKOS_FORCEINLINE_FUNCTION int base () {
    return FLT_RADIX; // same for float as for double
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type prec () {
    return eps () * static_cast<mag_type> (base ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION int t () {
    return DBL_MANT_DIG;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rnd () {
    return 1.0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION int emin () {
    return DBL_MIN_EXP;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rmin () {
    return DBL_MIN; // ??? // should be base^(emin-1)
  }
  static KOKKOS_FORCEINLINE_FUNCTION int emax () {
    return DBL_MAX_EXP;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rmax () {
    return DBL_MAX; // ??? // should be (base^emax)*(1-eps)
  }
};


// CUDA does not support long double in device functions, so none of
// the class methods in this specialization are marked as device
// functions.
template<>
class ArithTraits<long double> {
public:
  typedef long double val_type;
  typedef long double mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const bool is_complex = false;

  static bool isInf (const val_type& x) {
    #ifndef __CUDA_ARCH__
    using std::isinf;
    #endif
    return isinf (x);
  }
  static bool isNan (const val_type& x) {
    #ifndef __CUDA_ARCH__
    using std::isnan;
    #endif
    return isnan (x);
  }
  static mag_type abs (const val_type& x) {
    return ::fabsl (x);
  }
  static val_type zero () {
    return 0.0;
  }
  static val_type one () {
    return 1.0;
  }
  static val_type min () {
    return LDBL_MIN;
  }
  static val_type max () {
    return LDBL_MAX;
  }
  static mag_type real (const val_type& x) {
    return x;
  }
  static mag_type imag (const val_type&) {
    return zero ();
  }
  static val_type conj (const val_type& x) {
    return x;
  }
  static val_type pow (const val_type& x, const val_type& y) {
    return ::pow (x, y);
  }
  static val_type sqrt (const val_type& x) {
    return ::sqrt (x);
  }
  static val_type log (const val_type& x) {
    return ::log (x);
  }
  static val_type log10 (const val_type& x) {
    return ::log10 (x);
  }
  static val_type nan () {
    return std::numeric_limits<val_type>::quiet_NaN();
  }
  static mag_type epsilon () {
    return LDBL_EPSILON;
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef double halfPrecision;
  // It might be appropriate to use QD's qd_real here.
  // For now, long double is the most you get.
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = false;
  static const bool isComparable = true;
  static const bool hasMachineParameters = true;
  static bool isnaninf (const val_type& x) {
    return isNan (x) || isInf (x);
  }
  static mag_type magnitude (const val_type& x) {
    return abs (x);
  }
  static val_type conjugate (const val_type& x) {
    return conj (x);
  }
  static std::string name () {
    return "long double";
  }
  static val_type squareroot (const val_type& x) {
    return sqrt (x);
  }
  static mag_type eps () {
    return epsilon ();
  }
  static mag_type sfmin () {
    return LDBL_MIN; // ???
  }
  static int base () {
    return FLT_RADIX; // same for float as for double or long double
  }
  static mag_type prec () {
    return eps () * static_cast<mag_type> (base ());
  }
  static int t () {
    return LDBL_MANT_DIG;
  }
  static mag_type rnd () {
    return one ();
  }
  static int emin () {
    return LDBL_MIN_EXP;
  }
  static mag_type rmin () {
    return LDBL_MIN;
  }
  static int emax () {
    return LDBL_MAX_EXP;
  }
  static mag_type rmax () {
    return LDBL_MAX;
  }
};

#ifdef HAVE_KOKKOSKERNELS_QUADMATH

// CUDA does not support __float128 in device functions, so none of
// the class methods in this specialization are marked as device
// functions.
template<>
class ArithTraits<__float128> {
public:
  typedef __float128 val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const bool is_complex = false;

  static bool isInf (const __float128 x) {
    return isinfq (x);
  }
  static bool isNan (const __float128 x) {
    return isnanq (x);
  }
  static mag_type abs (const __float128 x) {
    return fabsq (x);
  }
  static __float128 zero () {
    return 0.0;
  }
  static __float128 one () {
    return 1.0;
  }
  static __float128 min () {
    return FLT128_MIN;
  }
  static __float128 max () {
    return FLT128_MAX;
  }
  static mag_type real (const __float128 x) {
    return x;
  }
  static mag_type imag (const __float128 /* x */) {
    return 0.0;
  }
  static __float128 conj (const __float128 x) {
    return x;
  }
  static __float128 pow (const __float128 x, const __float128 y) {
    return powq (x, y);
  }
  static __float128 sqrt (const __float128 x) {
    return sqrtq (x);
  }
  static __float128 log (const __float128 x) {
    return logq (x);
  }
  static __float128 log10 (const __float128 x) {
    return log10q (x);
  }
  static mag_type epsilon () {
    return FLT128_EPSILON;
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef double halfPrecision;
  // Unfortunately, we can't rely on a standard __float256 type.
  typedef __float128 doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = false;
  static const bool isComparable = true;
  static const bool hasMachineParameters = true;
  static bool isnaninf (const __float128 x) {
    return isNan (x) || isInf (x);
  }
  static magnitudeType magnitude (const __float128 x) {
    return abs (x);
  }
  static __float128 conjugate (const __float128 x) {
    return conj (x);
  }
  static std::string name () {
    return "__float128";
  }
  static __float128 squareroot (const __float128 x) {
    return sqrt (x);
  }
  static __float128 nan () {
    return strtoflt128 ("NAN()", NULL); // ???
  }
  static mag_type eps () {
    return epsilon ();
  }
  static mag_type sfmin () {
    return FLT128_MIN; // ???
  }
  static int base () {
    return 2;
  }
  static mag_type prec () {
    return eps () * static_cast<mag_type> (base ());
  }
  static int t () {
    return FLT_MANT_DIG;
  }
  static mag_type rnd () {
    return 1.0;
  }
  static int emin () {
    return FLT128_MIN_EXP;
  }
  static mag_type rmin () {
    return FLT128_MIN; // ??? // should be base^(emin-1)
  }
  static int emax () {
    return FLT128_MAX_EXP;
  }
  static mag_type rmax () {
    return FLT128_MAX; // ??? // should be (base^emax)*(1-eps)
  }
};
#endif // HAVE_KOKKOSKERNELS_QUADMATH

template<>
class ArithTraits< ::Kokkos::complex<float> > {
public:
  typedef ::Kokkos::complex<float> val_type;
  typedef float mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const bool is_complex = true;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type x) {
    return ArithTraits<mag_type>::isInf (x.real ()) ||
      ArithTraits<mag_type>::isInf (x.imag ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type x) {
    return ArithTraits<mag_type>::isNan (x.real ()) ||
      ArithTraits<mag_type>::isNan (x.imag ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    return std::sqrt (::Kokkos::real (x) * ::Kokkos::real (x) +
                 ::Kokkos::imag (x) * ::Kokkos::imag (x));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return val_type (ArithTraits<mag_type>::zero (), ArithTraits<mag_type>::zero ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return val_type (ArithTraits<mag_type>::one (), ArithTraits<mag_type>::zero ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return val_type (ArithTraits<mag_type>::min (), ArithTraits<mag_type>::min ()); // ???
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return val_type (ArithTraits<mag_type>::max (), ArithTraits<mag_type>::max ()); // ???
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x.real ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type x) {
    return x.imag ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return ::Kokkos::conj (x);
  }
  // static KOKKOS_FORCEINLINE_FUNCTION val_type pow (const val_type x, const val_type y) {
  //   return ::pow (x, y);
  // }
  // static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
  //   return ::sqrt (x);
  // }
  // static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
  //   return ::log (x);
  // }
  // static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
  //   return ::log10 (x);
  // }
  static KOKKOS_FORCEINLINE_FUNCTION val_type nan () {
    // ???
    return val_type (ArithTraits<mag_type>::nan (), ArithTraits<mag_type>::nan ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return ArithTraits<mag_type>::epsilon (); // ???
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef ::Kokkos::complex<ArithTraits<mag_type>::halfPrecision> halfPrecision;
  typedef ::Kokkos::complex<ArithTraits<mag_type>::doublePrecision> doublePrecision;

  static const bool isComplex = true;
  static const bool isOrdinal = false;
  static const bool isComparable = false;
  static const bool hasMachineParameters = ArithTraits<mag_type>::hasMachineParameters;
  static bool isnaninf (const val_type& x) {
    return isNan (x) || isInf (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static std::string name () {
    return "Kokkos::complex<float>";
  }
  // static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
  //   return sqrt (x);
  // }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type eps () {
    return epsilon ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type sfmin () {
    return ArithTraits<mag_type>::sfmin (); // ???
  }
  static KOKKOS_FORCEINLINE_FUNCTION int base () {
    return ArithTraits<mag_type>::base ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type prec () {
    return ArithTraits<mag_type>::prec (); // ???
  }
  static KOKKOS_FORCEINLINE_FUNCTION int t () {
    return ArithTraits<mag_type>::t ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rnd () {
    return ArithTraits<mag_type>::rnd ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION int emin () {
    return ArithTraits<mag_type>::emin ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rmin () {
    return ArithTraits<mag_type>::rmin ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION int emax () {
    return ArithTraits<mag_type>::emax ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rmax () {
    return ArithTraits<mag_type>::rmax ();
  }
};


template<>
class ArithTraits< ::Kokkos::complex<double> > {
public:
  typedef ::Kokkos::complex<double> val_type;
  typedef double mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const bool is_complex = true;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type x) {
    return ArithTraits<mag_type>::isInf (x.real ()) ||
      ArithTraits<mag_type>::isInf (x.imag ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type x) {
    return ArithTraits<mag_type>::isNan (x.real ()) ||
      ArithTraits<mag_type>::isNan (x.imag ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    return ::Kokkos::abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return val_type (ArithTraits<mag_type>::zero (), ArithTraits<mag_type>::zero ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return val_type (ArithTraits<mag_type>::one (), ArithTraits<mag_type>::zero ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return val_type (ArithTraits<mag_type>::min (), ArithTraits<mag_type>::min ()); // ???
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return val_type (ArithTraits<mag_type>::max (), ArithTraits<mag_type>::max ()); // ???
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x.real ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type x) {
    return x.imag ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return ::Kokkos::conj (x);
  }
  // static KOKKOS_FORCEINLINE_FUNCTION val_type pow (const val_type x, const val_type y) {
  //   return ::pow (x, y);
  // }
  // static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
  //   return ::sqrt (x);
  // }
  // static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
  //   return ::log (x);
  // }
  // static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
  //   return ::log10 (x);
  // }
  static KOKKOS_FORCEINLINE_FUNCTION val_type nan () {
    // ???
    return val_type (ArithTraits<mag_type>::nan (), ArithTraits<mag_type>::nan ());
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return ArithTraits<mag_type>::epsilon (); // ???
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef ::Kokkos::complex<ArithTraits<mag_type>::halfPrecision> halfPrecision;
  typedef ::Kokkos::complex<ArithTraits<mag_type>::doublePrecision> doublePrecision;

  static const bool isComplex = true;
  static const bool isOrdinal = false;
  static const bool isComparable = false;
  static const bool hasMachineParameters = ArithTraits<mag_type>::hasMachineParameters;
  static bool isnaninf (const val_type& x) {
    return isNan (x) || isInf (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static std::string name () {
    return "Kokkos::complex<double>";
  }
  // static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
  //   return sqrt (x);
  // }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type eps () {
    return epsilon ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type sfmin () {
    return ArithTraits<mag_type>::sfmin (); // ???
  }
  static KOKKOS_FORCEINLINE_FUNCTION int base () {
    return ArithTraits<mag_type>::base ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type prec () {
    return ArithTraits<mag_type>::prec (); // ???
  }
  static KOKKOS_FORCEINLINE_FUNCTION int t () {
    return ArithTraits<mag_type>::t ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rnd () {
    return ArithTraits<mag_type>::rnd ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION int emin () {
    return ArithTraits<mag_type>::emin ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rmin () {
    return ArithTraits<mag_type>::rmin ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION int emax () {
    return ArithTraits<mag_type>::emax ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type rmax () {
    return ArithTraits<mag_type>::rmax ();
  }
};


template<>
class ArithTraits<char> {
public:
  typedef char val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  // The C(++) standard does not require that char be signed.  In
  // fact, signed char, unsigned char, and char are distinct types.
  // We can use std::numeric_limits here because it's a const bool,
  // not a class method.
  static const bool is_signed = std::numeric_limits<char>::is_signed;
  static const bool is_integer = true;
  static const bool is_exact = true;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    // This may trigger a compiler warning if char is unsigned.  On
    // all platforms I have encountered, char is signed, but the C(++)
    // standard does not require this.
    return x >= 0 ? x : -x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return CHAR_MIN;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return CHAR_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type ) {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type
  pow (const val_type x, const val_type y) {
    if (is_signed) {
      return intPowSigned<val_type> (x, y);
    } else {
      return intPowUnsigned<val_type> (x, y);
    }
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
    // C++11 defines std::sqrt for integer arguments.  However, we
    // currently can't assume C++11.
    //
    // This cast will result in no loss of accuracy, though it might
    // be more expensive than it should, if we were clever about using
    // bit operations.
    //
    // We take the absolute value first to avoid negative arguments.
    // Negative real arguments to sqrt(float) return (float) NaN, but
    // built-in integer types do not have an equivalent to NaN.
    // Casting NaN to an integer type will thus result in some integer
    // value which appears valid, but is not.  We cannot raise an
    // exception in device functions.  Thus, we prefer to take the
    // absolute value of x first, to avoid issues.  Another
    // possibility would be to test for a NaN output and convert it to
    // some reasonable value (like 0), though this might be more
    // expensive than the absolute value interpreted using the ternary
    // operator.
    return static_cast<val_type> ( ::sqrt (static_cast<float> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return static_cast<val_type> ( ::log (static_cast<float> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return static_cast<val_type> ( ::log10 (static_cast<float> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return zero ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef val_type halfPrecision;
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = true;
  static const bool isComparable = true;
  static const bool hasMachineParameters = false;
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const val_type) {
    return false;
  }
  static std::string name () {
    return "char";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
};


template<>
class ArithTraits<signed char> {
public:
  typedef signed char val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = true;
  static const bool is_exact = true;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    return x >= 0 ? x : -x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return SCHAR_MIN;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return SCHAR_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type ) {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type
  pow (const val_type x, const val_type y) {
    return intPowSigned<val_type> (x, y);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
    return static_cast<val_type> ( ::sqrt (static_cast<float> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return static_cast<val_type> ( ::log (static_cast<float> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return static_cast<val_type> ( ::log10 (static_cast<float> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return zero ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef val_type halfPrecision;
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = true;
  static const bool isComparable = true;
  static const bool hasMachineParameters = false;
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const val_type) {
    return false;
  }
  static std::string name () {
    return "signed char";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
};


template<>
class ArithTraits<unsigned char> {
public:
  typedef unsigned char val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = false;
  static const bool is_integer = true;
  static const bool is_exact = true;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    return x; // it's unsigned, so it's positive
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return UCHAR_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type ) {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type
  pow (const val_type x, const val_type y) {
    return intPowUnsigned<val_type> (x, y);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
    // This will result in no loss of accuracy, though it might be
    // more expensive than it should, if we were clever about using
    // bit operations.
    return static_cast<val_type> ( ::sqrt (static_cast<float> (x)));
  }

  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return static_cast<val_type> ( ::log (static_cast<float> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return static_cast<val_type> ( ::log10 (static_cast<float> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return zero ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef val_type halfPrecision;
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = true;
  static const bool isComparable = true;
  static const bool hasMachineParameters = false;
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const val_type) {
    return false;
  }
  static std::string name () {
    return "unsigned char";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
};


template<>
class ArithTraits<short> {
public:
  typedef short val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = true;
  static const bool is_exact = true;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    // std::abs appears to work with CUDA 5.5 at least, but I'll use
    // the ternary expression for maximum generality.  Note that this
    // expression does not necessarily obey the rules for fabs() with
    // NaN input, so it should not be used for floating-point types.
    // It's perfectly fine for signed integer types, though.
    return x >= 0 ? x : -x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    // Macros like this work with CUDA, but
    // std::numeric_limits<val_type>::min() does not, because it is
    // not marked as a __device__ function.
    return SHRT_MIN;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return SHRT_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type ) {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type pow (const val_type x, const val_type y) {
    return intPowSigned<val_type> (x, y);
  }
  //! Integer square root returns a lower bound.
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
    // This will result in no loss of accuracy, though it might be
    // more expensive than it should, if we were clever about using
    // bit operations.
    return static_cast<val_type> ( ::sqrt (static_cast<float> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return static_cast<val_type> ( ::log (static_cast<float> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return static_cast<val_type> ( ::log10 (static_cast<float> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type nan () {
    // short doesn't implement a NaN value, but we can still have it
    // return some "flag" value that can help users find use of
    // uninitialized data.
    return static_cast<val_type> (-1);
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return zero ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef val_type halfPrecision;
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = true;
  static const bool isComparable = true;
  static const bool hasMachineParameters = false;
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const val_type) {
    return false;
  }
  static std::string name () {
    return "short";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
};


template<>
class ArithTraits<unsigned short> {
public:
  typedef unsigned short val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = false;
  static const bool is_integer = true;
  static const bool is_exact = true;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    return x; // it's unsigned, so it's positive
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return USHRT_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type ) {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type
  pow (const val_type x, const val_type y) {
    return intPowUnsigned<val_type> (x, y);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
    // This will result in no loss of accuracy, though it might be
    // more expensive than it should, if we were clever about using
    // bit operations.
    return static_cast<val_type> ( ::sqrt (static_cast<float> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return static_cast<val_type> ( ::log (static_cast<float> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return static_cast<val_type> ( ::log10 (static_cast<float> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type nan () {
    // unsigned short doesn't implement a NaN value, but we can still
    // have it return some "flag" value that can help users find use
    // of uninitialized data.
    return max ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return zero ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef val_type halfPrecision;
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = true;
  static const bool isComparable = true;
  static const bool hasMachineParameters = false;
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const val_type) {
    return false;
  }
  static std::string name () {
    return "unsigned short";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
};


template<>
class ArithTraits<int> {
public:
  typedef int val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = true;
  static const bool is_exact = true;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    // std::abs appears to work with CUDA 5.5 at least, but I'll use
    // the ternary expression for maximum generality.  Note that this
    // expression does not necessarily obey the rules for fabs() with
    // NaN input, so it should not be used for floating-point types.
    // It's perfectly fine for signed integer types, though.
    return x >= 0 ? x : -x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    // Macros like INT_MIN work with CUDA, but
    // std::numeric_limits<val_type>::min() does not, because it is
    // not marked as a __device__ function.
    return INT_MIN;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return INT_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type ) {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type
  pow (const val_type x, const val_type y) {
    return intPowSigned<val_type> (x, y);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
    // This will result in no loss of accuracy, though it might be
    // more expensive than it should, if we were clever about using
    // bit operations.
    return static_cast<val_type> ( ::sqrt (static_cast<double> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return static_cast<val_type> ( ::log (static_cast<double> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return static_cast<val_type> ( ::log10 (static_cast<double> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type nan () {
    // int doesn't implement a NaN value, but we can still have it
    // return some "flag" value that can help users find use of
    // uninitialized data.
    return -1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return zero ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef val_type halfPrecision;
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = true;
  static const bool isComparable = true;
  static const bool hasMachineParameters = false;
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const val_type) {
    return false;
  }
  static std::string name () {
    return "int";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
};


template<>
class ArithTraits<unsigned int> {
public:
  typedef unsigned int val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = false;
  static const bool is_integer = true;
  static const bool is_exact = true;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    return x; // it's unsigned, so it's positive
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return UINT_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type ) {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type
  pow (const val_type x, const val_type y) {
    return intPowUnsigned<val_type> (x, y);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
    // This will result in no loss of accuracy, though it might be
    // more expensive than it should, if we were clever about using
    // bit operations.
    return static_cast<val_type> ( ::sqrt (static_cast<double> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return static_cast<val_type> ( ::log (static_cast<double> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return static_cast<val_type> ( ::log10 (static_cast<double> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type nan () {
    // unsigned int doesn't implement a NaN value, but we can still
    // have it return some "flag" value that can help users find use
    // of uninitialized data.
    return max ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return zero ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef val_type halfPrecision;
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = true;
  static const bool isComparable = true;
  static const bool hasMachineParameters = false;
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const val_type) {
    return false;
  }
  static std::string name () {
    return "unsigned int";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
};


template<>
class ArithTraits<long> {
public:
  typedef long val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = true;
  static const bool is_exact = true;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    return x >= 0 ? x : -x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return LONG_MIN;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return LONG_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type ) {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type
  pow (const val_type x, const val_type y) {
    return intPowSigned<val_type> (x, y);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
#ifdef __CUDA_ARCH__
    return static_cast<val_type> ( ::sqrt (static_cast<double> (abs (x))));
#else
    return static_cast<val_type> ( ::sqrt (static_cast<long double> (abs (x))));
#endif // __CUDA_ARCH__
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return static_cast<val_type> ( ::log (static_cast<double> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return static_cast<val_type> ( ::log10 (static_cast<double> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type nan () {
    // long doesn't implement a NaN value, but we can still have it
    // return some "flag" value that can help users find use of
    // uninitialized data.
    return -1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return zero ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef val_type halfPrecision;
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = true;
  static const bool isComparable = true;
  static const bool hasMachineParameters = false;
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const val_type) {
    return false;
  }
  static std::string name () {
    return "long";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
};


template<>
class ArithTraits<unsigned long> {
public:
  typedef unsigned long val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = false;
  static const bool is_integer = true;
  static const bool is_exact = true;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return ULONG_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type ) {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type pow (const val_type x, const val_type y) {
    return intPowUnsigned<val_type> (x, y);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
#ifdef __CUDA_ARCH__
    return static_cast<val_type> ( ::sqrt (static_cast<double> (x)));
#else
    return static_cast<val_type> ( ::sqrt (static_cast<long double> (x)));
#endif // __CUDA_ARCH__
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return static_cast<long> ( ::log (static_cast<double> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return static_cast<long> ( ::log10 (static_cast<double> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type nan () {
    // unsigned long doesn't implement a NaN value, but we can still
    // have it return some "flag" value that can help users find use
    // of uninitialized data.
    return max ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return zero ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef val_type halfPrecision;
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = true;
  static const bool isComparable = true;
  static const bool hasMachineParameters = false;
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const val_type) {
    return false;
  }
  static std::string name () {
    return "unsigned long";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
};


template<>
class ArithTraits<long long> {
public:
  typedef long long val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = true;
  static const bool is_exact = true;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    return x >= 0 ? x : -x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return LLONG_MIN;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return LLONG_MAX;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type ) {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type
  pow (const val_type x, const val_type y) {
    return intPowSigned<val_type> (x, y);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
#ifdef __CUDA_ARCH__
    // Casting from a 64-bit integer type to double does result in a
    // loss of accuracy.  However, it gives us a good first
    // approximation.  For very large numbers, we may lose some
    // significand bits, but will always get within a factor of two
    // (assuming correct rounding) of the exact double-precision
    // number.  We could then binary search between half the result
    // and twice the result (assuming the latter is <= INT64_MAX,
    // which it has to be, so we don't have to check) to ensure
    // correctness.  It actually should suffice to check numbers
    // within 1 of the result.
    return static_cast<val_type> ( ::sqrt (static_cast<double> (abs (x))));
#else
    // IEEE 754 promises that long double has at least 64 significand
    // bits, so we can use it to represent any signed or unsigned
    // 64-bit integer type exactly.  However, CUDA does not implement
    // long double for device functions.
    return static_cast<val_type> ( ::sqrt (static_cast<long double> (abs (x))));
#endif // __CUDA_ARCH__
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return static_cast<val_type> ( ::log (static_cast<double> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return static_cast<val_type> ( ::log10 (static_cast<double> (abs (x))));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type nan () {
    // long long doesn't implement a NaN value, but we can still have
    // it return some "flag" value that can help users find use of
    // uninitialized data.
    return -1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return zero ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef val_type halfPrecision;
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = true;
  static const bool isComparable = true;
  static const bool hasMachineParameters = false;
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const val_type) {
    return false;
  }
  static std::string name () {
    return "long long";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
};


template<>
class ArithTraits<unsigned long long> {
public:
  typedef unsigned long long val_type;
  typedef val_type mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = false;
  static const bool is_integer = true;
  static const bool is_exact = true;
  static const bool is_complex = false;

  static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const val_type ) {
    return false;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const val_type x) {
    return x; // unsigned integers are always nonnegative
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type zero () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type one () {
    return 1;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type min () {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type max () {
    return ULLONG_MAX ;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const val_type ) {
    return 0;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conj (const val_type x) {
    return x;
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type
  pow (const val_type x, const val_type y) {
    return intPowUnsigned<val_type> (x, y);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type sqrt (const val_type x) {
#ifdef __CUDA_ARCH__
    return static_cast<val_type> ( ::sqrt (static_cast<double> (x)));
#else
    return static_cast<val_type> ( ::sqrt (static_cast<long double> (x)));
#endif // __CUDA_ARCH__
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log (const val_type x) {
    return static_cast<val_type> ( ::log (static_cast<double> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type log10 (const val_type x) {
    return static_cast<val_type> ( ::log10 (static_cast<double> (x)));
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type nan () {
    // unsigned long long doesn't implement a NaN value, but we can
    // still have it return some "flag" value that can help users find
    // use of uninitialized data.
    return max ();
  }
  static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
    return zero ();
  }

  // Backwards compatibility with Teuchos::ScalarTraits.
  typedef mag_type magnitudeType;
  typedef val_type halfPrecision;
  typedef val_type doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = true;
  static const bool isComparable = true;
  static const bool hasMachineParameters = false;
  static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const val_type x) {
    return abs (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type conjugate (const val_type x) {
    return conj (x);
  }
  static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const val_type) {
    return false;
  }
  static std::string name () {
    return "unsigned long long";
  }
  static KOKKOS_FORCEINLINE_FUNCTION val_type squareroot (const val_type x) {
    return sqrt (x);
  }
};

// dd_real and qd_real are floating-point types provided by the QD
// library of David Bailey (LBNL):
//
// http://crd-legacy.lbl.gov/~dhbailey/mpdist/
//
// dd_real uses two doubles (128 bits), and qd_real uses four doubles
// (256 bits).
//
// Kokkos does <i>not</i> currently support these types in device
// functions.  It should be possible to use Kokkos' support for
// aggregate types to implement device function support for dd_real
// and qd_real, but we have not done this yet (as of 09 Jan 2015).
// Hence, the class methods of the ArithTraits specializations for
// dd_real and qd_real are not marked as device functions.
#ifdef HAVE_KOKKOS_QD
template<>
struct ArithTraits<dd_real>
{
  typedef dd_real val_type;
  typedef dd_real mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const bool is_complex = false;

  static inline bool isInf (const val_type& x) {
    return isinf (x);
  }
  static inline bool isNan (const val_type& x) {
    return isnan (x);
  }
  static inline mag_type abs (const val_type& x) {
    return ::abs (x);
  }
  static inline val_type zero () {
    return val_type (0.0);
  }
  static inline val_type one () {
    return val_type (1.0);
  }
  static inline val_type min () {
    return std::numeric_limits<val_type>::min ();
  }
  static inline val_type max () {
    return std::numeric_limits<val_type>::max ();
  }
  static inline mag_type real (const val_type& x) {
    return x;
  }
  static inline mag_type imag (const val_type&) {
    return zero ();
  }
  static inline val_type conj (const val_type& x) {
    return x;
  }
  static inline val_type pow (const val_type& x, const val_type& y) {
    return ::pow(x,y);
  }
  static inline val_type sqrt (const val_type& x) {
      return ::sqrt (x);
  }
  static inline val_type log (const val_type& x) {
    // dd_real puts its transcendental functions in the global namespace.
    return ::log (x);
  }
  static inline val_type log10 (const val_type& x) {
    return ::log10 (x);
  }
  static inline val_type nan () {
    return val_type::_nan;
  }
  static val_type epsilon () {
    return std::numeric_limits<val_type>::epsilon ();
  }

  typedef dd_real magnitudeType;
  typedef double halfPrecision;
  typedef qd_real doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = false;
  static const bool isComparable = true;
  static const bool hasMachineParameters = true;

  static mag_type eps () {
    return epsilon ();
  }
  static mag_type sfmin () {
    return min ();
  }
  static int base ()  {
    return std::numeric_limits<val_type>::radix;
  }
  static mag_type prec () {
    return eps () * base ();
  }
  static int t () {
    return std::numeric_limits<val_type>::digits;
  }
  static mag_type rnd () {
    return std::numeric_limits<val_type>::round_style == std::round_to_nearest ?
      one () :
      zero ();
  }
  static int emin () {
    return std::numeric_limits<val_type>::min_exponent;
  }
  static mag_type rmin () {
    return std::numeric_limits<val_type>::min ();
  }
  static int emax () {
    return std::numeric_limits<val_type>::max_exponent;
  }
  static mag_type rmax () {
    return std::numeric_limits<val_type>::max ();
  }
  static mag_type magnitude (const val_type& x) {
    return ::abs (x);
  }
  static val_type conjugate (const val_type& x) {
    return conj (x);
  }
  static bool isnaninf (const val_type& x) {
    return isNan (x) || isInf (x);
  }
  static std::string name () { return "dd_real"; }
  static val_type squareroot (const val_type& x) {
    return ::sqrt (x);
  }
};


template<>
struct ArithTraits<qd_real>
{
  typedef qd_real val_type;
  typedef qd_real mag_type;

  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const bool is_complex = false;

  static inline bool isInf (const val_type& x) {
    return isinf (x);
  }
  static inline bool isNan (const val_type& x) {
    return isnan (x);
  }
  static inline mag_type abs (const val_type& x) {
    return ::abs (x);
  }
  static inline val_type zero () {
    return val_type (0.0);
  }
  static inline val_type one () {
    return val_type (1.0);
  }
  static inline val_type min () {
    return std::numeric_limits<val_type>::min ();
  }
  static inline val_type max () {
    return std::numeric_limits<val_type>::max ();
  }
  static inline mag_type real (const val_type& x) {
    return x;
  }
  static inline mag_type imag (const val_type&) {
    return zero ();
  }
  static inline val_type conj (const val_type& x) {
    return x;
  }
  static inline val_type pow (const val_type& x, const val_type& y) {
    return ::pow (x, y);
  }
  static inline val_type sqrt (const val_type& x) {
      return ::sqrt (x);
  }
  static inline val_type log (const val_type& x) {
    // val_type puts its transcendental functions in the global namespace.
    return ::log (x);
  }
  static inline val_type log10 (const val_type& x) {
    return ::log10 (x);
  }
  static inline val_type nan () {
    return val_type::_nan;
  }
  static inline val_type epsilon () {
    return std::numeric_limits<val_type>::epsilon ();
  }

  typedef qd_real magnitudeType;
  typedef dd_real halfPrecision;
  // The QD library does not have an "oct-double real" class.  One
  // could use an arbitrary-precision library like MPFR or ARPREC,
  // with the precision set appropriately, to get an
  // extended-precision type for qd_real.
  typedef qd_real doublePrecision;

  static const bool isComplex = false;
  static const bool isOrdinal = false;
  static const bool isComparable = true;
  static const bool hasMachineParameters = true;

  static mag_type eps () {
    return epsilon ();
  }
  static mag_type sfmin () {
    return min ();
  }
  static int base ()  {
    return std::numeric_limits<val_type>::radix;
  }
  static mag_type prec () {
    return eps () * base ();
  }
  static int t () {
    return std::numeric_limits<val_type>::digits;
  }
  static mag_type rnd () {
    return std::numeric_limits<val_type>::round_style == std::round_to_nearest ?
      one () :
      zero ();
  }
  static int emin () {
    return std::numeric_limits<val_type>::min_exponent;
  }
  static mag_type rmin () {
    return std::numeric_limits<val_type>::min ();
  }
  static int emax () {
    return std::numeric_limits<val_type>::max_exponent;
  }
  static mag_type rmax () {
    return std::numeric_limits<val_type>::max ();
  }
  static mag_type magnitude (const val_type& x) {
    return ::abs (x);
  }
  static val_type conjugate (const val_type& x) {
    return conj (x);
  }
  static bool isnaninf (const val_type& x) {
    return isNan (x) || isInf (x);
  }
  static std::string name () { return "qd_real"; }
  static val_type squareroot (const val_type& x) {
    return ::sqrt (x);
  }
};
#endif // HAVE_KOKKOS_QD

} // namespace Details

  // Promote ArithTraits into Kokkos namespace.  At some point, we
  // will remove it from the Details namespace completely.  We leave
  // it there for now, because a lot of code depends on it being
  // there.
  using Details::ArithTraits;
} // namespace Kokkos

#endif // KOKKOS_ARITHTRAITS_HPP