This file is indexed.

/usr/include/trilinos/impl/Kokkos_ConcurrentBitset.hpp is in libtrilinos-kokkos-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
//@HEADER
// ************************************************************************
//
//                        Kokkos v. 2.0
//              Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact  H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/

#ifndef KOKKOS_CONCURRENTBITSET_HPP
#define KOKKOS_CONCURRENTBITSET_HPP

#include <stdint.h>
#include <Kokkos_Atomic.hpp>
#include <impl/Kokkos_BitOps.hpp>
#include <impl/Kokkos_ClockTic.hpp>

namespace Kokkos {
namespace Impl {

struct concurrent_bitset {
public:

  // 32 bits per integer value

  enum : uint32_t { bits_per_int_lg2  = 5 };
  enum : uint32_t { bits_per_int_mask = ( 1 << bits_per_int_lg2 ) - 1 };

  // Buffer is uint32_t[ buffer_bound ]
  //   [ uint32_t { state_header | used_count } , uint32_t bits[*] ]
  //
  //  Maximum bit count is 33 million (1u<<25):
  //
  //  - Maximum bit set size occupies 1 Mbyte
  //
  //  - State header can occupy bits [30-26]
  //    which can be the bit_count_lg2
  //
  //  - Accept at least 33 million concurrent calls to 'acquire'
  //    before risking an overflow race condition on a full bitset.

  enum : uint32_t { max_bit_count_lg2 = 25 };
  enum : uint32_t { max_bit_count     = 1u << max_bit_count_lg2 };
  enum : uint32_t { state_shift = 26 };
  enum : uint32_t { state_used_mask   = ( 1 << state_shift ) - 1 };
  enum : uint32_t { state_header_mask = uint32_t(0x001f) << state_shift };

  KOKKOS_INLINE_FUNCTION static constexpr
  uint32_t buffer_bound_lg2( uint32_t const bit_bound_lg2 ) noexcept
    {
      return bit_bound_lg2 <= max_bit_count_lg2
           ? 1 + ( 1u << ( bit_bound_lg2 > bits_per_int_lg2
                         ? bit_bound_lg2 - bits_per_int_lg2 : 0 ) )
           : 0 ;
    }

  /**\brief  Initialize bitset buffer */
  KOKKOS_INLINE_FUNCTION static constexpr
  uint32_t buffer_bound( uint32_t const bit_bound ) noexcept
    {
      return bit_bound <= max_bit_count
           ? 1 + ( bit_bound >> bits_per_int_lg2 ) +
             ( bit_bound & bits_per_int_mask ? 1 : 0 )
           : 0 ;
    }

  /**\brief  Claim any bit within the bitset bound.
   *
   *  Return : ( which_bit , bit_count )
   *
   *  if success then
   *    bit_count is the atomic-count of claimed > 0
   *    which_bit is the claimed bit >= 0
   *  else if attempt failed due to filled buffer
   *    bit_count == which_bit == -1
   *  else if attempt failed due to non-matching state_header
   *    bit_count == which_bit == -2
   *  else if attempt failed due to max_bit_count_lg2 < bit_bound_lg2
   *                             or invalid state_header
   *                             or (1u << bit_bound_lg2) <= bit
   *    bit_count == which_bit == -3
   *  endif
   *
   *  Recommended to have hint
   *    bit = Kokkos::Impl::clock_tic() & ((1u<<bit_bound_lg2) - 1)
   */
  KOKKOS_INLINE_FUNCTION static
  Kokkos::pair<int,int>
  acquire_bounded_lg2( uint32_t volatile * const buffer
                     , uint32_t const bit_bound_lg2
                     , uint32_t bit = 0                /* optional hint */
                     , uint32_t const state_header = 0 /* optional header */
                     ) noexcept
    {
      typedef Kokkos::pair<int,int> type ;

      const uint32_t bit_bound  = 1 << bit_bound_lg2 ;
      const uint32_t word_count = bit_bound >> bits_per_int_lg2 ;

      if ( ( max_bit_count_lg2 < bit_bound_lg2 ) ||
           ( state_header & ~state_header_mask ) ||
           ( bit_bound < bit ) ) {
        return type(-3,-3);
      }

      // Use potentially two fetch_add to avoid CAS loop.
      // Could generate "racing" failure-to-acquire
      // when is full at the atomic_fetch_add(+1)
      // then a release occurs before the atomic_fetch_add(-1).

      const uint32_t state = (uint32_t)
        Kokkos::atomic_fetch_add( (volatile int *) buffer , 1 );

      const uint32_t state_error =
        state_header != ( state & state_header_mask );

      const uint32_t state_bit_used = state & state_used_mask ;

      if ( state_error || ( bit_bound <= state_bit_used ) ) {
        Kokkos::atomic_fetch_add( (volatile int *) buffer , -1 );
        return state_error ? type(-2,-2) : type(-1,-1);
      }

      // Do not update bit until count is visible:

      Kokkos::memory_fence();

      // There is a zero bit available somewhere,
      // now find the (first) available bit and set it.

      while(1) {

        const uint32_t word = bit >> bits_per_int_lg2 ;
        const uint32_t mask = 1u << ( bit & bits_per_int_mask );
        const uint32_t prev = Kokkos::atomic_fetch_or(buffer + word + 1, mask);

        if ( ! ( prev & mask ) ) {
          // Successfully claimed 'result.first' by
          // atomically setting that bit.
          return type( bit , state_bit_used + 1 );
        }

        // Failed race to set the selected bit
        // Find a new bit to try.

        const int j = Kokkos::Impl::bit_first_zero( prev );

        if ( 0 <= j ) {
          bit = ( word << bits_per_int_lg2 ) | uint32_t(j);
        }
        else {
          bit =
            ( (word+1) < word_count ? ((word+1) << bits_per_int_lg2) : 0 )
            | ( bit & bits_per_int_mask );
        }
      }
    }

  /**\brief  Claim any bit within the bitset bound.
   *
   *  Return : ( which_bit , bit_count )
   *
   *  if success then
   *    bit_count is the atomic-count of claimed > 0
   *    which_bit is the claimed bit >= 0
   *  else if attempt failed due to filled buffer
   *    bit_count == which_bit == -1
   *  else if attempt failed due to non-matching state_header
   *    bit_count == which_bit == -2
   *  else if attempt failed due to max_bit_count_lg2 < bit_bound_lg2
   *                             or invalid state_header
   *                             or bit_bound <= bit
   *    bit_count == which_bit == -3
   *  endif
   *
   *  Recommended to have hint
   *    bit = Kokkos::Impl::clock_tic() % bit_bound
   */
  KOKKOS_INLINE_FUNCTION static
  Kokkos::pair<int,int>
  acquire_bounded( uint32_t volatile * const buffer
                 , uint32_t const bit_bound
                 , uint32_t bit = 0                /* optional hint */
                 , uint32_t const state_header = 0 /* optional header */
                 ) noexcept
    {
      typedef Kokkos::pair<int,int> type ;

      if ( ( max_bit_count < bit_bound ) ||
           ( state_header & ~state_header_mask ) ||
           ( bit_bound <= bit ) ) {
        return type(-3,-3);
      }

      const uint32_t word_count = bit_bound >> bits_per_int_lg2 ;

      // Use potentially two fetch_add to avoid CAS loop.
      // Could generate "racing" failure-to-acquire
      // when is full at the atomic_fetch_add(+1)
      // then a release occurs before the atomic_fetch_add(-1).

      const uint32_t state = (uint32_t)
        Kokkos::atomic_fetch_add( (volatile int *) buffer , 1 );

      const uint32_t state_error =
        state_header != ( state & state_header_mask );

      const uint32_t state_bit_used = state & state_used_mask ;

      if ( state_error || ( bit_bound <= state_bit_used ) ) {
        Kokkos::atomic_fetch_add( (volatile int *) buffer , -1 );
        return state_error ? type(-2,-2) : type(-1,-1);
      }

      // Do not update bit until count is visible:

      Kokkos::memory_fence();

      // There is a zero bit available somewhere,
      // now find the (first) available bit and set it.

      while(1) {

        const uint32_t word = bit >> bits_per_int_lg2 ;
        const uint32_t mask = 1u << ( bit & bits_per_int_mask );
        const uint32_t prev = Kokkos::atomic_fetch_or(buffer + word + 1, mask);

        if ( ! ( prev & mask ) ) {
          // Successfully claimed 'result.first' by
          // atomically setting that bit.
          return type( bit , state_bit_used + 1 );
        }

        // Failed race to set the selected bit
        // Find a new bit to try.

        const int j = Kokkos::Impl::bit_first_zero( prev );

        if ( 0 <= j ) {
          bit = (word << bits_per_int_lg2 ) | uint32_t(j);
        }

        if ( ( j < 0 ) || ( bit_bound <= bit ) ) {
          bit =
            ( (word+1) < word_count ? ((word+1) << bits_per_int_lg2) : 0 )
            | ( bit & bits_per_int_mask );
        }
      }
    }

  /**\brief
   *
   *  Requires: 'bit' previously acquired and has not yet been released.
   *
   *  Returns:
   *    0 <= used count after successful release
   *    -1 bit was already released
   *    -2 state_header error
   */
  KOKKOS_INLINE_FUNCTION static
  int release( uint32_t volatile * const buffer
             , uint32_t const bit
             , uint32_t const state_header = 0 /* optional header */
             ) noexcept
    {
      if ( state_header != ( state_header_mask & *buffer ) ) { return -2 ; }

      const uint32_t mask = 1u << ( bit & bits_per_int_mask );
      const uint32_t prev =
        Kokkos::atomic_fetch_and( buffer + ( bit >> bits_per_int_lg2 ) + 1
                                , ~mask
                                );

      if ( ! ( prev & mask ) ) { return -1 ; }

      // Do not update count until bit clear is visible
      Kokkos::memory_fence();

      const int count =
        Kokkos::atomic_fetch_add( (volatile int *) buffer , -1 );

      return ( count & state_used_mask ) - 1 ;
    }

  /**\brief
   *
   *  Requires: Bit within bounds and not already set.
   *
   *  Returns:
   *    0 <= used count after successful release
   *    -1 bit was already released
   *    -2 bit or state_header error
   */
  KOKKOS_INLINE_FUNCTION static
  int set( uint32_t volatile * const buffer
         , uint32_t const bit
         , uint32_t const state_header = 0 /* optional header */
         ) noexcept
    {
      if ( state_header != ( state_header_mask & *buffer ) ) { return -2 ; }

      const uint32_t mask = 1u << ( bit & bits_per_int_mask );
      const uint32_t prev =
        Kokkos::atomic_fetch_or( buffer + ( bit >> bits_per_int_lg2 ) + 1
                               , mask
                               );

      if ( ! ( prev & mask ) ) { return -1 ; }

      // Do not update count until bit clear is visible
      Kokkos::memory_fence();

      const int count =
        Kokkos::atomic_fetch_add( (volatile int *) buffer , -1 );

      return ( count & state_used_mask ) - 1 ;
    }
};

}} // namespace Kokkos::Impl

#endif /* #ifndef KOKKOS_CONCURRENTBITSET_HPP */