This file is indexed.

/usr/include/trilinos/Ifpack_PointRelaxation.h is in libtrilinos-ifpack-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/*@HEADER
// ***********************************************************************
//
//       Ifpack: Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2002) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/

#ifndef IFPACK_POINTRELAXATION_H
#define IFPACK_POINTRELAXATION_H

#include "Ifpack_ConfigDefs.h"
#include "Ifpack_Preconditioner.h"

#include "Epetra_Vector.h"
#include "Epetra_Time.h"
#include "Epetra_RowMatrix.h"
#include "Epetra_Import.h"

#include "Teuchos_RefCountPtr.hpp"

namespace Teuchos {
  class ParameterList;
}
class Epetra_MultiVector;
class Epetra_Vector;
class Epetra_Map;
class Epetra_Comm;
class Epetra_CrsMatrix;

//! Ifpack_PointRelaxation: a class to define point relaxation preconditioners of for Epetra_RowMatrix's.

/*!
  The Ifpack_PointRelaxation class enables the construction of point
  relaxation
  preconditioners of an Epetra_RowMatrix. Ifpack_PointRelaxation
  is derived from
  the Ifpack_Preconditioner class, which is itself derived from Epetra_Operator.
  Therefore this object can be used as preconditioner everywhere an
  ApplyInverse() method is required in the preconditioning step.

This class enables the construction of the following simple preconditioners:
- Jacobi;
- Gauss-Seidel;
- symmetric Gauss-Seidel.

<P>We now briefly describe the main features of the above preconditioners.
Consider a linear system of type
\f[
A x = b,
\f]
where \f$A\f$ is a square, real matrix, and \f$x, b\f$ are two real
vectors. We begin with the decomposition
\f[
A = D - E - F
\f]
where \f$D\f$ is the diagonal of A, \f$-E\f$ is the strict lower part, and
\f$-F\f$ is the strict upper part. It is assumed that the diagonal entries
of \f$A\f$ are different from zero.

<P>Given an starting solution \f$x_0\f$, an iteration of the (damped) Jacobi
method can be written in matrix form as follows:
\f[
x_{k+1} = \omega D^{-1}(E + F) x_k + D_{-1}b,
\f]
for \f$k < k_{max}\f$, and \f$\omega \f$ a damping parameter.

Using Ifpack_Jacobi, the user can apply the specified number of sweeps
(\f$k_{max}\f$), and the damping parameter. If only one sweep is used, then
the class simply applies the inverse of the diagonal of A to the input
vector.

<P>Given an starting solution \f$x_0\f$, an iteration of the (damped) GaussSeidel
method can be written in matrix form as follows:
\f[
(D - E) x_{k+1} = \omega F x_k + b,
\f]
for \f$k < k_{max}\f$, and \f$\omega \f$ a damping parameter. Equivalently,
the Gauss-Seidel preconditioner can be defined as
\f[
P_{GS}^{-1} = (D - E)^{-1}.
\f]
Clearly, the role of E and F can be interchanged. However,
Ifpack_GaussSeidel does not consider backward Gauss-Seidel methods.

<P>For a list of supported parameters, please refer to page \ref ifp_params.

<P>The complete list of supported parameters is reported in page \ref ifp_params. For a presentation of basic relaxation schemes, please refer to page
\ref Ifpack_PointRelaxation.

\author Marzio Sala, SNL 9214.

\date Last modified on 22-Jan-05.

*/
class Ifpack_PointRelaxation : public Ifpack_Preconditioner {

public:

  //@{ \name Constructors/Destructors
  //! Ifpack_PointRelaxation constructor with given Epetra_RowMatrix.
  /*! Creates an instance of Ifpack_PointRelaxation class.
   *
   * \param
   * Matrix - (In) Pointer to matrix to precondition.
   */
  Ifpack_PointRelaxation(const Epetra_RowMatrix* Matrix);

  //! Destructor.
  virtual ~Ifpack_PointRelaxation() {}

  //@}

  /*! This flag can be used to apply the preconditioner to the transpose of
   * the input operator.
   *
   * \return Integer error code, set to 0 if successful.
   * Set to -1 if this implementation does not support transpose.
    */
  virtual inline int SetUseTranspose(bool UseTranspose_in)
  {
    UseTranspose_ = UseTranspose_in;
    return(0);
  }

  //@}

  //@{ \name Mathematical functions.

  //! Applies the matrix to an Epetra_MultiVector.
  /*!
    \param
    X - (In) A Epetra_MultiVector of dimension NumVectors to multiply with matrix.
    \param
    Y - (Out) A Epetra_MultiVector of dimension NumVectors containing the result.

    \return Integer error code, set to 0 if successful.
    */
  virtual inline int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
  {
    if (IsComputed() == false)
      IFPACK_CHK_ERR(-3);

    if (X.NumVectors() != Y.NumVectors())
      IFPACK_CHK_ERR(-2);

    IFPACK_CHK_ERR(Matrix_->Multiply(UseTranspose(),X,Y));
    return(0);
  }

  //! Applies the preconditioner to X, returns the result in Y.
  /*!
    \param
    X - (In) A Epetra_MultiVector of dimension NumVectors to be preconditioned.
    \param
    Y - (InOut) A Epetra_MultiVector of dimension NumVectors containing result.

    \return Integer error code, set to 0 if successful.

    \warning This routine is NOT AztecOO complaint.
    */
  virtual int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;

  //! Returns the infinity norm of the global matrix (not implemented)
  virtual double NormInf() const
  {
    return(-1.0);
  }
  //@}

  //@{ \name Attribute access functions

  virtual const char * Label() const
  {
    return(Label_.c_str());
  }

  //! Returns the current UseTranspose setting.
  virtual bool UseTranspose() const
  {
    return(UseTranspose_);
  }

  //! Returns true if the \e this object can provide an approximate Inf-norm, false otherwise.
  virtual bool HasNormInf() const
  {
    return(false);
  }

  //! Returns a pointer to the Epetra_Comm communicator associated with this operator.
  virtual const Epetra_Comm & Comm() const;

  //! Returns the Epetra_Map object associated with the domain of this operator.
  virtual const Epetra_Map & OperatorDomainMap() const;

  //! Returns the Epetra_Map object associated with the range of this operator.
  virtual const Epetra_Map & OperatorRangeMap() const;

  virtual int Initialize();

  virtual bool IsInitialized() const
  {
    return(IsInitialized_);
  }

  //! Returns \c true if the preconditioner has been successfully computed.
  virtual inline bool IsComputed() const
  {
    return(IsComputed_);
  }

  //! Computes the preconditioners.
  virtual int Compute();

  //@}

  //@{ \name Miscellaneous

  virtual const Epetra_RowMatrix& Matrix() const
  {
    return(*Matrix_);
  }

  //! Computes the condition number estimates and returns the value.
  virtual double Condest(const Ifpack_CondestType CT = Ifpack_Cheap,
                         const int MaxIters = 1550,
                         const double Tol = 1e-9,
                         Epetra_RowMatrix* Matrix = 0);

  //! Returns the condition number estimate, or -1.0 if not computed.
  virtual double Condest() const
  {
    return(Condest_);
  }

  //! Sets all the parameters for the preconditioner
  virtual int SetParameters(Teuchos::ParameterList& List);

  //! Prints object to an output stream
  virtual std::ostream& Print(std::ostream & os) const;

  //@}

  //@{ \name Timing and flop count

  //! Returns the number of calls to Initialize().
  virtual int NumInitialize() const
  {
    return(NumInitialize_);
  }

  //! Returns the number of calls to Compute().
  virtual int NumCompute() const
  {
    return(NumCompute_);
  }

  //! Returns the number of calls to ApplyInverse().
  virtual int NumApplyInverse() const
  {
    return(NumApplyInverse_);
  }

  //! Returns the time spent in Initialize().
  virtual double InitializeTime() const
  {
    return(InitializeTime_);
  }

  //! Returns the time spent in Compute().
  virtual double ComputeTime() const
  {
    return(ComputeTime_);
  }

  //! Returns the time spent in ApplyInverse().
  virtual double ApplyInverseTime() const
  {
    return(ApplyInverseTime_);
  }

  //! Returns the number of flops in the initialization phase.
  virtual double InitializeFlops() const
  {
    return(0.0);
  }

  //! Returns the number of flops in the computation phase.
  virtual double ComputeFlops() const
  {
    return(ComputeFlops_);
  }

  //! Returns the number of flops for the application of the preconditioner.
  virtual double ApplyInverseFlops() const
  {
    return(ApplyInverseFlops_);
  }

  // @}

private:

  // @{ Application of the preconditioner

  //! Applies the Jacobi preconditioner to X, returns the result in Y.
  virtual int ApplyInverseJacobi(const Epetra_MultiVector& X,
                                 Epetra_MultiVector& Y) const;

  //! Applies the Gauss-Seidel preconditioner to X, returns the result in Y.
  virtual int ApplyInverseGS(const Epetra_MultiVector& X,
                              Epetra_MultiVector& Y) const;

  virtual int ApplyInverseGS_RowMatrix(const Epetra_MultiVector& X,
                                        Epetra_MultiVector& Y) const;

  virtual int ApplyInverseGS_CrsMatrix(const Epetra_CrsMatrix* A,
                                        const Epetra_MultiVector& X,
                                        Epetra_MultiVector& Y) const;

  virtual int ApplyInverseGS_FastCrsMatrix(const Epetra_CrsMatrix* A,
                                            const Epetra_MultiVector& X,
                                            Epetra_MultiVector& Y) const;
  virtual int ApplyInverseGS_LocalFastCrsMatrix(const Epetra_CrsMatrix* A,
                                            const Epetra_MultiVector& X,
                                            Epetra_MultiVector& Y) const;

  //! Applies the symmetric Gauss-Seidel preconditioner to X, returns the result in Y.
  virtual int ApplyInverseSGS(const Epetra_MultiVector& X,
                              Epetra_MultiVector& Y) const;

  virtual int ApplyInverseSGS_RowMatrix(const Epetra_MultiVector& X,
                                        Epetra_MultiVector& Y) const;

  virtual int ApplyInverseSGS_CrsMatrix(const Epetra_CrsMatrix* A,
                                        const Epetra_MultiVector& X,
                                        Epetra_MultiVector& Y) const;

  virtual int ApplyInverseSGS_FastCrsMatrix(const Epetra_CrsMatrix* A,
                                            const Epetra_MultiVector& X,
                                            Epetra_MultiVector& Y) const;

  virtual int ApplyInverseSGS_LocalFastCrsMatrix(const Epetra_CrsMatrix* A,
                                            const Epetra_MultiVector& X,
                                            Epetra_MultiVector& Y) const;


  //@}

private:

  //! Sets the label.
  virtual void SetLabel();

  //! Copy constructor (PRIVATE, should not be used)
  Ifpack_PointRelaxation(const Ifpack_PointRelaxation& rhs)
  {}

  //! operator = (PRIVATE, should not be used)
  Ifpack_PointRelaxation& operator=(const Ifpack_PointRelaxation& rhs)
  {
    return(*this);
  }

  // @{ Initializations, timing and flops
  //! If \c true, the preconditioner has been computed successfully.
  bool IsInitialized_;
  //! If \c true, the preconditioner has been computed successfully.
  bool IsComputed_;
  //! Contains the number of successful calls to Initialize().
  int NumInitialize_;
  //! Contains the number of successful call to Compute().
  int NumCompute_;
  //! Contains the number of successful call to ApplyInverse().
  mutable int NumApplyInverse_;
  //! Contains the time for all successful calls to Initialize().
  double InitializeTime_;
  //! Contains the time for all successful calls to Compute().
  double ComputeTime_;
  //! Contains the time for all successful calls to ApplyInverse().
  mutable double ApplyInverseTime_;
  //! Contains the number of flops for Compute().
  double ComputeFlops_;
  //! Contain sthe number of flops for ApplyInverse().
  mutable double ApplyInverseFlops_;
  // @}

  // @{ Settings
  //! Number of application of the preconditioner (should be greater than 0).
  int NumSweeps_;
  //! Damping factor.
  double DampingFactor_;
  //! If true, use the tranpose of \c Matrix_.
  bool UseTranspose_;
  //! Contains the estimated condition number
  double Condest_;
#if 0
  // Unused; commented out to avoid build warnings

  //! If true, Compute() also computes the condition number estimate.
  bool ComputeCondest_;
#endif // 0
  //! Contains the label of this object.
  std::string Label_;
  int PrecType_;
  double MinDiagonalValue_;
  // @}

  // @{ Other data
  //! Number of local rows.
  int NumMyRows_;
  //! Number of local nonzeros.
  int NumMyNonzeros_;
  //! Number of global rows.
  long long NumGlobalRows_;
  //! Number of global nonzeros.
  long long NumGlobalNonzeros_;
  //! Pointers to the matrix to be preconditioned.
  Teuchos::RefCountPtr<const Epetra_RowMatrix> Matrix_;
  //! Importer for parallel GS and SGS
  Teuchos::RefCountPtr<Epetra_Import> Importer_;
  //! Contains the diagonal elements of \c Matrix.
  mutable Teuchos::RefCountPtr<Epetra_Vector> Diagonal_;
  //! Time object to track timing.
  Teuchos::RefCountPtr<Epetra_Time> Time_;
  //! If \c true, more than 1 processor is currently used.
  bool IsParallel_;
  //! If \c true, the starting solution is always the zero vector.
  bool ZeroStartingSolution_;
  //! Backward-Mode Gauss Seidel
  bool DoBackwardGS_;
  //! Do L1 Jacobi/GS/SGS
  bool DoL1Method_;
  //! Eta parameter for modified L1 method
  double L1Eta_;

  //! Number of (local) unknowns for local smoothing
  int NumLocalSmoothingIndices_;
  //! List of (local) unknowns for local smoothing (if any)
  int * LocalSmoothingIndices_;

  // @}



};

#endif // IFPACK_POINTRELAXATION_H