This file is indexed.

/usr/include/trilinos/BelosPseudoBlockTFQMRIter.hpp is in libtrilinos-belos-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
//@HEADER
// ************************************************************************
//
//                 Belos: Block Linear Solvers Package
//                  Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
//
// This file contains an implementation of the TFQMR iteration
// for solving non-Hermitian linear systems of equations Ax = b, 
// where b is a single-vector and x is the corresponding solution.
//
// The implementation is a slight modification on the TFQMR iteration
// found in Saad's "Iterative Methods for Sparse Linear Systems".
//

#ifndef BELOS_PSEUDO_BLOCK_TFQMR_ITER_HPP
#define BELOS_PSEUDO_BLOCK_TFQMR_ITER_HPP

/*!
  \file BelosPseudoBlockTFQMRIter.hpp

  \brief Belos concrete class for generating iterations with the
  preconditioned tranpose-free QMR (TFQMR) method.
*/

#include "BelosConfigDefs.hpp"
#include "BelosIteration.hpp"
#include "BelosTypes.hpp"	

#include "BelosLinearProblem.hpp"
#include "BelosOutputManager.hpp"
#include "BelosStatusTest.hpp"
#include "BelosOperatorTraits.hpp"
#include "BelosMultiVecTraits.hpp"

#include "Teuchos_BLAS.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"

/*!	\class Belos::PseudoBlockTFQMRIter

	\brief This class implements the preconditioned transpose-free QMR algorithm for
	solving non-Hermitian linear systems of equations Ax = b, where b is the right-hand 
	side vector and x is the corresponding solution.

        \ingroup belos_solver_framework

	\author Heidi Thornquist
*/

namespace Belos {

  /** \brief Structure to contain pointers to PseudoBlockTFQMRIter state variables.
   *
   * This struct is utilized by PseudoBlockTFQMRIter::initialize() and PseudoBlockTFQMRIter::getState().
   */
  template <class ScalarType, class MV>
  struct PseudoBlockTFQMRIterState {
 
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename SCT::magnitudeType MagnitudeType;

    /*! \brief The current residual basis. */
    Teuchos::RCP<const MV> W;
    Teuchos::RCP<const MV> U;
    Teuchos::RCP<const MV> AU;
    Teuchos::RCP<const MV> Rtilde;
    Teuchos::RCP<const MV> D;
    Teuchos::RCP<const MV> V;
    std::vector<ScalarType> alpha, eta, rho;
    std::vector<MagnitudeType> tau, theta;


    PseudoBlockTFQMRIterState() : W(Teuchos::null), U(Teuchos::null), AU(Teuchos::null),
                                  Rtilde(Teuchos::null), D(Teuchos::null), V(Teuchos::null)
    {}
  };

  
  //! @name PseudoBlockTFQMRIter Exceptions
  //@{
  
  /** \brief PseudoBlockTFQMRIterInitFailure is thrown when the PseudoBlockTFQMRIter object is unable to
   * generate an initial iterate in the PseudoBlockTFQMRIter::initialize() routine.
   *
   * This std::exception is thrown from the PseudoBlockTFQMRIter::initialize() method, which is
   * called by the user or from the PseudoBlockTFQMRIter::iterate() method if isInitialized()
   * == \c false.
   *
   * In the case that this std::exception is thrown,
   * PseudoBlockTFQMRIter::isInitialized() will be \c false and the user will need to provide
   * a new initial iterate to the iteration.
   */
  class PseudoBlockTFQMRIterInitFailure : public BelosError {public:
    PseudoBlockTFQMRIterInitFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};
  
  /** \brief PseudoBlockTFQMRIterateFailure is thrown when the PseudoBlockTFQMRIter object is unable to
   * compute the next iterate in the PseudoBlockTFQMRIter::iterate() routine.
   *
   * This std::exception is thrown from the PseudoBlockTFQMRIter::iterate() method.
   *
   */
  class PseudoBlockTFQMRIterateFailure : public BelosError {public:
    PseudoBlockTFQMRIterateFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};
  
  //@}


  template <class ScalarType, class MV, class OP>
  class PseudoBlockTFQMRIter : public Iteration<ScalarType,MV,OP> { 
  public:
    //
    // Convenience typedefs
    //
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename SCT::magnitudeType MagnitudeType;
    
    //! @name Constructor/Destructor.
    //@{ 

    //! %Belos::PseudoBlockTFQMRIter constructor.
    PseudoBlockTFQMRIter( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem, 
	       const Teuchos::RCP<OutputManager<ScalarType> > &printer,
	       const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
	       Teuchos::ParameterList &params );
    
    //! %Belos::PseudoBlockTFQMRIter destructor.
    virtual ~PseudoBlockTFQMRIter() {};
    //@}
  

    //! @name Solver methods
    //@{ 
    
    /*! \brief This method performs pseudo-block TFQMR iterations until the status
     * test indicates the need to stop or an error occurs (in which case, an
     * std::exception is thrown).
     *
     * iterate() will first determine whether the solver is inintialized; if
     * not, it will call initialize() using default arguments. After
     * initialization, the solver performs pseudo-block TFQMR iterations until the
     * status test evaluates as ::Passed, at which point the method returns to
     * the caller. 
     */
    void iterate();

    /*! \brief Initialize the solver to an iterate, providing a complete state.
     *
     * The %PseudoBlockTFQMRIter contains a certain amount of state, consisting of the current 
     * Krylov basis and the associated Hessenberg matrix.
     *
     * initialize() gives the user the opportunity to manually set these,
     * although this must be done with caution, abiding by the rules given
     * below. All notions of orthogonality and orthonormality are derived from
     * the inner product specified by the orthogonalization manager.
     *
     * \post 
     * <li>isInitialized() == \c true (see post-conditions of isInitialize())
     *
     * The user has the option of specifying any component of the state using
     * initialize(). However, these arguments are assumed to match the
     * post-conditions specified under isInitialized(). Any necessary component of the
     * state not given to initialize() will be generated.
     *
     * \note For any pointer in \c newstate which directly points to the multivectors in 
     * the solver, the data is not copied.
     */
    void initializeTFQMR(const PseudoBlockTFQMRIterState<ScalarType,MV> & newstate);
    
    /*! \brief Initialize the solver with the initial vectors from the linear problem
     *  or random data.
     */
    void initialize()
    {
      PseudoBlockTFQMRIterState<ScalarType,MV> empty;
      initializeTFQMR(empty);
    }
    
    /*! \brief Get the current state of the linear solver.
     *
     * The data is only valid if isInitialized() == \c true.
     *
     * \returns A PseudoBlockTFQMRIterState object containing const pointers to the current
     * solver state.
     */
    PseudoBlockTFQMRIterState<ScalarType,MV> getState() const {
      PseudoBlockTFQMRIterState<ScalarType,MV> state;
 
      // Copy over the vectors.
      state.W = W_;
      state.U = U_;
      state.AU = AU_;
      state.Rtilde = Rtilde_;
      state.D = D_;
      state.V = V_;

      // Copy over the scalars.
      state.alpha = alpha_;
      state.eta = eta_;
      state.rho = rho_;
      state.tau = tau_;
      state.theta = theta_;

      return state;
    }
    
    //@}
    
    
    //! @name Status methods
    //@{ 
    
    //! \brief Get the current iteration count.
    int getNumIters() const { return iter_; }
    
    //! \brief Reset the iteration count.
    void resetNumIters( int iter = 0 ) { iter_ = iter; }
    
    //! Get the norms of the residuals native to the solver.
    //! \return A std::vector of length blockSize containing the native residuals.
    Teuchos::RCP<const MV> getNativeResiduals( std::vector<MagnitudeType> *norms ) const;
    
    //! Get the current update to the linear system.
    /*! \note This method returns the accumulated update to the solution instead of updating
              the linear problem, since it may incur an additional preconditioner application each iteration.
     */
    Teuchos::RCP<MV> getCurrentUpdate() const { return solnUpdate_; }

    //@}


    //! @name Accessor methods
    //@{ 
    
    //! Get a constant reference to the linear problem.
    const LinearProblem<ScalarType,MV,OP>& getProblem() const { return *lp_; }
    
    //! Get the blocksize to be used by the iterative solver in solving this linear problem.
    int getBlockSize() const { return 1; }
    
    //! \brief Set the blocksize.
    void setBlockSize(int blockSize) {
      TEUCHOS_TEST_FOR_EXCEPTION(blockSize!=1,std::invalid_argument,
                       "Belos::PseudoBlockTFQMRIter::setBlockSize(): Cannot use a block size that is not one.");
    }
    
    //! States whether the solver has been initialized or not.
    bool isInitialized() { return initialized_; }
    
    //@}
    
  
  private:

    //
    // Classes inputed through constructor that define the linear problem to be solved.
    //
    const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> >    lp_;
    const Teuchos::RCP<OutputManager<ScalarType> >          om_;
    const Teuchos::RCP<StatusTest<ScalarType,MV,OP> >       stest_;
    
    //
    // Algorithmic parameters
    //      

    // numRHS_ is the current number of linear systems being solved.
    int numRHS_;

    // Storage for QR factorization of the least squares system.
    std::vector<ScalarType> alpha_, eta_, rho_, rho_old_;
    std::vector<MagnitudeType> tau_, theta_;
    
    // 
    // Current solver state
    //
    // initialized_ specifies that the basis vectors have been initialized and the iterate() routine
    // is capable of running; _initialize is controlled  by the initialize() member method
    // For the implications of the state of initialized_, please see documentation for initialize()
    bool initialized_;
    
     // Current subspace dimension, and number of iterations performed.
    int iter_;
    
    // 
    // State Storage
    //
    Teuchos::RCP<MV> W_;
    Teuchos::RCP<MV> U_, AU_;
    Teuchos::RCP<MV> Rtilde_;
    Teuchos::RCP<MV> D_;
    Teuchos::RCP<MV> V_;
    Teuchos::RCP<MV> solnUpdate_;

  };
  
  
  //
  // Implementation
  //
  
  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Constructor.
  template <class ScalarType, class MV, class OP>
  PseudoBlockTFQMRIter<ScalarType,MV,OP>::PseudoBlockTFQMRIter(const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
					 const Teuchos::RCP<OutputManager<ScalarType> > &printer,
					 const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
					 Teuchos::ParameterList &params 
					 ) : 
    lp_(problem), 
    om_(printer),
    stest_(tester),
    numRHS_(0),
    initialized_(false),
    iter_(0)
  { 
  }

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Compute native residual from TFQMR recurrence.
  template <class ScalarType, class MV, class OP>
  Teuchos::RCP<const MV> 
  PseudoBlockTFQMRIter<ScalarType,MV,OP>::getNativeResiduals( std::vector<MagnitudeType> *normvec ) const 
  {
    MagnitudeType one = Teuchos::ScalarTraits<MagnitudeType>::one();
    if (normvec) {
      // Resize the vector passed in, if it is too small.
      if ((int) normvec->size() < numRHS_)
        normvec->resize( numRHS_ );

      // Compute the native residuals.
      for (int i=0; i<numRHS_; i++) {
        (*normvec)[i] = Teuchos::ScalarTraits<MagnitudeType>::squareroot( 2*iter_ + one )*tau_[i];
      }
    }

    return Teuchos::null;
  }
	
  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Initialize this iteration object
  template <class ScalarType, class MV, class OP>
  void PseudoBlockTFQMRIter<ScalarType,MV,OP>::initializeTFQMR(const PseudoBlockTFQMRIterState<ScalarType,MV> & newstate)
  {
    // Create convenience variables for zero and one.
    const ScalarType STone = Teuchos::ScalarTraits<ScalarType>::one();
    const ScalarType STzero = Teuchos::ScalarTraits<ScalarType>::zero();
    const MagnitudeType MTzero = Teuchos::ScalarTraits<MagnitudeType>::zero();

    // NOTE:  In PseudoBlockTFQMRIter Rtilde_, the initial residual, is required!!!
    TEUCHOS_TEST_FOR_EXCEPTION(newstate.Rtilde == Teuchos::null,std::invalid_argument,
                       "Belos::PseudoBlockTFQMRIter::initialize(): PseudoBlockTFQMRIterState does not have initial residual.");

    // Get the number of right-hand sides we're solving for now.
    int numRHS = MVT::GetNumberVecs(*newstate.Rtilde);
    numRHS_ = numRHS;

    // Initialize the state storage
    // If the subspace has not be initialized before or we are reusing this solver object, generate it using Rtilde.
    if ( Teuchos::is_null(Rtilde_) || (MVT::GetNumberVecs(*Rtilde_) == numRHS_) )
    {
      // Create and/or initialize D_.
      if ( Teuchos::is_null(D_) )
        D_ = MVT::Clone( *newstate.Rtilde, numRHS_ );
      MVT::MvInit( *D_, STzero );

      // Create and/or initialize solnUpdate_;
      if ( Teuchos::is_null(solnUpdate_) )
        solnUpdate_ = MVT::Clone( *newstate.Rtilde, numRHS_ );
      MVT::MvInit( *solnUpdate_, STzero );
     
      // Create Rtilde_. 
      if (newstate.Rtilde != Rtilde_) 
        Rtilde_ = MVT::CloneCopy( *newstate.Rtilde );
      W_ = MVT::CloneCopy( *Rtilde_ );
      U_ = MVT::CloneCopy( *Rtilde_ );
      V_ = MVT::Clone( *Rtilde_, numRHS_ );

      // Multiply the current residual by Op and store in V_
      //       V_ = Op * R_ 
      lp_->apply( *U_, *V_ );
      AU_ = MVT::CloneCopy( *V_ ); 

      // Resize work vectors.
      alpha_.resize( numRHS_, STone );
      eta_.resize( numRHS_, STzero );
      rho_.resize( numRHS_ );
      rho_old_.resize( numRHS_ );
      tau_.resize( numRHS_ );
      theta_.resize( numRHS_, MTzero );

      MVT::MvNorm( *Rtilde_, tau_ );                     // tau = ||r_0||
      MVT::MvDot( *Rtilde_, *Rtilde_, rho_ );            // rho = (r_tilde, r0)
    }   
    else 
    {
      // If the subspace has changed sizes, clone it from the incoming state.
      Rtilde_ = MVT::CloneCopy( *newstate.Rtilde );
      W_ = MVT::CloneCopy( *newstate.W );
      U_ = MVT::CloneCopy( *newstate.U );
      AU_ = MVT::CloneCopy( *newstate.AU );
      D_ = MVT::CloneCopy( *newstate.D );
      V_ = MVT::CloneCopy( *newstate.V );

      // The solution update is just set to zero, since the current update has already
      // been added to the solution during deflation.
      solnUpdate_ = MVT::Clone( *Rtilde_, numRHS_ );
      MVT::MvInit( *solnUpdate_, STzero );

      // Copy work vectors.
      alpha_ = newstate.alpha;
      eta_ = newstate.eta;
      rho_ = newstate.rho;
      tau_ = newstate.tau;
      theta_ = newstate.theta;
    }

    // The solver is initialized
    initialized_ = true;
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Iterate until the status test informs us we should stop.
  template <class ScalarType, class MV, class OP>
  void PseudoBlockTFQMRIter<ScalarType,MV,OP>::iterate() 
  {
    //
    // Allocate/initialize data structures
    //
    if (initialized_ == false) {
      initialize();
    }
 
    // Create convenience variables for zero and one.
    const ScalarType STone = Teuchos::ScalarTraits<ScalarType>::one();
    const ScalarType STzero = Teuchos::ScalarTraits<ScalarType>::zero();
    const MagnitudeType MTone = Teuchos::ScalarTraits<MagnitudeType>::one();
    const MagnitudeType MTzero = Teuchos::ScalarTraits<MagnitudeType>::zero();
    std::vector< ScalarType > beta(numRHS_,STzero);
    std::vector<int> index(1);
    //
    //  Start executable statements. 
    //

    ////////////////////////////////////////////////////////////////
    // Iterate until the status test tells us to stop.
    //
    while (stest_->checkStatus(this) != Passed) {

      for (int iIter=0; iIter<2; iIter++)
      {
        //
        //--------------------------------------------------------
        // Compute the new alpha if we need to
        //--------------------------------------------------------
        //
        if (iIter == 0) {
  	  MVT::MvDot( *V_, *Rtilde_, alpha_ );      //   alpha = rho / (r_tilde, v) 
          for (int i=0; i<numRHS_; i++) {
	    rho_old_[i] = rho_[i];                   // rho_old = rho
	    alpha_[i] = rho_old_[i]/alpha_[i];
          }
        }
        //
        //--------------------------------------------------------
        // Loop over all RHS and compute updates.
        //--------------------------------------------------------
        //
        for (int i=0; i<numRHS_; ++i) {
          index[0] = i;

          //
          //--------------------------------------------------------
          // Update w.
          //   w = w - alpha*Au
          //--------------------------------------------------------
          //
          Teuchos::RCP<const MV> AU_i = MVT::CloneView( *AU_, index );
          Teuchos::RCP<MV> W_i = MVT::CloneViewNonConst( *W_, index );
          MVT::MvAddMv( STone, *W_i, -alpha_[i], *AU_i, *W_i );
          //
          //--------------------------------------------------------
          // Update d.
          //   d = u + (theta^2/alpha)eta*d
          //--------------------------------------------------------
          //
          Teuchos::RCP<const MV> U_i = MVT::CloneView( *U_, index );
          Teuchos::RCP<MV> D_i = MVT::CloneViewNonConst( *D_, index );
          MVT::MvAddMv( STone, *U_i, (theta_[i]*theta_[i]/alpha_[i])*eta_[i], *D_i, *D_i );
          //
          //--------------------------------------------------------
          // Update u if we need to.
          //   u = u - alpha*v
          //   
          // Note: This is usually computed with alpha (above), but we're trying be memory efficient.
          //--------------------------------------------------------
          //
          if (iIter == 0) {
            // Compute new U.
            Teuchos::RCP<const MV> V_i = MVT::CloneView( *V_, index );
            Teuchos::RCP<MV> U2_i = MVT::CloneViewNonConst( *U_, index );
  	    MVT::MvAddMv( STone, *U2_i, -alpha_[i], *V_i, *U2_i );
          }
        }
        //
        //--------------------------------------------------------
        // Update Au for the next iteration.
        //--------------------------------------------------------
        //
        if (iIter == 0) {
  	  lp_->apply( *U_, *AU_ );                       
        }
        //
        //--------------------------------------------------------
        // Compute the new theta, c, eta, tau; i.e. the update to the least squares solution.
        //--------------------------------------------------------
        //
        MVT::MvNorm( *W_, theta_ );     // theta = ||w|| / tau

        bool breakdown=false;
        for (int i=0; i<numRHS_; ++i) {
          theta_[i] /= tau_[i];
          // cs = 1.0 / sqrt(1.0 + theta^2)
          MagnitudeType cs = MTone / Teuchos::ScalarTraits<MagnitudeType>::squareroot(MTone + theta_[i]*theta_[i]);  
          tau_[i] *= theta_[i]*cs;     // tau = tau * theta * cs
          if ( tau_[i] == MTzero ) {
            breakdown = true;
          }
          eta_[i] = cs*cs*alpha_[i];     // eta = cs^2 * alpha
        }
        //
        //--------------------------------------------------------
        // Accumulate the update for the solution x := x + eta*D_
        //--------------------------------------------------------
        //
        for (int i=0; i<numRHS_; ++i) {
          index[0]=i;
          Teuchos::RCP<const MV> D_i = MVT::CloneView( *D_, index );
          Teuchos::RCP<MV> update_i = MVT::CloneViewNonConst( *solnUpdate_, index );
	  MVT::MvAddMv( STone, *update_i, eta_[i], *D_i, *update_i );
        } 
        //
        //--------------------------------------------------------
        // Breakdown was detected above, return to status test to
        // remove converged solutions.
        //--------------------------------------------------------
        if ( breakdown ) {
          break;
        }
        //
        if (iIter == 1) {
  	  //
	  //--------------------------------------------------------
	  // Compute the new rho, beta if we need to.
	  //--------------------------------------------------------
	  //
	  MVT::MvDot( *W_, *Rtilde_, rho_ );         // rho = (r_tilde, w)
      
          for (int i=0; i<numRHS_; ++i) {
	    beta[i] = rho_[i]/rho_old_[i];           // beta = rho / rho_old

  	    //
	    //--------------------------------------------------------
	    // Update u, v, and Au if we need to.
	    // Note: We are updating v in two stages to be memory efficient
	    //--------------------------------------------------------
	    //
            index[0]=i;
            Teuchos::RCP<const MV> W_i = MVT::CloneView( *W_, index );
            Teuchos::RCP<MV> U_i = MVT::CloneViewNonConst( *U_, index );
	    MVT::MvAddMv( STone, *W_i, beta[i], *U_i, *U_i );       // u = w + beta*u
	
	    // First stage of v update.
            Teuchos::RCP<const MV> AU_i = MVT::CloneView( *AU_, index );
            Teuchos::RCP<MV> V_i = MVT::CloneViewNonConst( *V_, index );
	    MVT::MvAddMv( STone, *AU_i, beta[i], *V_i, *V_i );      // v = Au + beta*v 
	  }

	  // Update Au.
	  lp_->apply( *U_, *AU_ );                          // Au = A*u
	
	  // Second stage of v update.
          for (int i=0; i<numRHS_; ++i) {
            index[0]=i;
            Teuchos::RCP<const MV> AU_i = MVT::CloneView( *AU_, index );
            Teuchos::RCP<MV> V_i = MVT::CloneViewNonConst( *V_, index );
	    MVT::MvAddMv( STone, *AU_i, beta[i], *V_i, *V_i );      // v = Au + beta*v 
          }
        }
      }

      // Increment the iteration
      iter_++;
      
    } // end while (sTest_->checkStatus(this) != Passed)
  } 

} // namespace Belos
//
#endif // BELOS_PSEUDO_BLOCK_TFQMR_ITER_HPP
//
// End of file BelosPseudoBlockTFQMRIter.hpp