This file is indexed.

/usr/include/trilinos/Epetra_MsrMatrix.h is in libtrilinos-aztecoo-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/*
//@HEADER
// ***********************************************************************
// 
//        AztecOO: An Object-Oriented Aztec Linear Solver Package 
//                 Copyright (2002) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ***********************************************************************
//@HEADER
*/

#ifndef _EPETRA_MSRMATRIX_H_
#define _EPETRA_MSRMATRIX_H_

#include "Epetra_Object.h"
#include "Epetra_CompObject.h"
#include "Epetra_RowMatrix.h"
#include "Epetra_Map.h"
#include "az_aztec.h"
#ifdef AZTEC_MPI
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif

class Epetra_Import;
class Epetra_Export;
class Epetra_Vector;
class Epetra_MultiVector;

//! Epetra_MsrMatrix: A class for constructing and using real-valued double-precision sparse compressed row matrices.

/*! The Epetra_MsrMatrix provides basic support for existing Aztec users who have an investment in the Aztec
    DMSR matrix format.  A user may pass an existing Aztec DMSR matrix to the constructor for this class.  The
    data from the DMSR matrix will \e not be copied.  Thus, any changes the user makes to the DMSR matrix data will
    be reflected in the associated Epetra_MsrMatrix object.
*/    

class Epetra_MsrMatrix: public Epetra_Object, public Epetra_CompObject, public virtual Epetra_RowMatrix  {
      
 public:

   //! @name Constructors/Destructor
  //@{ 
  //! Epetra_MsrMatrix constuctor using existing Aztec DMSR matrix.
  /*! Creates a Epetra_MsrMatrix object by encapsulating an existing Aztec DMSR matrix. The
      Aztec matrix must come in as an AZ_MATRIX pointer, and AZ_transform must have called.  
      Also, the AZ_matrix_type must be AZ_MSR_MATRIX.  (If the matrix is stored in Amat, this
      information is contained in Amat->data_org[AZ_matrix_type].)
    
    \param In
           Amat - A completely constructed Aztec DMSR matrix.
    \param In
           proc_config - An Aztec array containing information about the parallel machine.
  */
  Epetra_MsrMatrix(int * proc_config, AZ_MATRIX * Amat);

  //! Epetra_MsrMatrix Destructor
  virtual ~Epetra_MsrMatrix();
  //@}
  
  //! @name Extraction methods
  //@{ 

    //! Returns a copy of the specified local row in user-provided arrays.
    /*! 
    \param In
           MyRow - Local row to extract.
    \param In
	   Length - Length of Values and Indices.
    \param Out
	   NumEntries - Number of nonzero entries extracted.
    \param Out
	   Values - Extracted values for this row.
    \param Out
	   Indices - Extracted global column indices for the corresponding values.
	  
    \return Integer error code, set to 0 if successful.
  */
    int ExtractMyRowCopy(int MyRow, int Length, int & NumEntries, double *Values, int * Indices) const;

    //! Returns a copy of the main diagonal in a user-provided vector.
    /*! 
    \param Out
	   Diagonal - Extracted main diagonal.

    \return Integer error code, set to 0 if successful.
  */
    int ExtractDiagonalCopy(Epetra_Vector & Diagonal) const;
    //@}

    //! @name Computational methods
  //@{ 

    //! Returns the result of a Epetra_MsrMatrix multiplied by a Epetra_MultiVector X in Y.
    /*! 
    \param In
	   TransA -If true, multiply by the transpose of matrix, otherwise just use matrix.
    \param In
	   X - A Epetra_MultiVector of dimension NumVectors to multiply with matrix.
    \param Out
	   Y -A Epetra_MultiVector of dimension NumVectorscontaining result.

    \return Integer error code, set to 0 if successful.
  */
    int Multiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;

    //! Returns the result of a Epetra_MsrMatrix multiplied by a Epetra_MultiVector X in Y.
    /*! 
    \param In
	   Upper -If true, solve Ux = y, otherwise solve Lx = y.
    \param In
	   Trans -If true, solve transpose problem.
    \param In
	   UnitDiagonal -If true, assume diagonal is unit (whether it's stored or not).
    \param In
	   X - A Epetra_MultiVector of dimension NumVectors to solve for.
    \param Out
	   Y -A Epetra_MultiVector of dimension NumVectors containing result.

    \return Integer error code, set to 0 if successful.
  */
    int Solve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;

    //! Computes the sum of absolute values of the rows of the Epetra_MsrMatrix, results returned in x.
    /*! The vector x will return such that x[i] will contain the inverse of sum of the absolute values of the 
        \e this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i denotes the global row number of A
        and j denotes the global column number of A.  Using the resulting vector from this function as input to LeftScale()
	will make the infinity norm of the resulting matrix exactly 1.
    \param Out
	   x -A Epetra_Vector containing the row sums of the \e this matrix. 
	   \warning It is assumed that the distribution of x is the same as the rows of \e this.

    \return Integer error code, set to 0 if successful.
  */
    int InvRowSums(Epetra_Vector& x) const;

    //! Scales the Epetra_MsrMatrix on the left with a Epetra_Vector x.
    /*! The \e this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i denotes the row number of A
        and j denotes the column number of A.
    \param In
	   x -A Epetra_Vector to solve for.

    \return Integer error code, set to 0 if successful.
  */
    int LeftScale(const Epetra_Vector& x);

    //! Computes the sum of absolute values of the columns of the Epetra_MsrMatrix, results returned in x.
    /*! The vector x will return such that x[j] will contain the inverse of sum of the absolute values of the 
        \e this matrix will be sca such that A(i,j) = x(j)*A(i,j) where i denotes the global row number of A
        and j denotes the global column number of A.  Using the resulting vector from this function as input to 
	RighttScale() will make the one norm of the resulting matrix exactly 1.
    \param Out
	   x -A Epetra_Vector containing the column sums of the \e this matrix. 
	   \warning It is assumed that the distribution of x is the same as the rows of \e this.

    \return Integer error code, set to 0 if successful.
  */
    int InvColSums(Epetra_Vector& x) const;

    //! Scales the Epetra_MsrMatrix on the right with a Epetra_Vector x.
    /*! The \e this matrix will be scaled such that A(i,j) = x(j)*A(i,j) where i denotes the global row number of A
        and j denotes the global column number of A.
    \param In
	   x -The Epetra_Vector used for scaling \e this.

    \return Integer error code, set to 0 if successful.
  */
    int RightScale(const Epetra_Vector& x);
  //@}

  //! @name Matrix Properties Query Methods
  //@{ 


    //! If FillComplete() has been called, this query returns true, otherwise it returns false.
    bool Filled() const {return(true);};

    //! If matrix is lower triangular, this query returns true, otherwise it returns false.
    bool LowerTriangular() const {return(false);};

    //! If matrix is upper triangular, this query returns true, otherwise it returns false.
    bool UpperTriangular() const {return(false);};

  //@}
  
  //! @name Attribute access functions
  //@{ 

    //! Returns a pointer to the Aztec Msr matrix used to create this object.
    AZ_MATRIX *  Amat() const {return(Amat_);};

    //! Returns the infinity norm of the global matrix.
    /* Returns the quantity \f$ \| A \|_\infty\f$ such that
       \f[\| A \|_\infty = \max_{1\lei\lem} \sum_{j=1}^n |a_{ij}| \f].
    */ 
    double NormInf() const;

    //! Returns the one norm of the global matrix.
    /* Returns the quantity \f$ \| A \|_1\f$ such that
       \f[\| A \|_1= \max_{1\lej\len} \sum_{i=1}^m |a_{ij}| \f].
    */ 
    double NormOne() const;

#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    //! Returns the number of nonzero entries in the global matrix.
    int NumGlobalNonzeros() const {
      if(OperatorRangeMap().GlobalIndicesInt() && OperatorDomainMap().GlobalIndicesInt())
        return (int) NumGlobalNonzeros_;
      throw ReportError("Epetra_MsrMatrix::NumGlobalNonzeros: GlobalIndices not int.",-1);
    }

    //! Returns the number of global matrix rows.
    int NumGlobalRows() const {return(OperatorRangeMap().NumGlobalPoints());};

    //! Returns the number of global matrix columns.
    int NumGlobalCols() const {return(OperatorDomainMap().NumGlobalPoints());};

    //! Returns the number of global nonzero diagonal entries.
    int NumGlobalDiagonals() const{return(OperatorDomainMap().NumGlobalPoints());};
#endif
    
    //! Returns the number of nonzero entries in the global matrix.
    long long NumGlobalNonzeros64() const { return NumGlobalNonzeros_; }

    //! Returns the number of global matrix rows.
    long long NumGlobalRows64() const {return(OperatorRangeMap().NumGlobalPoints64());};

    //! Returns the number of global matrix columns.
    long long NumGlobalCols64() const {return(OperatorDomainMap().NumGlobalPoints64());};

    //! Returns the number of global nonzero diagonal entries.
    long long NumGlobalDiagonals64() const{return(OperatorDomainMap().NumGlobalPoints64());};

    //! Returns the number of nonzero entries in the calling processor's portion of the matrix.
    int NumMyNonzeros() const {return(NumMyNonzeros_);};

    //! Returns the number of matrix rows owned by the calling processor.
    int NumMyRows() const {return(OperatorRangeMap().NumMyPoints());};

    //! Returns the number of matrix columns owned by the calling processor.
    int NumMyCols() const {return(RowMatrixColMap().NumMyPoints());};

    //! Returns the number of local nonzero diagonal entries.
    int NumMyDiagonals() const {return(OperatorRangeMap().NumMyPoints());};

    //! Returns the Epetra_Map object associated with the domain of this operator.
    const Epetra_Map & OperatorDomainMap() const {return(*DomainMap_);};

    //! Returns the Epetra_Map object associated with the range of this operator (same as domain).
    const Epetra_Map & OperatorRangeMap() const  {return(*DomainMap_);};

    //! Implement the Epetra_SrcDistObjec::Map() function.
    const Epetra_BlockMap& Map() const {return(RowMatrixRowMap());}

    //! Returns the Row Map object needed for implementing Epetra_RowMatrix.
    const Epetra_Map & RowMatrixRowMap() const {return(OperatorRangeMap());};

    //! Returns the Column Map object needed for implementing Epetra_RowMatrix.
    const Epetra_Map & RowMatrixColMap() const {return(*ColMap_);};

    //! Returns the Epetra_Import object that contains the import operations for distributed operations.
    virtual const Epetra_Import * RowMatrixImporter() const {return(Importer_);};

    //! Returns a pointer to the Epetra_Comm communicator associated with this matrix.
    const Epetra_Comm & Comm() const {return(*Comm_);};
  //@}
  
  
  //! @name I/O Methods
  //@{ 

  //! Print method
  virtual void Print(std::ostream & os) const;
  //@}

  //! @name Additional methods required to support the Epetra_Operator interface
  //@{ 

    //! Returns a character std::string describing the operator
    const char * Label() const {return(Epetra_Object::Label());};
    
    //! If set true, transpose of this operator will be applied.
    /*! This flag allows the transpose of the given operator to be used implicitly.  Setting this flag
        affects only the Apply() and ApplyInverse() methods.  If the implementation of this interface 
	does not support transpose use, this method should return a value of -1.
      
    \param In
	   use_transpose -If true, multiply by the transpose of operator, otherwise just use operator.

    \return Returns -1 if use_transpose is true, because it is not supported.
  */
  int SetUseTranspose(bool use_transpose)
    {
      if (use_transpose == true) return(-1);
      return(0);
    }

    //! Returns the result of a Epetra_Operator applied to a Epetra_MultiVector X in Y.
    /*! 
    \param In
	   X - A Epetra_MultiVector of dimension NumVectors to multiply with matrix.
    \param Out
	   Y -A Epetra_MultiVector of dimension NumVectors containing result.

    \return Integer error code, set to 0 if successful.
  */
  int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const {
    return(Epetra_MsrMatrix::Multiply(Epetra_MsrMatrix::UseTranspose(), X, Y));};

    //! Returns the result of a Epetra_Operator inverse applied to an Epetra_MultiVector X in Y.
    /*! In this implementation, we use several existing attributes to determine how virtual
        method ApplyInverse() should call the concrete method Solve().  We pass in the UpperTriangular(), 
	the Epetra_MsrMatrix::UseTranspose(), and NoDiagonal() methods. The most notable warning is that
	if a matrix has no diagonal values we assume that there is an implicit unit diagonal that should
	be accounted for when doing a triangular solve.

    \param In
	   X - A Epetra_MultiVector of dimension NumVectors to solve for.
    \param Out
	   Y -A Epetra_MultiVector of dimension NumVectors containing result.

    \return Integer error code, set to 0 if successful.
  */
  int ApplyInverse(const Epetra_MultiVector& X,
                   Epetra_MultiVector& Y) const
    {(void)X; (void)Y; return(-1);}

    //! Returns true because this class can compute an Inf-norm.
    virtual bool HasNormInf() const {return(true);}

    //! Returns the current UseTranspose setting.
    virtual bool UseTranspose() const {return(false);}

  //@}
  //! @name Additional methods required to implement RowMatrix interface
  //@{ 

    //! Return the current number of values stored for the specified local row.
    /*! Similar to NumMyEntries() except NumEntries is returned as an argument
        and error checking is done on the input value MyRow.
    \param In
           MyRow - Local row.
    \param Out
	   NumEntries - Number of nonzero values.
	  
    \return Integer error code, set to 0 if successful.
  */
    int NumMyRowEntries(int MyRow, int & NumEntries) const;

    //! Returns the maximum of NumMyRowEntries() over all rows.
    int MaxNumEntries() const;
  //@}

 private:

    int GetRow(int Row) const;
    AZ_MATRIX * Amat_;
    int * proc_config_;
    mutable double * Values_;
    mutable int * Indices_;
    mutable int MaxNumEntries_;
    
#ifdef AZTEC_MPI
  Epetra_MpiComm * Comm_;
#else
  Epetra_SerialComm * Comm_;
#endif  
    Epetra_Map * DomainMap_;
    Epetra_Map * ColMap_;
    Epetra_Import * Importer_;
    mutable Epetra_MultiVector * ImportVector_;
 
    long long NumGlobalNonzeros_;
    int NumMyNonzeros_;
    int NumMyRows_;
    int NumMyCols_;
    mutable double NormInf_;
    mutable double NormOne_;
    

 //! Copy constructor (not accessible to users).
  Epetra_MsrMatrix(const Epetra_MsrMatrix & Matrix) {(void)Matrix;}
};
#endif /* _EPETRA_MSRMATRIX_H_ */