/usr/include/trilinos/AnasaziTraceMinBaseSolMgr.hpp is in libtrilinos-anasazi-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef ANASAZI_TraceMinBase_SOLMGR_HPP
#define ANASAZI_TraceMinBase_SOLMGR_HPP
/*! \file AnasaziTraceMinBaseSolMgr.hpp
* \brief The Anasazi::TraceMinBaseSolMgr provides an abstract base class for the TraceMin series of solver managers.
*/
#include "AnasaziBasicOrthoManager.hpp"
#include "AnasaziBasicOutputManager.hpp"
#include "AnasaziBasicSort.hpp"
#include "AnasaziConfigDefs.hpp"
#include "AnasaziEigenproblem.hpp"
#include "AnasaziICGSOrthoManager.hpp"
#include "AnasaziSolverManager.hpp"
#include "AnasaziSolverUtils.hpp"
#include "AnasaziStatusTestCombo.hpp"
#include "AnasaziStatusTestOutput.hpp"
#include "AnasaziStatusTestResNorm.hpp"
#include "AnasaziStatusTestSpecTrans.hpp"
#include "AnasaziStatusTestWithOrdering.hpp"
#include "AnasaziSVQBOrthoManager.hpp"
#include "AnasaziTraceMinBase.hpp"
#include "AnasaziTraceMinTypes.hpp"
#include "AnasaziTypes.hpp"
#include "Teuchos_TimeMonitor.hpp"
#ifdef TEUCHOS_DEBUG
# include <Teuchos_FancyOStream.hpp>
#endif
#ifdef HAVE_MPI
#include <mpi.h>
#endif
using Teuchos::RCP;
using Teuchos::rcp;
namespace Anasazi {
namespace Experimental {
/*! \class TraceMinBaseSolMgr
*
* \brief The Anasazi::TraceMinBaseSolMgr provides an abstract base class for the TraceMin series of solver managers.
*
* This solver manager implements a hard-locking mechanism, whereby eigenpairs designated to be locked are moved from the eigensolver and placed in
* auxilliary storage. The eigensolver is then restarted and continues to iterate, orthogonal to the locked eigenvectors.
*
* The solver manager provides to the solver a StatusTestCombo object constructed as follows:<br>
* <tt>combo = globaltest OR lockingtest OR debugtest</tt><br>
* where
* - \c globaltest terminates computation when global convergence has been detected.<br>
* It is encapsulated in a StatusTestWithOrdering object, to ensure that computation is terminated
* only after the most significant eigenvalues/eigenvectors have met the convergence criteria.<br>
* If not specified via setGlobalStatusTest(), \c globaltest is a StatusTestResNorm object which tests the
* 2-norms of the direct residuals relative to the Ritz values.
* - \c lockingtest halts TraceMinBase::iterate() in order to deflate converged eigenpairs for locking.<br>
* It will query the underlying TraceMinBase eigensolver to determine when eigenvectors should be locked.<br>
* If not specified via setLockingStatusTest(), \c lockingtest is a StatusTestResNorm object.
* - \c debugtest allows a user to specify additional monitoring of the iteration, encapsulated in a StatusTest object<br>
* If not specified via setDebugStatusTest(), \c debugtest is ignored.<br>
* In most cases, it should return ::Failed; if it returns ::Passed, solve() will throw an AnasaziError exception.
*
* Additionally, the solver manager will terminate solve() after a specified number of restarts or iterations.
*
* Much of this behavior is controlled via parameters and options passed to the
* solver manager. For more information, see TraceMinBaseSolMgr().
\ingroup anasazi_solver_framework
\author Alicia Klinvex
*/
template<class ScalarType, class MV, class OP>
class TraceMinBaseSolMgr : public SolverManager<ScalarType,MV,OP> {
private:
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MT;
public:
//! @name Constructors/Destructor
//@{
/*! \brief Basic constructor for TraceMinBaseSolMgr.
*
* This constructor accepts the Eigenproblem to be solved in addition
* to a parameter list of options for the solver manager. These options include the following:
* - Solver parameters
* - \c "Which" - a \c string that specifies whether we want the largest eigenvalues "LM" or the smallest "SM". Default: "SM"
* - \c "Verbosity" - a sum of MsgType specifying the verbosity. Default: ::Errors
* - \c "Maximum Restarts" - a \c int specifying the maximum number of restarts the underlying solver is allowed to perform. Default: 20
* - \c "Saddle Solver Type" - a \c string specifying how to solve the saddle point problem arising at each iteration.
* Options are "Projected Krylov", "Schur Complement", and "Block Diagonal Preconditioned Minres". Default: "Projected Krylov"
* - \c "Projected Krylov": Uses projected-minres to solve the problem.
* - \c "Schur Complement": Explicitly forms the (inexact) Schur complement using minres.
* - \c "Block Diagonal Preconditioned Minres": Uses a block preconditioner on the entire saddle point problem. For more information, please see "Overview of Anasazi and its newest eigensolver, TraceMin" on the main Anasazi page.
* We recommend using "Projected Krylov" in the absence of preconditioning. If you want to use a preconditioner, "Block Diagonal Preconditioned Minres" is recommended.
* "Schur Complement" mainly exists for special use cases.
* - Ritz shift parameters
* - \c "When To Shift" - a \c string specifying when Ritz shifts should be performed. Options are "Never", "After Trace Levels", and "Always". Default: "Always"
* - \c "Never": Do not perform Ritz shifts. This option produces guaranteed convergence but converges linearly. Not recommended.
* - \c "After Trace Levels": Do not perform Ritz shifts until the trace of \f$X^TKX\f$ has stagnated (i.e. the relative change in trace has become small).
* The \c MagnitudeType specifying how small the relative change in trace must become may be provided via the parameter \c "Trace Threshold", whose default value is 0.02.
* - \c "Always": Always attempt to use Ritz shifts.
* - \c "How To Choose Shift" - a \c string specifying how to choose the Ritz shifts (assuming Ritz shifts are being used).
* Options are "Largest Converged", "Adjusted Ritz Values", and "Ritz Values". Default: "Adjusted Ritz Values"
* - \c "Largest Converged": Ritz shifts are chosen to be the largest converged eigenvalue. Until an eigenvalue converges, the Ritz shifts are all 0.
* - \c "Adjusted Ritz Values": Ritz shifts are chosen based on the Ritz values and their associated residuals in such a way as to guarantee global convergence.
* This method is described in "The trace minimization method for the symmetric generalized eigenvalue problem."
* - \c "Ritz Values": Ritz shifts are chosen to equal the Ritz values. This does NOT guarantee global convergence.
* - \c "Use Multiple Shifts" - a \c bool specifying whether to use one or many Ritz shifts (assuming shifting is enabled). Default: true
* - Convergence parameters (if using default convergence test; see setGlobalStatusTest())
* - \c "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide convergence. Default: machine precision.
* - \c "Relative Convergence Tolerance" - a \c bool specifying whether residuals norms should be scaled by their eigenvalues for the purposing of deciding convergence. Default: true
* - \c "Convergence Norm" - a \c string specifying the norm for convergence testing: "2" or "M". Default: "2"
* - Locking parameters (if using default locking test; see setLockingStatusTest())
* - \c "Use Locking" - a \c bool specifying whether the algorithm should employ locking of converged eigenpairs. Default: true
* - \c "Max Locked" - a \c int specifying the maximum number of eigenpairs to be locked. Default: problem->getNEV()
* - \c "Locking Quorum" - a \c int specifying the number of eigenpairs that must meet the locking criteria before locking actually occurs. Default: 1
* - \c "Locking Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide locking. Default: 0.1*convergence tolerance
* - \c "Relative Locking Tolerance" - a \c bool specifying whether residuals norms should be scaled by their eigenvalues for the purposing of deciding locking. Default: true
* - \c "Locking Norm" - a \c string specifying the norm for locking testing: "2" or "M". Default: "2"
*
* Anasazi's trace minimization solvers are still in development, and we plan to add additional features in the future, including the ability to perform spectral transformations.
*/
TraceMinBaseSolMgr( const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
Teuchos::ParameterList &pl );
//! Destructor.
virtual ~TraceMinBaseSolMgr() {};
//@}
//! @name Accessor methods
//@{
//! Return the eigenvalue problem.
const Eigenproblem<ScalarType,MV,OP>& getProblem() const {
return *problem_;
}
//! Get the iteration count for the most recent call to \c solve().
int getNumIters() const {
return numIters_;
}
/*! \brief Return the timers for this object.
*
* The timers are ordered as follows:
* - time spent in solve() routine
* - time spent restarting
* - time spent locking converged eigenvectors
*/
Teuchos::Array<RCP<Teuchos::Time> > getTimers() const {
return Teuchos::tuple(_timerSolve, _timerRestarting, _timerLocking);
}
//@}
//! @name Solver application methods
//@{
/*! \brief This method performs possibly repeated calls to the underlying eigensolver's iterate() routine
* until the problem has been solved (as decided by the solver manager) or the solver manager decides to
* quit.
*
* This method calls TraceMinBase::iterate(), which will return either because a specially constructed status test evaluates to ::Passed
* or an exception is thrown.
*
* A return from TraceMinBase::iterate() signifies one of the following scenarios:
* - the maximum number of restarts/iterations has been exceeded. In this scenario, the solver manager will place\n
* all converged eigenpairs into the eigenproblem and return ::Unconverged.
* - the locking conditions have been met. In this scenario, some of the current eigenpairs will be removed\n
* from the eigensolver and placed into auxiliary storage. The eigensolver will be restarted with the remaining part of the Krylov subspace\n
* and some random information to replace the removed subspace.
* - the subspace is full, and we need to remove some vectors. The eigensolver will be restarted with the most
* significant part of the Krylov subspace.
* - global convergence has been met. In this case, the most significant NEV eigenpairs in the solver and locked storage \n
* have met the convergence criterion. (Here, NEV refers to the number of eigenpairs requested by the Eigenproblem.) \n
* In this scenario, the solver manager will return ::Converged.
*
* \returns ::ReturnType specifying:
* - ::Converged: the eigenproblem was solved to the specification required by the solver manager.
* - ::Unconverged: the eigenproblem was not solved to the specification desired by the solver manager.
*/
ReturnType solve();
//! Set the status test defining global convergence.
void setGlobalStatusTest(const RCP< StatusTest<ScalarType,MV,OP> > &global);
//! Get the status test defining global convergence.
const RCP< StatusTest<ScalarType,MV,OP> > & getGlobalStatusTest() const;
//! Set the status test defining locking.
void setLockingStatusTest(const RCP< StatusTest<ScalarType,MV,OP> > &locking);
//! Get the status test defining locking.
const RCP< StatusTest<ScalarType,MV,OP> > & getLockingStatusTest() const;
//! Set the status test for debugging.
void setDebugStatusTest(const RCP< StatusTest<ScalarType,MV,OP> > &debug);
//! Get the status test for debugging.
const RCP< StatusTest<ScalarType,MV,OP> > & getDebugStatusTest() const;
//@}
protected:
RCP<Eigenproblem<ScalarType,MV,OP> > problem_;
int numIters_;
// Block variables
int blockSize_, numBlocks_, numRestartBlocks_;
// Output variables
RCP<BasicOutputManager<ScalarType> > printer_;
// Convergence variables
MagnitudeType convTol_;
bool relConvTol_;
enum ResType convNorm_;
// Locking variables
MagnitudeType lockTol_;
int maxLocked_, lockQuorum_;
bool useLocking_, relLockTol_;
enum ResType lockNorm_;
// Shifting variables
enum WhenToShiftType whenToShift_;
MagnitudeType traceThresh_, shiftTol_;
enum HowToShiftType howToShift_;
bool useMultipleShifts_, relShiftTol_, considerClusters_;
std::string shiftNorm_;
// Other variables
int maxKrylovIter_;
std::string ortho_, which_;
enum SaddleSolType saddleSolType_;
bool projectAllVecs_, projectLockedVecs_, computeAllRes_, useRHSR_, useHarmonic_, noSort_;
MagnitudeType alpha_;
// Timers
RCP<Teuchos::Time> _timerSolve, _timerRestarting, _timerLocking;
// Status tests
RCP<StatusTest<ScalarType,MV,OP> > globalTest_;
RCP<StatusTest<ScalarType,MV,OP> > lockingTest_;
RCP<StatusTest<ScalarType,MV,OP> > debugTest_;
// TraceMin specific functions
void copyPartOfState(const TraceMinBaseState<ScalarType,MV>& oldState, TraceMinBaseState<ScalarType,MV>& newState, const std::vector<int> indToCopy) const;
void setParameters(Teuchos::ParameterList &pl) const;
void printParameters(std::ostream &os) const;
virtual RCP< TraceMinBase<ScalarType,MV,OP> > createSolver(
const RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
const RCP<StatusTest<ScalarType,MV,OP> > &outputtest,
const RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
Teuchos::ParameterList &plist
) =0;
virtual bool needToRestart(const RCP< TraceMinBase<ScalarType,MV,OP> > solver) =0;
virtual bool performRestart(int &numRestarts, RCP< TraceMinBase<ScalarType,MV,OP> > solver) =0;
};
///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
// Constructor
template<class ScalarType, class MV, class OP>
TraceMinBaseSolMgr<ScalarType,MV,OP>::TraceMinBaseSolMgr(
const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
Teuchos::ParameterList &pl ) :
problem_(problem)
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
, _timerSolve(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBaseSolMgr::solve()")),
_timerRestarting(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBaseSolMgr restarting")),
_timerLocking(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBaseSolMgr locking"))
#endif
{
TEUCHOS_TEST_FOR_EXCEPTION(problem_ == Teuchos::null, std::invalid_argument, "Problem not given to solver manager.");
TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isProblemSet(), std::invalid_argument, "Problem not set.");
TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isHermitian(), std::invalid_argument, "Problem not symmetric.");
TEUCHOS_TEST_FOR_EXCEPTION(problem_->getInitVec() == Teuchos::null,std::invalid_argument, "Problem does not contain initial vectors to clone from.");
std::string strtmp;
/////////////////////////////////////////////////////////////////////////////////////////////////
// Block parameters
// TODO: the default is different for TraceMin and TraceMin-Davidson
// block size: default is nev()
// blockSize_ = pl.get("Block Size",problem_->getNEV());
// TEUCHOS_TEST_FOR_EXCEPTION(blockSize_ <= 0, std::invalid_argument,
// "Anasazi::TraceMinBaseSolMgr: \"Block Size\" must be strictly positive.");
// TODO: add Num Blocks as a parameter to both child classes, since they have different default values
// numBlocks_ = pl.get("Num Blocks",5);
// TEUCHOS_TEST_FOR_EXCEPTION(numBlocks_ < 2, std::invalid_argument,
// "Anasazi::TraceMinBaseSolMgr: \"Num Blocks\" must be >= 2.");
/////////////////////////////////////////////////////////////////////////////////////////////////
// Output parameters
// output stream
std::string fntemplate = "";
bool allProcs = false;
if (pl.isParameter("Output on all processors")) {
if (Teuchos::isParameterType<bool>(pl,"Output on all processors")) {
allProcs = pl.get("Output on all processors",allProcs);
} else {
allProcs = ( Teuchos::getParameter<int>(pl,"Output on all processors") != 0 );
}
}
fntemplate = pl.get("Output filename template",fntemplate);
int MyPID;
# ifdef HAVE_MPI
// Initialize MPI
int mpiStarted = 0;
MPI_Initialized(&mpiStarted);
if (mpiStarted) MPI_Comm_rank(MPI_COMM_WORLD, &MyPID);
else MyPID=0;
# else
MyPID = 0;
# endif
if (fntemplate != "") {
std::ostringstream MyPIDstr;
MyPIDstr << MyPID;
// replace %d in fntemplate with MyPID
int pos, start=0;
while ( (pos = fntemplate.find("%d",start)) != -1 ) {
fntemplate.replace(pos,2,MyPIDstr.str());
start = pos+2;
}
}
RCP<ostream> osp;
if (fntemplate != "") {
osp = rcp( new std::ofstream(fntemplate.c_str(),std::ios::out | std::ios::app) );
if (!*osp) {
osp = Teuchos::rcpFromRef(std::cout);
std::cout << "Anasazi::TraceMinBaseSolMgr::constructor(): Could not open file for write: " << fntemplate << std::endl;
}
}
else {
osp = Teuchos::rcpFromRef(std::cout);
}
// Output manager
int verbosity = Anasazi::Errors;
if (pl.isParameter("Verbosity")) {
if (Teuchos::isParameterType<int>(pl,"Verbosity")) {
verbosity = pl.get("Verbosity", verbosity);
} else {
verbosity = (int)Teuchos::getParameter<Anasazi::MsgType>(pl,"Verbosity");
}
}
if (allProcs) {
// print on all procs
printer_ = rcp( new BasicOutputManager<ScalarType>(verbosity,osp,MyPID) );
}
else {
// print only on proc 0
printer_ = rcp( new BasicOutputManager<ScalarType>(verbosity,osp,0) );
}
// TODO: Add restart parameters to TraceMin-Davidson
/////////////////////////////////////////////////////////////////////////////////////////////////
// Convergence parameters
convTol_ = pl.get("Convergence Tolerance",MT::prec());
TEUCHOS_TEST_FOR_EXCEPTION(convTol_ < 0, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: \"Convergence Tolerance\" must be nonnegative.");
relConvTol_ = pl.get("Relative Convergence Tolerance",true);
strtmp = pl.get("Convergence Norm",std::string("2"));
if (strtmp == "2") {
convNorm_ = RES_2NORM;
}
else if (strtmp == "M") {
convNorm_ = RES_ORTH;
}
else {
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: Invalid Convergence Norm.");
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// Locking parameters
useLocking_ = pl.get("Use Locking",true);
relLockTol_ = pl.get("Relative Locking Tolerance",true);
lockTol_ = pl.get("Locking Tolerance",convTol_/10);
TEUCHOS_TEST_FOR_EXCEPTION(relConvTol_ != relLockTol_, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: \"Relative Convergence Tolerance\" and \"Relative Locking Tolerance\" have different values. If you set one, you should always set the other.");
TEUCHOS_TEST_FOR_EXCEPTION(lockTol_ < 0, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: \"Locking Tolerance\" must be nonnegative.");
strtmp = pl.get("Locking Norm",std::string("2"));
if (strtmp == "2") {
lockNorm_ = RES_2NORM;
}
else if (strtmp == "M") {
lockNorm_ = RES_ORTH;
}
else {
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: Invalid Locking Norm.");
}
// max locked: default is nev(), must satisfy maxLocked_ + blockSize_ >= nev
if (useLocking_) {
maxLocked_ = pl.get("Max Locked",problem_->getNEV());
TEUCHOS_TEST_FOR_EXCEPTION(maxLocked_ <= 0, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: \"Max Locked\" must be strictly positive.");
}
else {
maxLocked_ = 0;
}
if (useLocking_) {
lockQuorum_ = pl.get("Locking Quorum",1);
TEUCHOS_TEST_FOR_EXCEPTION(lockQuorum_ <= 0, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: \"Locking Quorum\" must be strictly positive.");
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// Ritz shift parameters
// When to shift - what triggers a shift?
strtmp = pl.get("When To Shift", "Always");
if(strtmp == "Never")
whenToShift_ = NEVER_SHIFT;
else if(strtmp == "After Trace Levels")
whenToShift_ = SHIFT_WHEN_TRACE_LEVELS;
else if(strtmp == "Residual Becomes Small")
whenToShift_ = SHIFT_WHEN_RESID_SMALL;
else if(strtmp == "Always")
whenToShift_ = ALWAYS_SHIFT;
else
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: Invalid value for \"When To Shift\"; valid options are \"Never\", \"After Trace Levels\", \"Residual Becomes Small\", \"Always\".");
// How small does the % change in trace have to get before shifting?
traceThresh_ = pl.get("Trace Threshold", 0.02);
TEUCHOS_TEST_FOR_EXCEPTION(traceThresh_ < 0, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: \"Trace Threshold\" must be nonnegative.");
// Shift threshold - if the residual of an eigenpair is less than this, then shift
shiftTol_ = pl.get("Shift Tolerance", 0.1);
TEUCHOS_TEST_FOR_EXCEPTION(shiftTol_ < 0, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: \"Shift Tolerance\" must be nonnegative.");
// Use relative convergence tolerance - scale by eigenvalue?
relShiftTol_ = pl.get("Relative Shift Tolerance", true);
// Which norm to use in determining whether to shift
shiftNorm_ = pl.get("Shift Norm", "2");
TEUCHOS_TEST_FOR_EXCEPTION(shiftNorm_ != "2" && shiftNorm_ != "M", std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: Invalid value for \"Shift Norm\"; valid options are \"2\" and \"M\".");
noSort_ = pl.get("No Sorting", false);
// How to choose shift
strtmp = pl.get("How To Choose Shift", "Adjusted Ritz Values");
if(strtmp == "Largest Converged")
howToShift_ = LARGEST_CONVERGED_SHIFT;
else if(strtmp == "Adjusted Ritz Values")
howToShift_ = ADJUSTED_RITZ_SHIFT;
else if(strtmp == "Ritz Values")
howToShift_ = RITZ_VALUES_SHIFT;
else if(strtmp == "Experimental Shift")
howToShift_ = EXPERIMENTAL_SHIFT;
else
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: Invalid value for \"How To Choose Shift\"; valid options are \"Largest Converged\", \"Adjusted Ritz Values\", \"Ritz Values\".");
// Consider clusters - if all eigenvalues are in one cluster, it's not expecially safe to shift
considerClusters_ = pl.get("Consider Clusters", true);
// Use multiple shifts
useMultipleShifts_ = pl.get("Use Multiple Shifts", true);
/////////////////////////////////////////////////////////////////////////////////////////////////
// Other parameters
// which orthogonalization to use
ortho_ = pl.get("Orthogonalization", "SVQB");
TEUCHOS_TEST_FOR_EXCEPTION(ortho_ != "DGKS" && ortho_ != "SVQB" && ortho_ != "ICGS", std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: Invalid value for \"Orthogonalization\"; valid options are \"DGKS\", \"SVQB\", \"ICGS\".");
strtmp = pl.get("Saddle Solver Type", "Projected Krylov");
if(strtmp == "Projected Krylov")
saddleSolType_ = PROJECTED_KRYLOV_SOLVER;
else if(strtmp == "Schur Complement")
saddleSolType_ = SCHUR_COMPLEMENT_SOLVER;
else if(strtmp == "Block Diagonal Preconditioned Minres")
saddleSolType_ = BD_PREC_MINRES;
else if(strtmp == "HSS Preconditioned Gmres")
saddleSolType_ = HSS_PREC_GMRES;
else
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: Invalid value for \"Saddle Solver Type\"; valid options are \"Projected Krylov\", \"Schur Complement\", and \"Block Diagonal Preconditioned Minres\".");
projectAllVecs_ = pl.get("Project All Vectors", true);
projectLockedVecs_ = pl.get("Project Locked Vectors", true);
computeAllRes_ = pl.get("Compute All Residuals", true);
useRHSR_ = pl.get("Use Residual as RHS", false);
alpha_ = pl.get("HSS: alpha", 1.0);
TEUCHOS_TEST_FOR_EXCEPTION(projectLockedVecs_ && ! projectAllVecs_, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: If you want to project out the locked vectors, you should really project out ALL the vectors of X.");
// Maximum number of inner iterations
maxKrylovIter_ = pl.get("Maximum Krylov Iterations", 200);
TEUCHOS_TEST_FOR_EXCEPTION(maxKrylovIter_ < 1, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: \"Maximum Krylov Iterations\" must be greater than 0.");
// Which eigenvalues we want to get
which_ = pl.get("Which", "SM");
TEUCHOS_TEST_FOR_EXCEPTION(which_ != "SM" && which_ != "LM", std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: Invalid value for \"Which\"; valid options are \"SM\" and \"LM\".");
// Test whether we are shifting without an operator K
// This is a really bad idea
TEUCHOS_TEST_FOR_EXCEPTION(problem_->getOperator() == Teuchos::null && whenToShift_ != NEVER_SHIFT, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: It is an exceptionally bad idea to use Ritz shifts when finding the largest eigenpairs of a standard eigenvalue problem. If we don't use Ritz shifts, it may take extra iterations to converge, but we NEVER have to solve a single linear system. Using Ritz shifts forces us to solve systems of the form (I + sigma A)x=f, and it probably doesn't benefit us enough to outweigh the extra cost. We may add support for this feature in the future, but for now, please set \"When To Shift\" to \"Never\".");
#ifdef BELOS_PSEUDO_BLOCK_GMRES_SOLMGR_HPP
// Test whether we are using a projected preconditioner with multiple Ritz shifts
// We can't currently do this for reasons that are complicated and are explained in the user manual
TEUCHOS_TEST_FOR_EXCEPTION(problem_->getPrec() != Teuchos::null && saddleSolType_ == PROJECTED_KRYLOV_SOLVER && useMultipleShifts_, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: When you use the projected Krylov solver with preconditioning, the preconditioner must be projected as well. In theory, if the preconditioner is SPD, the projected preconditioner will be SPSD, but in practice, it can have small negative eigenvalues, presumably due to machine arithmetic. This means we can't use TraceMin's built-in MINRES, and we are forced to use Belos for now. When you use multiple Ritz shifts, you are essentially using a different operator to solve each linear system. Belos can't handle this right now, but we're working on a solution. For now, please set \"Use Multiple Shifts\" to false.");
#else
// Test whether we are using a projected preconditioner without Belos.
// P Prec P should be positive definite if Prec is positive-definite,
// but it tends not to be in practice, presumably due to machine arithmetic
// As a result, we have to use pseudo-block gmres for now.
// Make sure it's available.
TEUCHOS_TEST_FOR_EXCEPTION(problem_->getPrec() != Teuchos::null && saddleSolType_ == PROJECTED_KRYLOV_SOLVER, std::invalid_argument,
"Anasazi::TraceMinBaseSolMgr: When you use the projected Krylov solver with preconditioning, the preconditioner must be projected as well. In theory, if the preconditioner is SPD, the projected preconditioner will be SPSD, but in practice, it can have small negative eigenvalues, presumably due to machine arithmetic. This means we can't use TraceMin's built-in MINRES, and we are forced to use Belos for now. You didn't install Belos. You have three options to correct this problem:\n1. Reinstall Trilinos with Belos enabled\n2. Don't use a preconditioner\n3. Choose a different method for solving the saddle-point problem (Recommended)");
#endif
}
///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
// solve()
template<class ScalarType, class MV, class OP>
ReturnType
TraceMinBaseSolMgr<ScalarType,MV,OP>::solve()
{
typedef SolverUtils<ScalarType,MV,OP> msutils;
const int nev = problem_->getNEV();
#ifdef TEUCHOS_DEBUG
RCP<Teuchos::FancyOStream>
out = Teuchos::getFancyOStream(Teuchos::rcpFromRef(printer_->stream(Debug)));
out->setShowAllFrontMatter(false).setShowProcRank(true);
*out << "Entering Anasazi::TraceMinBaseSolMgr::solve()\n";
#endif
//////////////////////////////////////////////////////////////////////////////////////
// Sort manager
RCP<BasicSort<MagnitudeType> > sorter = rcp( new BasicSort<MagnitudeType>("SM") );
//////////////////////////////////////////////////////////////////////////////////////
// Handle the spectral transformation if necessary
// TODO: Make sure we undo this before returning...
if(which_ == "LM")
{
RCP<const OP> swapHelper = problem_->getOperator();
problem_->setOperator(problem_->getM());
problem_->setM(swapHelper);
problem_->setProblem();
}
//////////////////////////////////////////////////////////////////////////////////////
// Status tests
//
// convergence
RCP<StatusTest<ScalarType,MV,OP> > convtest;
if (globalTest_ == Teuchos::null) {
if(which_ == "SM")
convtest = rcp( new StatusTestResNorm<ScalarType,MV,OP>(convTol_,nev,convNorm_,relConvTol_) );
else
convtest = rcp( new StatusTestSpecTrans<ScalarType,MV,OP>(convTol_,nev,convNorm_,relConvTol_,true,problem_->getOperator()) );
}
else {
convtest = globalTest_;
}
RCP<StatusTestWithOrdering<ScalarType,MV,OP> > ordertest
= rcp( new StatusTestWithOrdering<ScalarType,MV,OP>(convtest,sorter,nev) );
// locking
RCP<StatusTest<ScalarType,MV,OP> > locktest;
if (useLocking_) {
if (lockingTest_ == Teuchos::null) {
if(which_ == "SM")
locktest = rcp( new StatusTestResNorm<ScalarType,MV,OP>(lockTol_,lockQuorum_,lockNorm_,relLockTol_) );
else
locktest = rcp( new StatusTestSpecTrans<ScalarType,MV,OP>(lockTol_,lockQuorum_,lockNorm_,relLockTol_,true,problem_->getOperator()) );
}
else {
locktest = lockingTest_;
}
}
// for a non-short-circuited OR test, the order doesn't matter
Teuchos::Array<RCP<StatusTest<ScalarType,MV,OP> > > alltests;
alltests.push_back(ordertest);
if (locktest != Teuchos::null) alltests.push_back(locktest);
if (debugTest_ != Teuchos::null) alltests.push_back(debugTest_);
RCP<StatusTestCombo<ScalarType,MV,OP> > combotest
= rcp( new StatusTestCombo<ScalarType,MV,OP>( StatusTestCombo<ScalarType,MV,OP>::OR, alltests) );
// printing StatusTest
RCP<StatusTestOutput<ScalarType,MV,OP> > outputtest;
if ( printer_->isVerbosity(Debug) ) {
outputtest = rcp( new StatusTestOutput<ScalarType,MV,OP>( printer_,combotest,1,Passed+Failed+Undefined ) );
}
else {
outputtest = rcp( new StatusTestOutput<ScalarType,MV,OP>( printer_,combotest,1,Passed ) );
}
//////////////////////////////////////////////////////////////////////////////////////
// Orthomanager
RCP<MatOrthoManager<ScalarType,MV,OP> > ortho;
if (ortho_=="SVQB") {
ortho = rcp( new SVQBOrthoManager<ScalarType,MV,OP>(problem_->getM()) );
} else if (ortho_=="DGKS") {
ortho = rcp( new BasicOrthoManager<ScalarType,MV,OP>(problem_->getM()) );
} else if (ortho_=="ICGS") {
ortho = rcp( new ICGSOrthoManager<ScalarType,MV,OP>(problem_->getM()) );
} else {
TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,"Anasazi::TraceMinBaseSolMgr::solve(): Invalid orthogonalization type.");
}
//////////////////////////////////////////////////////////////////////////////////////
// Parameter list
Teuchos::ParameterList plist;
setParameters(plist);
//////////////////////////////////////////////////////////////////////////////////////
// TraceMinBase solver
RCP<TraceMinBase<ScalarType,MV,OP> > tm_solver
= createSolver(sorter,outputtest,ortho,plist);
// set any auxiliary vectors defined in the problem
RCP< const MV > probauxvecs = problem_->getAuxVecs();
if (probauxvecs != Teuchos::null) {
tm_solver->setAuxVecs( Teuchos::tuple< RCP<const MV> >(probauxvecs) );
}
//////////////////////////////////////////////////////////////////////////////////////
// Storage
//
// lockvecs will contain eigenvectors that have been determined "locked" by the status test
int curNumLocked = 0;
RCP<MV> lockvecs;
// lockvecs is used to hold the locked eigenvectors, as well as for temporary storage when locking.
// when locking, we will lock some number of vectors numnew, where numnew <= maxlocked - curlocked
// we will produce numnew random vectors, which will go into the space with the new basis.
// we will also need numnew storage for the image of these random vectors under A and M;
// columns [curlocked+1,curlocked+numnew] will be used for this storage
if (maxLocked_ > 0) {
lockvecs = MVT::Clone(*problem_->getInitVec(),maxLocked_);
}
std::vector<MagnitudeType> lockvals;
//
// Restarting occurs under two scenarios: when the basis is full and after locking.
//
// For the former, a new basis of size blockSize*numRestartBlocks is generated using the current basis
// and the most significant primitive Ritz vectors (projected eigenvectors).
// [S,L] = eig(KK)
// S = [Sr St] // some for "r"estarting, some are "t"runcated
// newV = V*Sr
// KK_new = newV'*K*newV = Sr'*V'*K*V*Sr = Sr'*KK*Sr
// Therefore, the only multivector operation needed is for the generation of newV.
//
// * If the multiplication is explicit, it requires a workspace of blockSize*numRestartBlocks vectors.
// This space must be specifically allocated for that task, as we don't have any space of that size.
// It (workMV) will be allocated at the beginning of solve()
// * Optionally, the multiplication can be performed implicitly, via a Householder QR factorization of
// Sr. This can be done in situ, using the basis multivector contained in the solver. This requires
// that we cast away the const on the multivector returned from getState(). Workspace for this approach
// is a single vector. the solver's internal storage must be preserved (X,MX,KX,R), requiring us to
// allocate this vector.
//
// For the latter (restarting after locking), the new basis is the same size as existing basis. If numnew
// vectors are locked, they are deflated from the current basis and replaced with randomly generated
// vectors.
// [S,L] = eig(KK)
// S = [Sl Su] // partitioned: "l"ocked and "u"nlocked
// newL = V*Sl = X(locked)
// defV = V*Su
// augV = rand(numnew) // orthogonal to oldL,newL,defV,auxvecs
// newV = [defV augV]
// Kknew = newV'*K*newV = [Su'*KK*Su defV'*K*augV]
// [augV'*K*defV augV'*K*augV]
// locked = [oldL newL]
// Clearly, this operation is more complicated than the previous.
// Here is a list of the significant computations that need to be performed:
// - newL will be put into space in lockvecs, but will be copied from getState().X at the end
// - defV,augV will be stored in workspace the size of the current basis.
// - M*augV and K*augV are needed; they will be stored in lockvecs. As a result, newL will
// not be put into lockvecs until the end.
//
// Therefore, we must allocate workMV when ((maxRestarts_ > 0) || (useLocking_ == true)) && inSituRestart == false
// It will be allocated to size (numBlocks-1)*blockSize
//
// some consts and utils
const ScalarType ONE = SCT::one();
const ScalarType ZERO = SCT::zero();
// go ahead and initialize the solution to nothing in case we throw an exception
Eigensolution<ScalarType,MV> sol;
sol.numVecs = 0;
problem_->setSolution(sol);
int numRestarts = 0;
// enter solve() iterations
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor slvtimer(*_timerSolve);
#endif
// tell tm_solver to iterate
while (1) {
try {
tm_solver->iterate();
////////////////////////////////////////////////////////////////////////////////////
//
//
////////////////////////////////////////////////////////////////////////////////////
if (debugTest_ != Teuchos::null && debugTest_->getStatus() == Passed) {
throw AnasaziError("Anasazi::TraceMinBaseSolMgr::solve(): User-specified debug status test returned Passed.");
}
////////////////////////////////////////////////////////////////////////////////////
//
// check convergence next
//
////////////////////////////////////////////////////////////////////////////////////
else if (ordertest->getStatus() == Passed ) {
// we have convergence
// ordertest->whichVecs() tells us which vectors from lockvecs and solver state are the ones we want
// ordertest->howMany() will tell us how many
break;
}
////////////////////////////////////////////////////////////////////////////////////
//
// check locking if we didn't converge or restart
//
////////////////////////////////////////////////////////////////////////////////////
else if (locktest != Teuchos::null && locktest->getStatus() == Passed) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcktimer(*_timerLocking);
#endif
//
// get current state
TraceMinBaseState<ScalarType,MV> state = tm_solver->getState();
const int curdim = state.curDim;
//
// get number,indices of vectors to be locked
TEUCHOS_TEST_FOR_EXCEPTION(locktest->howMany() <= 0,std::logic_error,
"Anasazi::TraceMinBaseSolMgr::solve(): status test mistake: howMany() non-positive.");
TEUCHOS_TEST_FOR_EXCEPTION(locktest->howMany() != (int)locktest->whichVecs().size(),std::logic_error,
"Anasazi::TraceMinBaseSolMgr::solve(): status test mistake: howMany() not consistent with whichVecs().");
// we should have room to lock vectors; otherwise, locking should have been deactivated
TEUCHOS_TEST_FOR_EXCEPTION(curNumLocked == maxLocked_,std::logic_error,
"Anasazi::TraceMinBaseSolMgr::solve(): status test mistake: locking not deactivated.");
//
// don't lock more than maxLocked_; we didn't allocate enough space.
std::vector<int> tmp_vector_int;
if (curNumLocked + locktest->howMany() > maxLocked_) {
// just use the first of them
for(int i=0; i<maxLocked_-curNumLocked; i++)
tmp_vector_int.push_back(locktest->whichVecs()[i]);
// tmp_vector_int.insert(tmp_vector_int.begin(),locktest->whichVecs().begin(),locktest->whichVecs().begin()+maxLocked_-curNumLocked);
}
else {
tmp_vector_int = locktest->whichVecs();
}
const std::vector<int> lockind(tmp_vector_int);
const int numNewLocked = lockind.size();
//
// generate indices of vectors left unlocked
// curind = [0,...,curdim-1] = UNION( lockind, unlockind )
const int numUnlocked = curdim-numNewLocked;
tmp_vector_int.resize(curdim);
for (int i=0; i<curdim; i++) tmp_vector_int[i] = i;
const std::vector<int> curind(tmp_vector_int); // curind = [0 ... curdim-1]
tmp_vector_int.resize(numUnlocked);
std::set_difference(curind.begin(),curind.end(),lockind.begin(),lockind.end(),tmp_vector_int.begin());
const std::vector<int> unlockind(tmp_vector_int); // unlockind = [0 ... curdim-1] - lockind
tmp_vector_int.clear();
//
// debug printing
if (printer_->isVerbosity(Debug)) {
printer_->print(Debug,"Locking vectors: ");
for (unsigned int i=0; i<lockind.size(); i++) {printer_->stream(Debug) << " " << lockind[i];}
printer_->print(Debug,"\n");
printer_->print(Debug,"Not locking vectors: ");
for (unsigned int i=0; i<unlockind.size(); i++) {printer_->stream(Debug) << " " << unlockind[i];}
printer_->print(Debug,"\n");
}
// Copy eigenvalues we want to lock into lockvals
std::vector<Value<ScalarType> > allvals = tm_solver->getRitzValues();
for(unsigned int i=0; i<allvals.size(); i++)
printer_->stream(Debug) << "Ritz value[" << i << "] = " << allvals[i].realpart << std::endl;
for (int i=0; i<numNewLocked; i++) {
lockvals.push_back(allvals[lockind[i]].realpart);
}
// Copy vectors we want to lock into lockvecs
RCP<const MV> newLocked = MVT::CloneView(*tm_solver->getRitzVectors(),lockind);
std::vector<int> indlock(numNewLocked);
for (int i=0; i<numNewLocked; i++) indlock[i] = curNumLocked+i;
if(useHarmonic_)
{
RCP<MV> tempMV = MVT::CloneCopy(*newLocked);
ortho->normalizeMat(*tempMV);
MVT::SetBlock(*tempMV,indlock,*lockvecs);
}
else
{
MVT::SetBlock(*newLocked,indlock,*lockvecs);
}
// Tell the StatusTestWithOrdering that things have been locked
// This is VERY important
// If this set of lines is removed, the code does not terminate correctly
if(noSort_)
{
for(unsigned int aliciaInd=0; aliciaInd<lockvals.size(); aliciaInd++)
{
lockvals[aliciaInd] = 0.0;
}
}
ordertest->setAuxVals(lockvals);
// Set the auxiliary vectors so that we remain orthogonal to the ones we locked
// Remember to include any aux vecs provided by the user
curNumLocked += numNewLocked;
if(ordertest->getStatus() == Passed) break;
std::vector<int> curlockind(curNumLocked);
for (int i=0; i<curNumLocked; i++) curlockind[i] = i;
RCP<const MV> curlocked = MVT::CloneView(*lockvecs,curlockind);
Teuchos::Array< RCP<const MV> > aux;
if (probauxvecs != Teuchos::null) aux.push_back(probauxvecs);
aux.push_back(curlocked);
tm_solver->setAuxVecs(aux);
// Disable locking if we have locked the maximum number of things
printer_->stream(Debug) << "curNumLocked: " << curNumLocked << std::endl;
printer_->stream(Debug) << "maxLocked: " << maxLocked_ << std::endl;
if (curNumLocked == maxLocked_) {
// disabled locking now
combotest->removeTest(locktest);
locktest = Teuchos::null;
printer_->stream(Debug) << "Removed locking test\n";
}
int newdim = numRestartBlocks_*blockSize_;
TraceMinBaseState<ScalarType,MV> newstate;
if(newdim <= numUnlocked)
{
if(useHarmonic_)
{
std::vector<int> desiredSubscripts(newdim);
for(int i=0; i<newdim; i++)
{
desiredSubscripts[i] = unlockind[i];
printer_->stream(Debug) << "H desiredSubscripts[" << i << "] = " << desiredSubscripts[i] << std::endl;
}
newstate.V = MVT::CloneView(*tm_solver->getRitzVectors(),desiredSubscripts);
newstate.curDim = newdim;
}
else
{
std::vector<int> desiredSubscripts(newdim);
for(int i=0; i<newdim; i++)
{
desiredSubscripts[i] = unlockind[i];
printer_->stream(Debug) << "desiredSubscripts[" << i << "] = " << desiredSubscripts[i] << std::endl;
}
copyPartOfState(state, newstate, desiredSubscripts);
}
}
else
{
// TODO: Come back to this and make it more efficient
// Replace the converged eigenvectors with random ones
int nrandom = newdim-numUnlocked;
RCP<const MV> helperMV;
RCP<MV> totalV = MVT::Clone(*tm_solver->getRitzVectors(),newdim);
// Holds old things that we're keeping
tmp_vector_int.resize(numUnlocked);
for(int i=0; i<numUnlocked; i++) tmp_vector_int[i] = i;
RCP<MV> oldV = MVT::CloneViewNonConst(*totalV,tmp_vector_int);
// Copy over the old things
if(useHarmonic_)
helperMV = MVT::CloneView(*tm_solver->getRitzVectors(),unlockind);
else
helperMV = MVT::CloneView(*state.V,unlockind);
MVT::Assign(*helperMV,*oldV);
// Holds random vectors we're generating
tmp_vector_int.resize(nrandom);
for(int i=0; i<nrandom; i++) tmp_vector_int[i] = i+numUnlocked;
RCP<MV> newV = MVT::CloneViewNonConst(*totalV,tmp_vector_int);
// Create random things
MVT::MvRandom(*newV);
newstate.V = totalV;
newstate.curDim = newdim;
// Copy Ritz shifts
RCP< std::vector<ScalarType> > helperRS = rcp( new std::vector<ScalarType>(blockSize_) );
for(unsigned int i=0; i<(unsigned int)blockSize_; i++)
{
if(i < unlockind.size() && unlockind[i] < blockSize_)
(*helperRS)[i] = (*state.ritzShifts)[unlockind[i]];
else
(*helperRS)[i] = ZERO;
}
newstate.ritzShifts = helperRS;
}
// Determine the largest safe shift
newstate.largestSafeShift = std::abs(lockvals[0]);
for(size_t i=0; i<lockvals.size(); i++)
newstate.largestSafeShift = std::max(std::abs(lockvals[i]), newstate.largestSafeShift);
// Prepare new state, removing converged vectors
// TODO: Init will perform some unnecessary calculations; look into it
// TODO: The residual norms should be part of the state
newstate.NEV = state.NEV - numNewLocked;
tm_solver->initialize(newstate);
} // end of locking
////////////////////////////////////////////////////////////////////////////////////
//
// check for restarting before locking: if we need to lock, it will happen after the restart
//
////////////////////////////////////////////////////////////////////////////////////
else if ( needToRestart(tm_solver) ) {
// if performRestart returns false, we exceeded the maximum number of restarts
if(performRestart(numRestarts, tm_solver) == false)
break;
} // end of restarting
////////////////////////////////////////////////////////////////////////////////////
//
// we returned from iterate(), but none of our status tests Passed.
// something is wrong, and it is probably our fault.
//
////////////////////////////////////////////////////////////////////////////////////
else {
TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,"Anasazi::TraceMinBaseSolMgr::solve(): Invalid return from tm_solver::iterate().");
}
}
catch (const AnasaziError &err) {
printer_->stream(Errors)
<< "Anasazi::TraceMinBaseSolMgr::solve() caught unexpected exception from Anasazi::TraceMinBase::iterate() at iteration " << tm_solver->getNumIters() << std::endl
<< err.what() << std::endl
<< "Anasazi::TraceMinBaseSolMgr::solve() returning Unconverged with no solutions." << std::endl;
return Unconverged;
}
}
sol.numVecs = ordertest->howMany();
if (sol.numVecs > 0) {
sol.Evecs = MVT::Clone(*problem_->getInitVec(),sol.numVecs);
sol.Espace = sol.Evecs;
sol.Evals.resize(sol.numVecs);
std::vector<MagnitudeType> vals(sol.numVecs);
// copy them into the solution
std::vector<int> which = ordertest->whichVecs();
// indices between [0,blockSize) refer to vectors/values in the solver
// indices between [-curNumLocked,-1] refer to locked vectors/values [0,curNumLocked)
// everything has already been ordered by the solver; we just have to partition the two references
std::vector<int> inlocked(0), insolver(0);
for (unsigned int i=0; i<which.size(); i++) {
if (which[i] >= 0) {
TEUCHOS_TEST_FOR_EXCEPTION(which[i] >= blockSize_,std::logic_error,"Anasazi::TraceMinBaseSolMgr::solve(): positive indexing mistake from ordertest.");
insolver.push_back(which[i]);
}
else {
// sanity check
TEUCHOS_TEST_FOR_EXCEPTION(which[i] < -curNumLocked,std::logic_error,"Anasazi::TraceMinBaseSolMgr::solve(): negative indexing mistake from ordertest.");
inlocked.push_back(which[i] + curNumLocked);
}
}
TEUCHOS_TEST_FOR_EXCEPTION(insolver.size() + inlocked.size() != (unsigned int)sol.numVecs,std::logic_error,"Anasazi::TraceMinBaseSolMgr::solve(): indexing mistake.");
// set the vecs,vals in the solution
if (insolver.size() > 0) {
// set vecs
int lclnum = insolver.size();
std::vector<int> tosol(lclnum);
for (int i=0; i<lclnum; i++) tosol[i] = i;
RCP<const MV> v = MVT::CloneView(*tm_solver->getRitzVectors(),insolver);
MVT::SetBlock(*v,tosol,*sol.Evecs);
// set vals
std::vector<Value<ScalarType> > fromsolver = tm_solver->getRitzValues();
for (unsigned int i=0; i<insolver.size(); i++) {
vals[i] = fromsolver[insolver[i]].realpart;
}
}
// get the vecs,vals from locked storage
if (inlocked.size() > 0) {
int solnum = insolver.size();
// set vecs
int lclnum = inlocked.size();
std::vector<int> tosol(lclnum);
for (int i=0; i<lclnum; i++) tosol[i] = solnum + i;
RCP<const MV> v = MVT::CloneView(*lockvecs,inlocked);
MVT::SetBlock(*v,tosol,*sol.Evecs);
// set vals
for (unsigned int i=0; i<inlocked.size(); i++) {
vals[i+solnum] = lockvals[inlocked[i]];
}
}
// undo the spectral transformation if necessary
// if we really passed the solver Bx = \lambda A x, invert the eigenvalues
if(which_ == "LM")
{
for(size_t i=0; i<vals.size(); i++)
vals[i] = ONE/vals[i];
}
// sort the eigenvalues and permute the eigenvectors appropriately
{
std::vector<int> order(sol.numVecs);
sorter->sort(vals,Teuchos::rcpFromRef(order),sol.numVecs);
// store the values in the Eigensolution
for (int i=0; i<sol.numVecs; i++) {
sol.Evals[i].realpart = vals[i];
sol.Evals[i].imagpart = MT::zero();
}
// now permute the eigenvectors according to order
msutils::permuteVectors(sol.numVecs,order,*sol.Evecs);
}
// setup sol.index, remembering that all eigenvalues are real so that index = {0,...,0}
sol.index.resize(sol.numVecs,0);
}
}
// print final summary
tm_solver->currentStatus(printer_->stream(FinalSummary));
printParameters(printer_->stream(FinalSummary));
// print timing information
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
if ( printer_->isVerbosity( TimingDetails ) ) {
Teuchos::TimeMonitor::summarize( printer_->stream( TimingDetails ) );
}
#endif
problem_->setSolution(sol);
printer_->stream(Debug) << "Returning " << sol.numVecs << " eigenpairs to eigenproblem." << std::endl;
// get the number of iterations taken for this call to solve().
numIters_ = tm_solver->getNumIters();
if (sol.numVecs < nev) {
return Unconverged; // return from TraceMinBaseSolMgr::solve()
}
return Converged; // return from TraceMinBaseSolMgr::solve()
}
template <class ScalarType, class MV, class OP>
void
TraceMinBaseSolMgr<ScalarType,MV,OP>::setGlobalStatusTest(
const RCP< StatusTest<ScalarType,MV,OP> > &global)
{
globalTest_ = global;
}
template <class ScalarType, class MV, class OP>
const RCP< StatusTest<ScalarType,MV,OP> > &
TraceMinBaseSolMgr<ScalarType,MV,OP>::getGlobalStatusTest() const
{
return globalTest_;
}
template <class ScalarType, class MV, class OP>
void
TraceMinBaseSolMgr<ScalarType,MV,OP>::setDebugStatusTest(
const RCP< StatusTest<ScalarType,MV,OP> > &debug)
{
debugTest_ = debug;
}
template <class ScalarType, class MV, class OP>
const RCP< StatusTest<ScalarType,MV,OP> > &
TraceMinBaseSolMgr<ScalarType,MV,OP>::getDebugStatusTest() const
{
return debugTest_;
}
template <class ScalarType, class MV, class OP>
void
TraceMinBaseSolMgr<ScalarType,MV,OP>::setLockingStatusTest(
const RCP< StatusTest<ScalarType,MV,OP> > &locking)
{
lockingTest_ = locking;
}
template <class ScalarType, class MV, class OP>
const RCP< StatusTest<ScalarType,MV,OP> > &
TraceMinBaseSolMgr<ScalarType,MV,OP>::getLockingStatusTest() const
{
return lockingTest_;
}
template <class ScalarType, class MV, class OP>
void TraceMinBaseSolMgr<ScalarType,MV,OP>::copyPartOfState(const TraceMinBaseState<ScalarType,MV>& oldState, TraceMinBaseState<ScalarType,MV>& newState, const std::vector<int> indToCopy) const
{
const ScalarType ONE = Teuchos::ScalarTraits<MagnitudeType>::one();
const ScalarType ZERO = Teuchos::ScalarTraits<MagnitudeType>::zero();
newState.curDim = indToCopy.size();
std::vector<int> fullIndices(oldState.curDim);
for(int i=0; i<oldState.curDim; i++) fullIndices[i] = i;
// Initialize with X.
// Note that we didn't compute enough vectors of X, but we can very easily using the Ritz vectors.
// That's why they're part of the state.
// Note that there will ALWAYS be enough vectors
// Helpful vectors for computing views and whatnot
std::vector<int> oldIndices;
std::vector<int> newIndices;
for(int i=0; i<newState.curDim; i++)
{
if(indToCopy[i] < blockSize_)
oldIndices.push_back(indToCopy[i]);
else
newIndices.push_back(indToCopy[i]);
}
int olddim = oldIndices.size();
int newdim = newIndices.size();
// If there are no new vectors being copied
if(computeAllRes_)
{
newState.V = MVT::CloneView(*oldState.X, indToCopy);
newState.R = MVT::CloneView(*oldState.R, indToCopy);
newState.X = newState.V;
if(problem_->getOperator() != Teuchos::null)
{
newState.KV = MVT::CloneView(*oldState.KX, indToCopy);
newState.KX = newState.KV;
}
else
{
newState.KV = Teuchos::null;
newState.KX = Teuchos::null;
}
if(problem_->getM() != Teuchos::null)
{
newState.MopV = MVT::CloneView(*oldState.MX, indToCopy);
newState.MX = newState.MopV;
}
else
{
newState.MopV = Teuchos::null;
newState.MX = Teuchos::null;
}
}
else if(newdim == 0)
{
std::vector<int> blockind(blockSize_);
for(int i=0; i<blockSize_; i++)
blockind[i] = i;
// Initialize with X
newState.V = MVT::CloneView(*oldState.X, blockind);
newState.KV = MVT::CloneView(*oldState.KX, blockind);
newState.R = MVT::CloneView(*oldState.R, blockind);
newState.X = MVT::CloneView(*newState.V, blockind);
newState.KX = MVT::CloneView(*newState.KV, blockind);
if(problem_->getM() != Teuchos::null)
{
newState.MopV = MVT::CloneView(*oldState.MX, blockind);
newState.MX = MVT::CloneView(*newState.MopV, blockind);
}
else
{
newState.MopV = Teuchos::null;
newState.MX = Teuchos::null;
}
}
else
{
// More helpful vectors
std::vector<int> oldPart(olddim);
for(int i=0; i<olddim; i++) oldPart[i] = i;
std::vector<int> newPart(newdim);
for(int i=0; i<newdim; i++) newPart[i] = olddim+i;
// Helpful multivectors for views and whatnot
RCP<MV> helper = MVT::Clone(*oldState.V,newState.curDim);
RCP<MV> oldHelper = MVT::CloneViewNonConst(*helper,oldPart);
RCP<MV> newHelper = MVT::CloneViewNonConst(*helper,newPart);
RCP<const MV> viewHelper;
// Get the parts of the Ritz vectors we are interested in.
Teuchos::SerialDenseMatrix<int,ScalarType> newRV(oldState.curDim,newdim);
for(int r=0; r<oldState.curDim; r++)
{
for(int c=0; c<newdim; c++)
newRV(r,c) = (*oldState.RV)(r,newIndices[c]);
}
// We're going to compute X as V*RitzVecs
viewHelper = MVT::CloneView(*oldState.V,fullIndices);
MVT::MvTimesMatAddMv(ONE,*viewHelper,newRV,ZERO,*newHelper);
viewHelper = MVT::CloneView(*oldState.X,oldIndices);
MVT::Assign(*viewHelper,*oldHelper);
newState.V = MVT::CloneCopy(*helper);
// Also compute KX as KV*RitzVecs
viewHelper = MVT::CloneView(*oldState.KV,fullIndices);
MVT::MvTimesMatAddMv(ONE,*viewHelper,newRV,ZERO,*newHelper);
viewHelper = MVT::CloneView(*oldState.KX,oldIndices);
MVT::Assign(*viewHelper,*oldHelper);
newState.KV = MVT::CloneCopy(*helper);
// Do the same with MX if necessary
if(problem_->getM() != Teuchos::null)
{
viewHelper = MVT::CloneView(*oldState.MopV,fullIndices);
MVT::MvTimesMatAddMv(ONE,*viewHelper,newRV,ZERO,*newHelper);
viewHelper = MVT::CloneView(*oldState.MX,oldIndices);
MVT::Assign(*viewHelper,*oldHelper);
newState.MopV = MVT::CloneCopy(*helper);
}
else
newState.MopV = newState.V;
// Get X, MX, KX
std::vector<int> blockVec(blockSize_);
for(int i=0; i<blockSize_; i++) blockVec[i] = i;
newState.X = MVT::CloneView(*newState.V,blockVec);
newState.KX = MVT::CloneView(*newState.KV,blockVec);
newState.MX = MVT::CloneView(*newState.MopV,blockVec);
// Update the residuals
if(blockSize_-oldIndices.size() > 0)
{
// There are vectors we have not computed the residual for yet
newPart.resize(blockSize_-oldIndices.size());
helper = MVT::Clone(*oldState.V,blockSize_);
oldHelper = MVT::CloneViewNonConst(*helper,oldPart);
newHelper = MVT::CloneViewNonConst(*helper,newPart);
RCP<MV> scaledMV = MVT::CloneCopy(*newState.MX,newPart);
RCP<const MV> localKV = MVT::CloneView(*newState.KX,newPart);
std::vector<ScalarType> scalarVec(blockSize_-oldIndices.size());
for(unsigned int i=0; i<(unsigned int)blockSize_-oldIndices.size(); i++) scalarVec[i] = (*oldState.T)[newPart[i]];
MVT::MvScale(*scaledMV,scalarVec);
helper = MVT::Clone(*oldState.V,blockSize_);
oldHelper = MVT::CloneViewNonConst(*helper,oldPart);
newHelper = MVT::CloneViewNonConst(*helper,newPart);
MVT::MvAddMv(ONE,*localKV,-ONE,*scaledMV,*newHelper);
viewHelper = MVT::CloneView(*oldState.R,oldIndices);
MVT::Assign(*viewHelper,*oldHelper);
newState.R = MVT::CloneCopy(*helper);
}
else
newState.R = oldState.R;
}
// Since we are setting V:=X, V is orthonormal
newState.isOrtho = true;
// Get the first eigenvalues
RCP< std::vector<ScalarType> > helperT = rcp( new std::vector<ScalarType>(newState.curDim) );
for(int i=0; i<newState.curDim; i++) (*helperT)[i] = (*oldState.T)[indToCopy[i]];
newState.T = helperT;
// X'KX is diag(T)
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > newKK = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(newState.curDim,newState.curDim) );
for(int i=0; i<newState.curDim; i++)
(*newKK)(i,i) = (*newState.T)[i];
newState.KK = newKK;
// The associated Ritz vectors are I
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > newRV = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(newState.curDim,newState.curDim) );
for(int i=0; i<newState.curDim; i++)
(*newRV)(i,i) = ONE;
newState.RV = newRV;
// Get the Ritz shifts
RCP< std::vector<ScalarType> > helperRS = rcp( new std::vector<ScalarType>(blockSize_) );
for(int i=0; i<blockSize_; i++)
{
if(indToCopy[i] < blockSize_)
(*helperRS)[i] = (*oldState.ritzShifts)[indToCopy[i]];
else
(*helperRS)[i] = ZERO;
}
newState.ritzShifts = helperRS;
}
template <class ScalarType, class MV, class OP>
void TraceMinBaseSolMgr<ScalarType,MV,OP>::setParameters(Teuchos::ParameterList &pl) const
{
pl.set("Block Size", blockSize_);
pl.set("Num Blocks", numBlocks_);
pl.set("Num Restart Blocks", numRestartBlocks_);
pl.set("When To Shift", whenToShift_);
pl.set("Trace Threshold", traceThresh_);
pl.set("Shift Tolerance", shiftTol_);
pl.set("Relative Shift Tolerance", relShiftTol_);
pl.set("Shift Norm", shiftNorm_);
pl.set("How To Choose Shift", howToShift_);
pl.set("Consider Clusters", considerClusters_);
pl.set("Use Multiple Shifts", useMultipleShifts_);
pl.set("Saddle Solver Type", saddleSolType_);
pl.set("Project All Vectors", projectAllVecs_);
pl.set("Project Locked Vectors", projectLockedVecs_);
pl.set("Compute All Residuals", computeAllRes_);
pl.set("Use Residual as RHS", useRHSR_);
pl.set("Use Harmonic Ritz Values", useHarmonic_);
pl.set("Maximum Krylov Iterations", maxKrylovIter_);
pl.set("HSS: alpha", alpha_);
}
template <class ScalarType, class MV, class OP>
void TraceMinBaseSolMgr<ScalarType,MV,OP>::printParameters(std::ostream &os) const
{
os << "\n\n\n";
os << "========================================\n";
os << "========= TraceMin parameters ==========\n";
os << "========================================\n";
os << "=========== Block parameters ===========\n";
os << "Block Size: " << blockSize_ << std::endl;
os << "Num Blocks: " << numBlocks_ << std::endl;
os << "Num Restart Blocks: " << numRestartBlocks_ << std::endl;
os << "======== Convergence parameters ========\n";
os << "Convergence Tolerance: " << convTol_ << std::endl;
os << "Relative Convergence Tolerance: " << relConvTol_ << std::endl;
os << "========== Locking parameters ==========\n";
os << "Use Locking: " << useLocking_ << std::endl;
os << "Locking Tolerance: " << lockTol_ << std::endl;
os << "Relative Locking Tolerance: " << relLockTol_ << std::endl;
os << "Max Locked: " << maxLocked_ << std::endl;
os << "Locking Quorum: " << lockQuorum_ << std::endl;
os << "========== Shifting parameters =========\n";
os << "When To Shift: ";
if(whenToShift_ == NEVER_SHIFT) os << "Never\n";
else if(whenToShift_ == SHIFT_WHEN_TRACE_LEVELS) os << "After Trace Levels\n";
else if(whenToShift_ == SHIFT_WHEN_RESID_SMALL) os << "Residual Becomes Small\n";
else if(whenToShift_ == ALWAYS_SHIFT) os << "Always\n";
os << "Consider Clusters: " << considerClusters_ << std::endl;
os << "Trace Threshohld: " << traceThresh_ << std::endl;
os << "Shift Tolerance: " << shiftTol_ << std::endl;
os << "Relative Shift Tolerance: " << relShiftTol_ << std::endl;
os << "How To Choose Shift: ";
if(howToShift_ == LARGEST_CONVERGED_SHIFT) os << "Largest Converged\n";
else if(howToShift_ == ADJUSTED_RITZ_SHIFT) os << "Adjusted Ritz Values\n";
else if(howToShift_ == RITZ_VALUES_SHIFT) os << "Ritz Values\n";
os << "Use Multiple Shifts: " << useMultipleShifts_ << std::endl;
os << "=========== Other parameters ===========\n";
os << "Orthogonalization: " << ortho_ << std::endl;
os << "Saddle Solver Type: ";
if(saddleSolType_ == PROJECTED_KRYLOV_SOLVER) os << "Projected Krylov\n";
else if(saddleSolType_ == SCHUR_COMPLEMENT_SOLVER) os << "Schur Complement\n";
os << "Project All Vectors: " << projectAllVecs_ << std::endl;
os << "Project Locked Vectors: " << projectLockedVecs_ << std::endl;
os << "Compute All Residuals: " << computeAllRes_ << std::endl;
os << "========================================\n\n\n";
}
}} // end Anasazi namespace
#endif /* ANASAZI_TraceMinBase_SOLMGR_HPP */
|