This file is indexed.

/usr/include/trilinos/AnasaziTraceMin.hpp is in libtrilinos-anasazi-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
//
//                 Anasazi: Block Eigensolvers Package
//

/*! \file AnasaziTraceMin.hpp
  \brief Implementation of the trace minimization eigensolver
*/

#ifndef ANASAZI_TRACEMIN_HPP
#define ANASAZI_TRACEMIN_HPP

#include "AnasaziTypes.hpp"
#include "AnasaziBasicSort.hpp"
#include "AnasaziTraceMinBase.hpp"

#include "Epetra_Operator.h"

#include "AnasaziEigensolver.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "Teuchos_ScalarTraits.hpp"

#include "AnasaziMatOrthoManager.hpp"
#include "AnasaziSolverUtils.hpp"

#include "Teuchos_LAPACK.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseSolver.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"

// TODO: TraceMin performs some unnecessary computations upon restarting.  Fix it!

namespace Anasazi {
namespace Experimental {
/*! \class TraceMin

    \brief This class implements a TraceMIN iteration, a preconditioned iteration
    for solving linear symmetric positive definite eigenproblems.

    %TraceMin works by solving a constrained minimization problem
    \f[ \textrm{min trace}\left(Y^TKY\right) \textrm{ such that } Y^TMY = I\f]
    The Y which satisfies this problem is the set of eigenvectors corresponding to
    the eigenvalues of smallest magnitude.  While %TraceMin is capable of finding any
    eigenpairs of \f$KX = MX \Sigma\f$ (where K is symmetric and M symmetric positive
    definite), it converges to the eigenvalues of smallest magnitude of whatever it is
    given.  If a different set of eigenpairs is desired (such as the absolute smallest
    or the ones closest to a given shift), please perform a spectral transformation
    before passing the Eigenproblem to the solver.

    A %TraceMin iteration consists of the following operations:
    -# Solve the saddle point problem
          \f[\left[\begin{array}{lr} K & MX \\ X^TM & 0\end{array}\right]
          \left[\begin{array}{l} V \\ \tilde{L}\end{array}\right] =
          \left[\begin{array}{l} 0 \\ I\end{array}\right]\f]
    -# Form a section out of the current subspace V such that \f$X^TKX = \Sigma\f$ and
       \f$X^TMX = I\f$, where \f$\Sigma\f$ is diagonal.  \f$\left(\Sigma,X\right)\f$ is
       an approximation of the eigenpairs of smallest magnitude.
    -# Compute the new residual and check for convergence.

    The saddle point problem need not be solved to a low relative residual and can be
    solved either by directly forming the Schur complement or by using a projected
    Krylov subspace method to solve
    \f[ \left(PKP\right) \Delta = PMX \textrm{ with } P=I-BX\left(X^TB^2X\right)^{-1}X^TB\f]
    Then V is constructed as \f$V=X-\Delta\f$.  If a preconditioner H is used with the
    projected Krylov method, it is applied as
    \f[F=\left[I-H^{-1}BX\left(X^TBH^{-1}BX\right)^{-1}X^TB\right]H^{-1}\f]
    and we solve \f$FK\Delta = FMX\f$.
    (See A Parallel Implementation of the Trace Minimization Eigensolver by Eloy Romero
    and Jose E. Roman.)

    The convergence rate of %TraceMin is based on the distribution of eigenvalues.  If
    the eigenvalues are clustered far away from the origin, we have a slow rate of
    convergence.  We can improve our convergence rate by taking advantage of Ritz
    shifts.  Instead of solving \f$Kx=\lambda Mx\f$, we solve
    \f$\left(K-\sigma M\right) x = \left(\lambda - \sigma\right)Mx\f$.

    This method is described in <em>A Trace Minimization Algorithm for
    the Generalized Eigenvalue Problem</em>, Ahmed H. Sameh, John A.
    Wisniewski, SIAM Journal on Numerical Analysis, 19(6), pp. 1243-1259
    (1982)

    \ingroup anasazi_solver_framework

    \author Alicia Klinvex
*/
  template <class ScalarType, class MV, class OP>
  class TraceMin : public TraceMinBase<ScalarType,MV,OP> {
  public:
    //! @name Constructor/Destructor
    //@{

    /*! \brief %TraceMin constructor with eigenproblem, solver utilities, and
     *  parameter list of solver options.
     *
     * This constructor takes pointers required by the eigensolver, in addition
     * to a parameter list of options for the eigensolver. These options include
     * the following:
     *   - \c "Block Size" - an \c int specifying the subspace dimension used
     *     by the algorithm. This can also be specified using the setBlockSize()
     *     method.
     *   - \c "Maximum Iterations" - an \c int specifying the maximum number of
     *     %TraceMin iterations.
     *   - \c "Saddle Solver Type" - a \c string specifying the algorithm to use
     *     in solving the saddle point problem: "Schur Complement" or "Projected
     *     Krylov". Default: "Projected Krylov"
     *      - \c "Schur Complement": We explicitly form the Schur complement and
     *        use it to solve the linear system.  This option may be faster, but
     *        it is less numerically stable and does not ensure orthogonality
     *        between the current iterate and the update.
     *      - \c "Projected Krylov": Use a projected iterative method to solve
     *        the linear system. If %TraceMin was not given a preconditioner, it
     *        will use MINRES.  Otherwise, it will use GMRES.
     *   - \c "Shift Type" - a \c string specifying how to choose Ritz shifts:
     *        "No Shift", "Locked Shift", "Trace Leveled Shift", or "Original Shift".
     *        Default: "Trace Leveled Shift"
     *      - \c "No Shift": Do not perform Ritz shifts.  This option produces
     *        guaranteed convergence but converges linearly.  Not recommended.
     *      - \c "Locked Shift": Do not perform Ritz shifts until an eigenpair is
     *        locked.  Then, shift based on the largest converged eigenvalue.
     *        This option is roughly as safe as "No Shift" but may be faster.
     *      - \c "Trace Leveled Shift": Do not perform Ritz shifts until the trace
     *        of \f$X^TKX\f$ (i.e. the quantity being minimized has stagnated.
     *        Then, shift based on the strategy proposed in <em>The trace
     *        minimization method for the symmetric generalized eigenvalue problem.</em>
     *        Highly recommended.
     *      - \c "Original Shift": The original shifting strategy proposed in
     *        "The trace minimization method for the symmetric generalized
     *        eigenvalue problem."  Compute shifts based on the Ritz values,
     *        residuals, and clustering of the eigenvalues.  May produce incorrect
     *        results for indefinite matrices or small subspace dimensions.
     */
    TraceMin( const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> >    &problem,
                   const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
                   const Teuchos::RCP<OutputManager<ScalarType> >         &printer,
                   const Teuchos::RCP<StatusTest<ScalarType,MV,OP> >      &tester,
                   const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
                   Teuchos::ParameterList &params
                 );

  private:
    //
    // Convenience typedefs
    //
    typedef SolverUtils<ScalarType,MV,OP> Utils;
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename SCT::magnitudeType MagnitudeType;
    const MagnitudeType ONE;
    const MagnitudeType ZERO;
    const MagnitudeType NANVAL;

    // TraceMin specific methods
    void addToBasis(const Teuchos::RCP<const MV> Delta);

    void harmonicAddToBasis(const Teuchos::RCP<const MV> Delta);
  };

  //////////////////////////////////////////////////////////////////////////////////////////////////
  //////////////////////////////////////////////////////////////////////////////////////////////////
  //
  // Implementations
  //
  //////////////////////////////////////////////////////////////////////////////////////////////////
  //////////////////////////////////////////////////////////////////////////////////////////////////


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Constructor
  template <class ScalarType, class MV, class OP>
  TraceMin<ScalarType,MV,OP>::TraceMin(
        const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> >    &problem,
        const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
        const Teuchos::RCP<OutputManager<ScalarType> >         &printer,
        const Teuchos::RCP<StatusTest<ScalarType,MV,OP> >      &tester,
        const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
        Teuchos::ParameterList &params
        ) :
    TraceMinBase<ScalarType,MV,OP>(problem,sorter,printer,tester,ortho,params),
    ONE(Teuchos::ScalarTraits<MagnitudeType>::one()),
    ZERO(Teuchos::ScalarTraits<MagnitudeType>::zero()),
    NANVAL(Teuchos::ScalarTraits<MagnitudeType>::nan())
  {
  }


  template <class ScalarType, class MV, class OP>
  void TraceMin<ScalarType,MV,OP>::addToBasis(const Teuchos::RCP<const MV> Delta)
  {
    MVT::MvAddMv(ONE,*this->X_,-ONE,*Delta,*this->V_);

    if(this->hasM_)
    {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
      Teuchos::TimeMonitor lcltimer( *this->timerMOp_ );
#endif
      this->count_ApplyM_+= this->blockSize_;

      OPT::Apply(*this->MOp_,*this->V_,*this->MV_);
    }

    int rank;
    {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
      Teuchos::TimeMonitor lcltimer( *this->timerOrtho_ );
#endif

      if(this->numAuxVecs_ > 0)
      {
        rank = this->orthman_->projectAndNormalizeMat(*this->V_,this->auxVecs_,
               Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)),
               Teuchos::null,this->MV_,this->MauxVecs_);
      }
      else
      {
        rank = this->orthman_->normalizeMat(*this->V_,Teuchos::null,this->MV_);
      }
    }

    // FIXME (mfh 07 Oct 2014) This variable is currently unused, but
    // it would make sense to use it to check whether the block is
    // rank deficient.
    (void) rank;

    if(this->Op_ != Teuchos::null)
    {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
      Teuchos::TimeMonitor lcltimer( *this->timerOp_ );
#endif
      this->count_ApplyOp_+= this->blockSize_;
      OPT::Apply(*this->Op_,*this->V_,*this->KV_);
    }
  }



  template <class ScalarType, class MV, class OP>
  void TraceMin<ScalarType,MV,OP>::harmonicAddToBasis(const Teuchos::RCP<const MV> Delta)
  {
    // V = X - Delta
    MVT::MvAddMv(ONE,*this->X_,-ONE,*Delta,*this->V_);

    // Project out auxVecs
    if(this->numAuxVecs_ > 0)
    {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
      Teuchos::TimeMonitor lcltimer( *this->timerOrtho_ );
#endif
      this->orthman_->projectMat(*this->V_,this->auxVecs_);
    }

    // Compute KV
    if(this->Op_ != Teuchos::null)
    {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
      Teuchos::TimeMonitor lcltimer( *this->timerOp_ );
#endif
      this->count_ApplyOp_+= this->blockSize_;

      OPT::Apply(*this->Op_,*this->V_,*this->KV_);
    }

    // Normalize lclKV
    RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > gamma = rcp(new Teuchos::SerialDenseMatrix<int,ScalarType>(this->blockSize_,this->blockSize_));
    int rank = this->orthman_->normalizeMat(*this->KV_,gamma);
    // FIXME (mfh 18 Feb 2015) It would make sense to check the rank.
    (void) rank;

    // lclV = lclV/gamma
    Teuchos::SerialDenseSolver<int,ScalarType> SDsolver;
    SDsolver.setMatrix(gamma);
    SDsolver.invert();
    RCP<MV> tempMV = MVT::CloneCopy(*this->V_);
    MVT::MvTimesMatAddMv(ONE,*tempMV,*gamma,ZERO,*this->V_);

    // Compute MV
    if(this->hasM_)
    {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
      Teuchos::TimeMonitor lcltimer( *this->timerMOp_ );
#endif
      this->count_ApplyM_+= this->blockSize_;

      OPT::Apply(*this->MOp_,*this->V_,*this->MV_);
    }
  }

}} // End of namespace Anasazi

#endif

// End of file AnasaziTraceMin.hpp