/usr/include/trilinos/AnasaziThyraAdapter.hpp is in libtrilinos-anasazi-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file AnasaziThyraAdapter.hpp
\brief Specializations of the Anasazi multi-vector and operator traits
classes using Thyra base classes LinearOpBase and MultiVectorBase.
*/
#ifndef ANASAZI_THYRA_ADAPTER_HPP
#define ANASAZI_THYRA_ADAPTER_HPP
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "AnasaziConfigDefs.hpp"
#include <Thyra_DetachedMultiVectorView.hpp>
#include <Thyra_MultiVectorBase.hpp>
#include <Thyra_MultiVectorStdOps.hpp>
#include <Thyra_VectorStdOps.hpp>
#include <Teuchos_Ptr.hpp>
#include <Teuchos_ArrayRCP.hpp>
#include <Teuchos_ArrayView.hpp>
namespace Anasazi {
////////////////////////////////////////////////////////////////////////////
//
// Implementation of the Anasazi::MultiVecTraits for Thyra::MultiVectorBase
//
////////////////////////////////////////////////////////////////////////////
/*!
\brief Template specialization of Anasazi::MultiVecTraits class using the
Thyra::MultiVectorBase class.
This interface will ensure that any implementation of MultiVectorBaseClass
will be accepted by the Anasazi templated solvers.
*/
template<class ScalarType>
class MultiVecTraits< ScalarType, Thyra::MultiVectorBase<ScalarType> >
{
private:
typedef Thyra::MultiVectorBase<ScalarType> TMVB;
typedef Teuchos::ScalarTraits<ScalarType> ST;
typedef typename ST::magnitudeType magType;
public:
/** \name Creation methods */
//@{
/*! \brief Creates a new empty MultiVectorBase containing \c numvecs columns.
\return Reference-counted pointer to the new MultiVectorBase.
*/
static Teuchos::RCP<TMVB> Clone( const TMVB & mv, const int numvecs )
{
Teuchos::RCP<TMVB> c = Thyra::createMembers( mv.range(), numvecs );
return c;
}
/*! \brief Creates a new MultiVectorBase and copies contents of \c mv into the new vector (deep copy).
\return Reference-counted pointer to the new MultiVectorBase.
*/
static Teuchos::RCP<TMVB>
CloneCopy (const TMVB& mv)
{
const int numvecs = mv.domain()->dim();
// create the new multivector
Teuchos::RCP< TMVB > cc = Thyra::createMembers (mv.range(), numvecs);
// copy the data from the source multivector to the new multivector
Thyra::assign (Teuchos::outArg (*cc), mv);
return cc;
}
/*! \brief Creates a new MultiVectorBase and copies the selected contents of \c mv into the new vector (deep copy).
The copied vectors from \c mv are indicated by the \c indeX.size() indices in \c index.
\return Reference-counted pointer to the new MultiVectorBase.
*/
static Teuchos::RCP< TMVB > CloneCopy( const TMVB & mv, const std::vector<int>& index )
{
const int numvecs = index.size();
// create the new multivector
Teuchos::RCP<TMVB > cc = Thyra::createMembers (mv.range(), numvecs);
// create a view to the relevant part of the source multivector
Teuchos::RCP<const TMVB > view = mv.subView ( Teuchos::arrayViewFromVector( index ) );
// copy the data from the relevant view to the new multivector
Thyra::assign (Teuchos::outArg (*cc), *view);
return cc;
}
static Teuchos::RCP<TMVB>
CloneCopy (const TMVB& mv, const Teuchos::Range1D& index)
{
const int numVecs = index.size();
// Create the new multivector
Teuchos::RCP<TMVB> cc = Thyra::createMembers (mv.range(), numVecs);
// Create a view to the relevant part of the source multivector
Teuchos::RCP<const TMVB> view = mv.subView (index);
// Copy the data from the view to the new multivector.
Thyra::assign (Teuchos::outArg (*cc), *view);
return cc;
}
/*! \brief Creates a new MultiVectorBase that shares the selected contents of \c mv (shallow copy).
The index of the \c numvecs vectors shallow copied from \c mv are indicated by the indices given in \c index.
\return Reference-counted pointer to the new MultiVectorBase.
*/
static Teuchos::RCP< TMVB > CloneViewNonConst( TMVB & mv, const std::vector<int>& index )
{
int numvecs = index.size();
// We do not assume that the indices are sorted, nor do we check that
// index.size() > 0. This code is fail-safe, in the sense that a zero
// length index vector will pass the error on the Thyra.
// Thyra has two ways to create an indexed View:
// * contiguous (via a range of columns)
// * indexed (via a vector of column indices)
// The former is significantly more efficient than the latter, in terms of
// computations performed with/against the created view.
// We will therefore check to see if the given indices are contiguous, and
// if so, we will use the contiguous view creation method.
int lb = index[0];
bool contig = true;
for (int i=0; i<numvecs; i++) {
if (lb+i != index[i]) contig = false;
}
Teuchos::RCP< TMVB > cc;
if (contig) {
const Thyra::Range1D rng(lb,lb+numvecs-1);
// create a contiguous view to the relevant part of the source multivector
cc = mv.subView(rng);
}
else {
// create an indexed view to the relevant part of the source multivector
cc = mv.subView( Teuchos::arrayViewFromVector( index ) );
}
return cc;
}
static Teuchos::RCP<TMVB>
CloneViewNonConst (TMVB& mv, const Teuchos::Range1D& index)
{
// We let Thyra be responsible for checking that the index range
// is nonempty.
//
// Create and return a contiguous view to the relevant part of
// the source multivector.
return mv.subView (index);
}
/*! \brief Creates a new const MultiVectorBase that shares the selected contents of \c mv (shallow copy).
The index of the \c numvecs vectors shallow copied from \c mv are indicated by the indices given in \c index.
\return Reference-counted pointer to the new const MultiVectorBase.
*/
static Teuchos::RCP<const TMVB > CloneView( const TMVB & mv, const std::vector<int>& index )
{
int numvecs = index.size();
// We do not assume that the indices are sorted, nor do we check that
// index.size() > 0. This code is fail-safe, in the sense that a zero
// length index vector will pass the error on the Thyra.
// Thyra has two ways to create an indexed View:
// * contiguous (via a range of columns)
// * indexed (via a vector of column indices)
// The former is significantly more efficient than the latter, in terms of
// computations performed with/against the created view.
// We will therefore check to see if the given indices are contiguous, and
// if so, we will use the contiguous view creation method.
int lb = index[0];
bool contig = true;
for (int i=0; i<numvecs; i++) {
if (lb+i != index[i]) contig = false;
}
Teuchos::RCP< const TMVB > cc;
if (contig) {
const Thyra::Range1D rng(lb,lb+numvecs-1);
// create a contiguous view to the relevant part of the source multivector
cc = mv.subView(rng);
}
else {
// create an indexed view to the relevant part of the source multivector
cc = mv.subView(Teuchos::arrayViewFromVector( index ) );
}
return cc;
}
static Teuchos::RCP<const TMVB>
CloneView (const TMVB& mv, const Teuchos::Range1D& index)
{
// We let Thyra be responsible for checking that the index range
// is nonempty.
//
// Create and return a contiguous view to the relevant part of
// the source multivector.
return mv.subView (index);
}
//@}
/** \name Attribute methods */
//@{
//! Obtain the vector length of \c mv.
static ptrdiff_t GetGlobalLength( const TMVB & mv )
{ return mv.range()->dim(); }
//! Obtain the number of vectors in \c mv
static int GetNumberVecs( const TMVB & mv )
{ return mv.domain()->dim(); }
//@}
/** \name Update methods */
//@{
/*! \brief Update \c mv with \f$ \alpha AB + \beta mv \f$.
*/
static void MvTimesMatAddMv( const ScalarType alpha, const TMVB & A,
const Teuchos::SerialDenseMatrix<int,ScalarType>& B,
const ScalarType beta, TMVB & mv )
{
int m = B.numRows();
int n = B.numCols();
// Create a view of the B object!
Teuchos::RCP< const TMVB >
B_thyra = Thyra::createMembersView(
A.domain(),
RTOpPack::ConstSubMultiVectorView<ScalarType>(
0, m, 0, n,
Teuchos::arcpFromArrayView(Teuchos::arrayView(&B(0,0), B.stride()*B.numCols())), B.stride()
)
);
// perform the operation via A: mv <- alpha*A*B_thyra + beta*mv
A.apply(Thyra::NOTRANS,*B_thyra,Teuchos::outArg (mv),alpha,beta);
}
/*! \brief Replace \c mv with \f$\alpha A + \beta B\f$.
*/
static void MvAddMv( const ScalarType alpha, const TMVB & A,
const ScalarType beta, const TMVB & B, TMVB & mv )
{
using Teuchos::tuple; using Teuchos::ptrInArg; using Teuchos::inoutArg;
Thyra::linear_combination<ScalarType>(
tuple(alpha, beta)(), tuple(ptrInArg(A), ptrInArg(B))(), ST::zero(), inoutArg(mv));
}
/*! \brief Compute a dense matrix \c B through the matrix-matrix multiply \f$ \alpha A^Tmv \f$.
*/
static void MvTransMv( const ScalarType alpha, const TMVB & A, const TMVB & mv,
Teuchos::SerialDenseMatrix<int,ScalarType>& B )
{
// Create a multivector to hold the result (m by n)
int m = A.domain()->dim();
int n = mv.domain()->dim();
// Create a view of the B object!
Teuchos::RCP< TMVB >
B_thyra = Thyra::createMembersView(
A.domain(),
RTOpPack::SubMultiVectorView<ScalarType>(
0, m, 0, n,
Teuchos::arcpFromArrayView(Teuchos::arrayView(&B(0,0), B.stride()*B.numCols())), B.stride()
)
);
A.apply(Thyra::CONJTRANS,mv,B_thyra.ptr(),alpha,Teuchos::ScalarTraits<ScalarType>::zero());
}
/*! \brief Compute a vector \c b where the components are the individual dot-products of the
\c i-th columns of \c A and \c mv, i.e.\f$b[i] = A[i]^Tmv[i]\f$.
*/
static void MvDot( const TMVB & mv, const TMVB & A, std::vector<ScalarType> &b )
{ Thyra::dots(mv,A,Teuchos::arrayViewFromVector( b )); }
/*! \brief Scale each element of the vectors in \c *this with \c alpha.
*/
static void
MvScale (TMVB& mv,
const ScalarType alpha)
{
Thyra::scale (alpha, Teuchos::inOutArg (mv));
}
/*! \brief Scale each element of the \c i-th vector in \c *this with \c alpha[i].
*/
static void
MvScale (TMVB& mv,
const std::vector<ScalarType>& alpha)
{
for (unsigned int i=0; i<alpha.size(); i++) {
Thyra::scale (alpha[i], mv.col(i).ptr());
}
}
//@}
/** \name Norm method */
//@{
/*! \brief Compute the 2-norm of each individual vector of \c mv.
Upon return, \c normvec[i] holds the value of \f$||mv_i||_2\f$, the \c i-th column of \c mv.
*/
static void MvNorm( const TMVB & mv, std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> &normvec )
{ Thyra::norms_2(mv,Teuchos::arrayViewFromVector( normvec )); }
//@}
/** \name Initialization methods */
//@{
/*! \brief Copy the vectors in \c A to a set of vectors in \c mv indicated by the indices given in \c index.
*/
static void SetBlock( const TMVB & A, const std::vector<int>& index, TMVB & mv )
{
// Extract the "numvecs" columns of mv indicated by the index vector.
int numvecs = index.size();
std::vector<int> indexA(numvecs);
int numAcols = A.domain()->dim();
for (int i=0; i<numvecs; i++) {
indexA[i] = i;
}
// Thyra::assign requires that both arguments have the same number of
// vectors. Enforce this, by shrinking one to match the other.
if ( numAcols < numvecs ) {
// A does not have enough columns to satisfy index_plus. Shrink
// index_plus.
numvecs = numAcols;
}
else if ( numAcols > numvecs ) {
numAcols = numvecs;
indexA.resize( numAcols );
}
// create a view to the relevant part of the source multivector
Teuchos::RCP< const TMVB > relsource = A.subView( Teuchos::arrayViewFromVector( indexA ) );
// create a view to the relevant part of the destination multivector
Teuchos::RCP< TMVB > reldest = mv.subView( Teuchos::arrayViewFromVector( index ) );
// copy the data to the destination multivector subview
Thyra::assign (Teuchos::outArg (*reldest), *relsource);
}
static void
SetBlock (const TMVB& A, const Teuchos::Range1D& index, TMVB& mv)
{
const int numColsA = A.domain()->dim();
const int numColsMv = mv.domain()->dim();
// 'index' indexes into mv; it's the index set of the target.
const bool validIndex = index.lbound() >= 0 && index.ubound() < numColsMv;
// We can't take more columns out of A than A has.
const bool validSource = index.size() <= numColsA;
if (! validIndex || ! validSource)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<Scalar, Thyra::MultiVectorBase<Scalar> "
">::SetBlock(A, [" << index.lbound() << ", " << index.ubound()
<< "], mv): ";
TEUCHOS_TEST_FOR_EXCEPTION(index.lbound() < 0, std::invalid_argument,
os.str() << "Range lower bound must be nonnegative.");
TEUCHOS_TEST_FOR_EXCEPTION(index.ubound() >= numColsMv, std::invalid_argument,
os.str() << "Range upper bound must be less than "
"the number of columns " << numColsA << " in the "
"'mv' output argument.");
TEUCHOS_TEST_FOR_EXCEPTION(index.size() > numColsA, std::invalid_argument,
os.str() << "Range must have no more elements than"
" the number of columns " << numColsA << " in the "
"'A' input argument.");
TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "Should never get here!");
}
// View of the relevant column(s) of the target multivector mv.
// We avoid view creation overhead by only creating a view if
// the index range is different than [0, (# columns in mv) - 1].
Teuchos::RCP<TMVB> mv_view;
if (index.lbound() == 0 && index.ubound()+1 == numColsMv)
mv_view = Teuchos::rcpFromRef (mv); // Non-const, non-owning RCP
else
mv_view = mv.subView (index);
// View of the relevant column(s) of the source multivector A.
// If A has fewer columns than mv_view, then create a view of
// the first index.size() columns of A.
Teuchos::RCP<const TMVB> A_view;
if (index.size() == numColsA)
A_view = Teuchos::rcpFromRef (A); // Const, non-owning RCP
else
A_view = A.subView (Teuchos::Range1D(0, index.size()-1));
// Copy the data to the destination multivector.
Thyra::assign (Teuchos::outArg (*mv_view), *A_view);
}
static void
Assign (const TMVB& A, TMVB& mv)
{
using Teuchos::ptr;
using Teuchos::Range1D;
using Teuchos::RCP;
const int numColsA = A.domain()->dim();
const int numColsMv = mv.domain()->dim();
if (numColsA > numColsMv) {
const std::string prefix ("Anasazi::MultiVecTraits<Scalar, "
"Thyra::MultiVectorBase<Scalar>"
" >::Assign(A, mv): ");
TEUCHOS_TEST_FOR_EXCEPTION(numColsA > numColsMv, std::invalid_argument,
prefix << "Input multivector 'A' has "
<< numColsA << " columns, but output multivector "
"'mv' has only " << numColsMv << " columns.");
TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "Should never get here!");
}
// Copy the data to the destination multivector.
if (numColsA == numColsMv) {
Thyra::assign (outArg (mv), A);
}
else {
RCP<TMVB> mv_view = CloneViewNonConst (mv, Range1D(0, numColsA-1));
Thyra::assign (outArg (*mv_view), A);
}
}
/*! \brief Replace the vectors in \c mv with random vectors.
*/
static void MvRandom( TMVB & mv )
{
// Thyra::randomize generates via a uniform distribution on [l,u]
// We will use this to generate on [-1,1]
Thyra::randomize(-Teuchos::ScalarTraits<ScalarType>::one(),
Teuchos::ScalarTraits<ScalarType>::one(),
Teuchos::outArg (mv));
}
/*! \brief Replace each element of the vectors in \c mv with \c alpha.
*/
static void
MvInit (TMVB& mv,
ScalarType alpha = Teuchos::ScalarTraits<ScalarType>::zero())
{
Thyra::assign (Teuchos::outArg (mv), alpha);
}
//@}
/** \name Print method */
//@{
/*! \brief Print the \c mv multi-vector to the \c os output stream.
*/
static void MvPrint( const TMVB & mv, std::ostream& os )
{
Teuchos::RCP<Teuchos::FancyOStream> out = Teuchos::getFancyOStream(Teuchos::rcp(&os,false));
out->setf(std::ios_base::scientific);
out->precision(16);
mv.describe(*out,Teuchos::VERB_EXTREME);
}
//@}
};
/////////////////////////////////////////////////////////////////////////
//
// Implementation of the Anasazi::OperatorTraits for Thyra::LinearOpBase
//
/////////////////////////////////////////////////////////////////////////
/*!
\brief Template specialization of Anasazi::OperatorTraits class using the
Thyra::LinearOpBase virtual base class and Thyra::MultiVectorBase class.
This interface will ensure that any LinearOpBase and MultiVectorBase
implementations will be accepted by the Anasazi templated solvers.
*/
template <class ScalarType>
class OperatorTraits < ScalarType, Thyra::MultiVectorBase<ScalarType>, Thyra::LinearOpBase<ScalarType> >
{
public:
/*! \brief This method takes the MultiVectorBase \c x and
applies the LinearOpBase \c Op to it resulting in the MultiVectorBase \c y.
*/
static void Apply ( const Thyra::LinearOpBase< ScalarType >& Op, const Thyra::MultiVectorBase< ScalarType > & x, Thyra::MultiVectorBase< ScalarType > & y )
{
Op.apply(Thyra::NOTRANS,x,Teuchos::outArg (y), Teuchos::ScalarTraits<ScalarType>::one(),Teuchos::ScalarTraits<ScalarType>::zero());
}
};
} // end of Anasazi namespace
#endif
// end of file ANASAZI_THYRA_ADAPTER_HPP
|