/usr/include/trilinos/AnasaziSIRTR.hpp is in libtrilinos-anasazi-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
//! \file AnasaziSIRTR.hpp
#ifndef ANASAZI_SIRTR_HPP
#define ANASAZI_SIRTR_HPP
#include "AnasaziTypes.hpp"
#include "AnasaziRTRBase.hpp"
#include "AnasaziEigensolver.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"
/*! \class Anasazi::SIRTR
SIRTR ("skinny IRTR") is a non-caching, lower-memory implementation of the Implicit
Riemannian Trust-Region (%IRTR) eigensolver.
The solver uses between 6 and 8 blocks of vectors, compared to the
requirements by IRTR of 10 to 13 blocks of vectors. The base requirement
is 6 blocks of vectors, where a block of vectors contains a number of vectors equal to the
block size specified for the solver (see RTRBase::getBlockSize()).
Additional blocks are required when solving a generalized eigenvalue problem or when using a preconditioiner.
For more information, see RTRBase.
\ingroup anasazi_solver_framework
\author Chris Baker
*/
// TODO: add randomization
// TODO: add expensive debug checking on Teuchos_Debug
namespace Anasazi {
template <class ScalarType, class MV, class OP>
class SIRTR : public RTRBase<ScalarType,MV,OP> {
public:
//! @name Constructor/Destructor
//@{
/*! \brief %SIRTR constructor with eigenproblem, solver utilities, and parameter list of solver options.
*
* This constructor takes pointers required by the eigensolver, in addition
* to a parameter list of options for the eigensolver. These options include the following:
* - "Rho Prime" - an \c MagnitudeType specifying the size of the implicit trust-region radius.
* - "Block Size" - an \c int specifying the block size used by the algorithm. This can also be specified using the setBlockSize() method.
* - "Leftmost" - a \c bool specifying whether the solver is computing the
* leftmost ("SR") or rightmost ("LR") eigenvalues. Default: true. This must be in accord with the SortManager pass to the constructor.
* - "Kappa Convergence" - a \c MagnitudeType specifing the rate of convergence for the linear convergence regime. Default: 0.1
* - "Theta Convergence" - a \c MagnitudeType specifing the order of convergence for the linear convergence regime. theta implies a convergence order of theta+1. Default: 1.0
*/
SIRTR( const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
const Teuchos::RCP<GenOrthoManager<ScalarType,MV,OP> > &ortho,
Teuchos::ParameterList ¶ms
);
//! %SIRTR destructor
virtual ~SIRTR() {};
//@}
//! @name Solver methods
//@{
//! \brief Impemements Eigensolver. The outer %IRTR iteration. See RTRBase::iterate().
void iterate();
//@}
//! @name Output methods
//@{
//! Impemements Eigensolver. This method requests that the solver print out its current status to screen.
void currentStatus(std::ostream &os);
//@}
private:
//
// Convenience typedefs
//
typedef SolverUtils<ScalarType,MV,OP> Utils;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename SCT::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MAT;
enum trRetType {
UNINITIALIZED = 0,
MAXIMUM_ITERATIONS,
NEGATIVE_CURVATURE,
EXCEEDED_TR,
KAPPA_CONVERGENCE,
THETA_CONVERGENCE
};
// these correspond to above
std::vector<std::string> stopReasons_;
//
// Consts
//
const MagnitudeType ZERO;
const MagnitudeType ONE;
//
// Internal methods
//
//! \brief The inner %IRTR iteration. See RTRBase::solveTRSubproblem().
void solveTRSubproblem();
//
// rho_prime
MagnitudeType rho_prime_;
//
// norm of initial gradient: this is used for scaling
MagnitudeType normgradf0_;
//
// tr stopping reason
trRetType innerStop_;
//
// number of inner iterations
int innerIters_, totalInnerIters_;
};
//////////////////////////////////////////////////////////////////////////////////////////////////
// Constructor
template <class ScalarType, class MV, class OP>
SIRTR<ScalarType,MV,OP>::SIRTR(
const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
const Teuchos::RCP<GenOrthoManager<ScalarType,MV,OP> > &ortho,
Teuchos::ParameterList ¶ms
) :
RTRBase<ScalarType,MV,OP>(problem,sorter,printer,tester,ortho,params,"SIRTR",true),
ZERO(MAT::zero()),
ONE(MAT::one()),
totalInnerIters_(0)
{
// set up array of stop reasons
stopReasons_.push_back("n/a");
stopReasons_.push_back("maximum iterations");
stopReasons_.push_back("negative curvature");
stopReasons_.push_back("exceeded TR");
stopReasons_.push_back("kappa convergence");
stopReasons_.push_back("theta convergence");
rho_prime_ = params.get("Rho Prime",0.5);
TEUCHOS_TEST_FOR_EXCEPTION(rho_prime_ <= 0 || rho_prime_ >= 1,std::invalid_argument,
"Anasazi::SIRTR::constructor: rho_prime must be in (0,1).");
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// TR subproblem solver
//
// FINISH:
// define pre- and post-conditions
//
// POST:
// delta_,Adelta_,Hdelta_ undefined
//
template <class ScalarType, class MV, class OP>
void SIRTR<ScalarType,MV,OP>::solveTRSubproblem() {
// return one of:
// MAXIMUM_ITERATIONS
// NEGATIVE_CURVATURE
// EXCEEDED_TR
// KAPPA_CONVERGENCE
// THETA_CONVERGENCE
using Teuchos::RCP;
using Teuchos::tuple;
using Teuchos::null;
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
using Teuchos::TimeMonitor;
#endif
using std::endl;
typedef Teuchos::RCP<const MV> PCMV;
typedef Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > PSDM;
innerStop_ = MAXIMUM_ITERATIONS;
const int n = MVT::GetGlobalLength(*this->eta_);
const int p = this->blockSize_;
const int d = n*p - (p*p+p)/2;
// We have the following:
//
// X'*B*X = I
// X'*A*X = theta_
//
// We desire to remain in the trust-region:
// { eta : rho_Y(eta) \geq rho_prime }
// where
// rho_Y(eta) = 1/(1+eta'*B*eta)
// Therefore, the trust-region is
// { eta : eta'*B*eta \leq 1/rho_prime - 1 }
//
const double D2 = ONE/rho_prime_ - ONE;
std::vector<MagnitudeType> d_Hd(p), alpha(p), beta(p), z_r(p), zold_rold(p);
std::vector<MagnitudeType> eBe(p), eBd(p), dBd(p), new_eBe(p);
MagnitudeType r0_norm;
MVT::MvInit(*this->eta_ ,0.0);
//
// R_ contains direct residuals:
// R_ = A X_ - B X_ diag(theta_)
//
// r0 = grad f(X) = 2 P_BX A X = 2 P_BX (A X - B X diag(theta_) = 2 proj(R_)
// We will do this in place.
// For seeking the rightmost, we want to maximize f
// This is the same as minimizing -f
// Substitute all f with -f here. In particular,
// grad -f(X) = -grad f(X)
// Hess -f(X) = -Hess f(X)
//
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerOrtho_ );
#endif
this->orthman_->projectGen(
*this->R_, // operating on R
tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false, // P_{BV,V}, and <BV,V>_B != I
tuple<PSDM>(null), // don't care about coeffs
null,tuple<PCMV>(null), tuple<PCMV>(this->BV_)); // don't have B*BV, but do have B*V
if (this->leftMost_) {
MVT::MvScale(*this->R_,2.0);
}
else {
MVT::MvScale(*this->R_,-2.0);
}
}
r0_norm = MAT::squareroot( RTRBase<ScalarType,MV,OP>::ginner(*this->R_) );
//
// kappa (linear) convergence
// theta (superlinear) convergence
//
MagnitudeType kconv = r0_norm * this->conv_kappa_;
// FINISH: consider inserting some scaling here
// MagnitudeType tconv = r0_norm * MAT::pow(r0_norm/normgradf0_,this->conv_theta_);
MagnitudeType tconv = MAT::pow(r0_norm,this->conv_theta_+ONE);
if (this->om_->isVerbosity(Debug)) {
this->om_->stream(Debug)
<< " >> |r0| : " << r0_norm << endl
<< " >> kappa conv : " << kconv << endl
<< " >> theta conv : " << tconv << endl;
}
//
// For Olsen preconditioning, the preconditioner is
// Z = P_{Prec^-1 BX, BX} Prec^-1 R
// for efficiency, we compute Prec^-1 BX once here for use later
// Otherwise, we don't need PBX
if (this->hasPrec_ && this->olsenPrec_)
{
std::vector<int> ind(this->blockSize_);
for (int i=0; i<this->blockSize_; ++i) ind[i] = this->numAuxVecs_+i;
Teuchos::RCP<MV> PBX = MVT::CloneViewNonConst(*this->PBV_,ind);
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor prectimer( *this->timerPrec_ );
#endif
OPT::Apply(*this->Prec_,*this->BX_,*PBX);
this->counterPrec_ += this->blockSize_;
}
PBX = Teuchos::null;
}
// Z = P_{Prec^-1 BV, BV} Prec^-1 R
// Prec^-1 BV in PBV
// or
// Z = P_{BV,BV} Prec^-1 R
if (this->hasPrec_)
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor prectimer( *this->timerPrec_ );
#endif
OPT::Apply(*this->Prec_,*this->R_,*this->Z_);
this->counterPrec_ += this->blockSize_;
// the orthogonalization time counts under Ortho and under Preconditioning
if (this->olsenPrec_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor orthtimer( *this->timerOrtho_ );
#endif
this->orthman_->projectGen(
*this->Z_, // operating on Z
tuple<PCMV>(this->PBV_),tuple<PCMV>(this->V_),false, // P_{PBV,V}, B inner product, and <PBV,V>_B != I
tuple<PSDM>(null), // don't care about coeffs
null,tuple<PCMV>(null), tuple<PCMV>(this->BV_)); // don't have B*PBV or B*Z, but do have B*V
}
else {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor orthtimer( *this->timerOrtho_ );
#endif
this->orthman_->projectGen(
*this->Z_, // operating on Z
tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false, // P_{BV,V}, and <BV,V>_B != I
tuple<PSDM>(null), // don't care about coeffs
null,tuple<PCMV>(null), tuple<PCMV>(this->BV_)); // don't have B*BV, but do have B*V
}
RTRBase<ScalarType,MV,OP>::ginnersep(*this->R_,*this->Z_,z_r);
}
else {
// Z = R
MVT::MvAddMv(ONE,*this->R_,ZERO,*this->R_,*this->Z_);
RTRBase<ScalarType,MV,OP>::ginnersep(*this->R_,z_r);
}
if (this->om_->isVerbosity( Debug )) {
// Check that gradient is B-orthogonal to X
typename RTRBase<ScalarType,MV,OP>::CheckList chk;
chk.checkBR = true;
if (this->hasPrec_) chk.checkZ = true;
this->om_->print( Debug, this->accuracyCheck(chk, "after computing gradient") );
}
else if (this->om_->isVerbosity( OrthoDetails )) {
// Check that gradient is B-orthogonal to X
typename RTRBase<ScalarType,MV,OP>::CheckList chk;
chk.checkBR = true;
if (this->hasPrec_) chk.checkZ = true;
this->om_->print( OrthoDetails, this->accuracyCheck(chk, "after computing gradient") );
}
// delta = -z
MVT::MvAddMv(-ONE,*this->Z_,ZERO,*this->Z_,*this->delta_);
if (this->om_->isVerbosity(Debug)) {
// compute the model at eta
// we need Heta, which requires A*eta and B*eta
// we also need A*X
// use Z for storage of these
std::vector<MagnitudeType> eAx(this->blockSize_),
d_eAe(this->blockSize_),
d_eBe(this->blockSize_),
d_mxe(this->blockSize_);
// compute AX and <eta,AX>
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerAOp_ );
#endif
OPT::Apply(*this->AOp_,*this->X_,*this->Z_);
this->counterAOp_ += this->blockSize_;
}
RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*this->Z_,eAx);
// compute A*eta and <eta,A*eta>
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerAOp_ );
#endif
OPT::Apply(*this->AOp_,*this->eta_,*this->Z_);
this->counterAOp_ += this->blockSize_;
}
RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*this->Z_,d_eAe);
// compute B*eta and <eta,B*eta>
if (this->hasBOp_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerBOp_ );
#endif
OPT::Apply(*this->BOp_,*this->eta_,*this->Z_);
this->counterBOp_ += this->blockSize_;
}
else {
MVT::MvAddMv(ONE,*this->eta_,ZERO,*this->eta_,*this->Z_);
}
RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*this->Z_,d_eBe);
// compute model:
// m_x(eta) = theta + 2*eta'*A*x + eta'*A*eta - eta'*B*eta*theta
if (this->leftMost_) {
for (int j=0; j<this->blockSize_; ++j) {
d_mxe[j] = this->theta_[j] + 2*eAx[j] + d_eAe[j] - d_eBe[j]*this->theta_[j];
}
}
else {
for (int j=0; j<this->blockSize_; ++j) {
d_mxe[j] = -this->theta_[j] - 2*eAx[j] - d_eAe[j] + d_eBe[j]*this->theta_[j];
}
}
this->om_->stream(Debug)
<< " Debugging checks: SIRTR inner iteration " << innerIters_ << endl
<< " >> m_X(eta) : " << std::accumulate(d_mxe.begin(),d_mxe.end(),0.0) << endl;
for (int j=0; j<this->blockSize_; ++j) {
this->om_->stream(Debug)
<< " >> m_X(eta_" << j << ") : " << d_mxe[j] << endl;
}
}
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
// the inner/tCG loop
for (innerIters_=1; innerIters_<=d; ++innerIters_) {
//
// [Hdelta,Adelta,Bdelta] = Hess*delta = 2 Proj(A*delta - B*delta*X'*A*X)
// X'*A*X = diag(theta), so that
// (B*delta)*diag(theta) can be done on the cheap
//
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerAOp_ );
#endif
OPT::Apply(*this->AOp_,*this->delta_,*this->Z_);
this->counterAOp_ += this->blockSize_;
}
if (this->hasBOp_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerBOp_ );
#endif
OPT::Apply(*this->BOp_,*this->delta_,*this->Hdelta_);
this->counterBOp_ += this->blockSize_;
}
else {
MVT::MvAddMv(ONE,*this->delta_,ZERO,*this->delta_,*this->Hdelta_);
}
// while we have B*delta, compute <eta,B*delta> and <delta,B*delta>
// these will be needed below
RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_ ,*this->Hdelta_,eBd);
RTRBase<ScalarType,MV,OP>::ginnersep(*this->delta_,*this->Hdelta_,dBd);
// put 2*A*d - 2*B*d*theta --> Hd
{
std::vector<ScalarType> theta_comp(this->theta_.begin(),this->theta_.end());
MVT::MvScale(*this->Hdelta_,theta_comp);
}
if (this->leftMost_) {
MVT::MvAddMv( 2.0,*this->Z_,-2.0,*this->Hdelta_,*this->Hdelta_);
}
else {
MVT::MvAddMv(-2.0,*this->Z_, 2.0,*this->Hdelta_,*this->Hdelta_);
}
// apply projector
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerOrtho_ );
#endif
this->orthman_->projectGen(
*this->Hdelta_, // operating on Hdelta
tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false, // P_{BV,V}, and <BV,V>_B != I
tuple<PSDM>(null), // don't care about coeffs
null,tuple<PCMV>(null), tuple<PCMV>(this->BV_)); // don't have B*BV, but do have B*V
}
RTRBase<ScalarType,MV,OP>::ginnersep(*this->delta_,*this->Hdelta_,d_Hd);
// compute update step
for (unsigned int j=0; j<alpha.size(); ++j)
{
alpha[j] = z_r[j]/d_Hd[j];
}
// compute new B-norms
for (unsigned int j=0; j<alpha.size(); ++j)
{
new_eBe[j] = eBe[j] + 2*alpha[j]*eBd[j] + alpha[j]*alpha[j]*dBd[j];
}
if (this->om_->isVerbosity(Debug)) {
for (unsigned int j=0; j<alpha.size(); j++) {
this->om_->stream(Debug)
<< " >> z_r[" << j << "] : " << z_r[j]
<< " d_Hd[" << j << "] : " << d_Hd[j] << endl
<< " >> eBe[" << j << "] : " << eBe[j]
<< " neweBe[" << j << "] : " << new_eBe[j] << endl
<< " >> eBd[" << j << "] : " << eBd[j]
<< " dBd[" << j << "] : " << dBd[j] << endl;
}
}
// check truncation criteria: negative curvature or exceeded trust-region
std::vector<int> trncstep;
trncstep.reserve(p);
// trncstep will contain truncated step, due to
// negative curvature or exceeding implicit trust-region
bool atleastonenegcur = false;
for (unsigned int j=0; j<d_Hd.size(); ++j) {
if (d_Hd[j] <= 0) {
trncstep.push_back(j);
atleastonenegcur = true;
}
else if (new_eBe[j] > D2) {
trncstep.push_back(j);
}
}
if (!trncstep.empty())
{
// compute step to edge of trust-region, for trncstep vectors
if (this->om_->isVerbosity(Debug)) {
for (unsigned int j=0; j<trncstep.size(); ++j) {
this->om_->stream(Debug)
<< " >> alpha[" << trncstep[j] << "] : " << alpha[trncstep[j]] << endl;
}
}
for (unsigned int j=0; j<trncstep.size(); ++j) {
int jj = trncstep[j];
alpha[jj] = ( -eBd[jj] + MAT::squareroot(eBd[jj]*eBd[jj] + dBd[jj]*(D2-eBe[jj]) ) ) / dBd[jj];
}
if (this->om_->isVerbosity(Debug)) {
for (unsigned int j=0; j<trncstep.size(); ++j) {
this->om_->stream(Debug)
<< " >> tau[" << trncstep[j] << "] : " << alpha[trncstep[j]] << endl;
}
}
if (atleastonenegcur) {
innerStop_ = NEGATIVE_CURVATURE;
}
else {
innerStop_ = EXCEEDED_TR;
}
}
// compute new eta = eta + alpha*delta
// we need delta*diag(alpha)
// do this in situ in delta_ and friends (we will note this for below)
// then set eta_ = eta_ + delta_
{
std::vector<ScalarType> alpha_comp(alpha.begin(),alpha.end());
MVT::MvScale(*this->delta_,alpha_comp);
MVT::MvScale(*this->Hdelta_,alpha_comp);
}
MVT::MvAddMv(ONE,*this->delta_ ,ONE,*this->eta_ ,*this->eta_);
// store new eBe
eBe = new_eBe;
//
// print some debugging info
if (this->om_->isVerbosity(Debug)) {
// compute the model at eta
// we need Heta, which requires A*eta and B*eta
// we also need A*X
// use Z for storage of these
std::vector<MagnitudeType> eAx(this->blockSize_),
d_eAe(this->blockSize_),
d_eBe(this->blockSize_),
d_mxe(this->blockSize_);
// compute AX and <eta,AX>
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerAOp_ );
#endif
OPT::Apply(*this->AOp_,*this->X_,*this->Z_);
this->counterAOp_ += this->blockSize_;
}
RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*this->Z_,eAx);
// compute A*eta and <eta,A*eta>
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerAOp_ );
#endif
OPT::Apply(*this->AOp_,*this->eta_,*this->Z_);
this->counterAOp_ += this->blockSize_;
}
RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*this->Z_,d_eAe);
// compute B*eta and <eta,B*eta>
if (this->hasBOp_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerBOp_ );
#endif
OPT::Apply(*this->BOp_,*this->eta_,*this->Z_);
this->counterBOp_ += this->blockSize_;
}
else {
MVT::MvAddMv(ONE,*this->eta_,ZERO,*this->eta_,*this->Z_);
}
RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*this->Z_,d_eBe);
// compute model:
// m_x(eta) = theta + 2*eta'*A*x + eta'*A*eta - eta'*B*eta*theta
if (this->leftMost_) {
for (int j=0; j<this->blockSize_; ++j) {
d_mxe[j] = this->theta_[j] + 2*eAx[j] + d_eAe[j] - d_eBe[j]*this->theta_[j];
}
}
else {
for (int j=0; j<this->blockSize_; ++j) {
d_mxe[j] = -this->theta_[j] - 2*eAx[j] - d_eAe[j] + d_eBe[j]*this->theta_[j];
}
}
this->om_->stream(Debug)
<< " Debugging checks: SIRTR inner iteration " << innerIters_ << endl
<< " >> m_X(eta) : " << std::accumulate(d_mxe.begin(),d_mxe.end(),0.0) << endl;
for (int j=0; j<this->blockSize_; ++j) {
this->om_->stream(Debug)
<< " >> m_X(eta_" << j << ") : " << d_mxe[j] << endl;
}
}
//
// if we found negative curvature or exceeded trust-region, then quit
if (!trncstep.empty()) {
break;
}
// update gradient of m
// R = R + Hdelta*diag(alpha)
// however, Hdelta_ already stores Hdelta*diag(alpha)
// so just add them
MVT::MvAddMv(ONE,*this->Hdelta_,ONE,*this->R_,*this->R_);
{
// re-tangentialize r
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerOrtho_ );
#endif
this->orthman_->projectGen(
*this->R_, // operating on R
tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false, // P_{BV,V}, and <BV,V>_B != I
tuple<PSDM>(null), // don't care about coeffs
null,tuple<PCMV>(null), tuple<PCMV>(this->BV_)); // don't have B*BV, but do have B*V
}
//
// check convergence
MagnitudeType r_norm = MAT::squareroot(RTRBase<ScalarType,MV,OP>::ginner(*this->R_,*this->R_));
//
// check local convergece
//
// kappa (linear) convergence
// theta (superlinear) convergence
//
if (this->om_->isVerbosity(Debug)) {
this->om_->stream(Debug)
<< " >> |r" << innerIters_ << "| : " << r_norm << endl;
}
if ( r_norm <= ANASAZI_MIN(tconv,kconv) ) {
if (tconv <= kconv) {
innerStop_ = THETA_CONVERGENCE;
}
else {
innerStop_ = KAPPA_CONVERGENCE;
}
break;
}
// Z = P_{Prec^-1 BV, BV} Prec^-1 R
// Prec^-1 BV in PBV
// or
// Z = P_{BV,BV} Prec^-1 R
zold_rold = z_r;
if (this->hasPrec_)
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor prectimer( *this->timerPrec_ );
#endif
OPT::Apply(*this->Prec_,*this->R_,*this->Z_);
this->counterPrec_ += this->blockSize_;
// the orthogonalization time counts under Ortho and under Preconditioning
if (this->olsenPrec_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor orthtimer( *this->timerOrtho_ );
#endif
this->orthman_->projectGen(
*this->Z_, // operating on Z
tuple<PCMV>(this->PBV_),tuple<PCMV>(this->V_),false, // P_{PBV,V}, B inner product, and <PBV,V>_B != I
tuple<PSDM>(null), // don't care about coeffs
null,tuple<PCMV>(null), tuple<PCMV>(this->BV_)); // don't have B*PBV or B*Z, but do have B*V
}
else {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor orthtimer( *this->timerOrtho_ );
#endif
this->orthman_->projectGen(
*this->Z_, // operating on Z
tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false, // P_{BV,V}, and <BV,V>_B != I
tuple<PSDM>(null), // don't care about coeffs
null,tuple<PCMV>(null), tuple<PCMV>(this->BV_)); // don't have B*BV, but do have B*V
}
RTRBase<ScalarType,MV,OP>::ginnersep(*this->R_,*this->Z_,z_r);
}
else {
// Z = R
MVT::MvAddMv(ONE,*this->R_,ZERO,*this->R_,*this->Z_);
RTRBase<ScalarType,MV,OP>::ginnersep(*this->R_,z_r);
}
// compute new search direction
// below, we need to perform
// delta = -Z + delta*diag(beta)
// however, delta_ currently stores delta*diag(alpha)
// therefore, set
// beta_ to beta/alpha
// so that
// delta_ = delta_*diag(beta_)
// will in fact result in
// delta_ = delta_*diag(beta_)
// = delta*diag(alpha)*diag(beta/alpha)
// = delta*diag(beta)
// i hope this is numerically sound...
for (unsigned int j=0; j<beta.size(); ++j) {
beta[j] = z_r[j]/(zold_rold[j]*alpha[j]);
}
{
std::vector<ScalarType> beta_comp(beta.begin(),beta.end());
MVT::MvScale(*this->delta_,beta_comp);
}
MVT::MvAddMv(-ONE,*this->Z_,ONE,*this->delta_,*this->delta_);
}
// end of the inner iteration loop
//////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////
if (innerIters_ > d) innerIters_ = d;
this->om_->stream(Debug)
<< " >> stop reason is " << stopReasons_[innerStop_] << endl
<< endl;
} // end of solveTRSubproblem
#define SIRTR_GET_TEMP_MV(mv,workspace) \
{ \
TEUCHOS_TEST_FOR_EXCEPTION(workspace.size() == 0,std::logic_error,"SIRTR: Request for workspace could not be honored."); \
mv = workspace.back(); \
workspace.pop_back(); \
}
#define SIRTR_RELEASE_TEMP_MV(mv,workspace) \
{ \
workspace.push_back(mv); \
mv = Teuchos::null; \
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Eigensolver iterate() method
template <class ScalarType, class MV, class OP>
void SIRTR<ScalarType,MV,OP>::iterate() {
using Teuchos::RCP;
using Teuchos::null;
using Teuchos::tuple;
using Teuchos::TimeMonitor;
using std::endl;
// typedef Teuchos::RCP<const MV> PCMV; // unused
// typedef Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > PSDM; // unused
//
// Allocate/initialize data structures
//
if (this->initialized_ == false) {
this->initialize();
}
Teuchos::SerialDenseMatrix<int,ScalarType> AA(this->blockSize_,this->blockSize_),
BB(this->blockSize_,this->blockSize_),
S(this->blockSize_,this->blockSize_);
// we will often exploit temporarily unused storage for workspace
// in order to keep it straight and make for clearer code,
// we will put pointers to available multivectors into the following vector
// when we need them, we get them out, using a meaningfully-named pointer
// when we're done, we put them back
std::vector< RCP<MV> > workspace;
// we only have 7 multivectors, so that is more than the maximum number that
// we could use for temp storage
workspace.reserve(7);
// set iteration details to invalid, as they don't have any meaning right now
innerIters_ = -1;
innerStop_ = UNINITIALIZED;
// allocate temporary space
while (this->tester_->checkStatus(this) != Passed) {
// Print information on current status
if (this->om_->isVerbosity(Debug)) {
this->currentStatus( this->om_->stream(Debug) );
}
else if (this->om_->isVerbosity(IterationDetails)) {
this->currentStatus( this->om_->stream(IterationDetails) );
}
// increment iteration counter
this->iter_++;
// solve the trust-region subproblem
solveTRSubproblem();
totalInnerIters_ += innerIters_;
// perform debugging on eta et al.
if (this->om_->isVerbosity( Debug ) ) {
typename RTRBase<ScalarType,MV,OP>::CheckList chk;
// this is the residual of the model, should still be in the tangent plane
chk.checkBR = true;
chk.checkEta = true;
this->om_->print( Debug, this->accuracyCheck(chk, "in iterate() after solveTRSubproblem()") );
}
//
// multivectors X, BX (if hasB) and eta contain meaningful information that we need below
// the others will be sacrificed to temporary storage
// we are not allowed to reference these anymore, RELEASE_TEMP_MV will clear the pointers
// the RCP in workspace will keep the MV alive, we will get the MVs back
// as we need them using GET_TEMP_MV
//
// this strategy doesn't cost us much, and it keeps us honest
//
TEUCHOS_TEST_FOR_EXCEPTION(workspace.size() != 0,std::logic_error,"SIRTR::iterate(): workspace list should be empty.");
SIRTR_RELEASE_TEMP_MV(this->delta_ ,workspace); // workspace size is 1
SIRTR_RELEASE_TEMP_MV(this->Hdelta_,workspace); // workspace size is 2
SIRTR_RELEASE_TEMP_MV(this->R_ ,workspace); // workspace size is 3
SIRTR_RELEASE_TEMP_MV(this->Z_ ,workspace); // workspace size is 4
// compute the retraction of eta: R_X(eta) = X+eta
// we must accept, but we will work out of temporary so that we can multiply back into X below
RCP<MV> XpEta;
SIRTR_GET_TEMP_MV(XpEta,workspace); // workspace size is 3
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerLocalUpdate_ );
#endif
MVT::MvAddMv(ONE,*this->X_,ONE,*this->eta_,*XpEta);
}
//
// perform rayleigh-ritz for XpEta = X+eta
// save an old copy of f(X) for rho analysis below
//
MagnitudeType oldfx = this->fx_;
int rank, ret;
rank = this->blockSize_;
// compute AA = (X+eta)'*A*(X+eta)
// get temporarily storage for A*(X+eta)
RCP<MV> AXpEta;
SIRTR_GET_TEMP_MV(AXpEta,workspace); // workspace size is 2
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerAOp_ );
#endif
OPT::Apply(*this->AOp_,*XpEta,*AXpEta);
this->counterAOp_ += this->blockSize_;
}
// project A onto X+eta
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerLocalProj_ );
#endif
MVT::MvTransMv(ONE,*XpEta,*AXpEta,AA);
}
// compute BB = (X+eta)'*B*(X+eta)
// get temporary storage for B*(X+eta)
RCP<MV> BXpEta;
if (this->hasBOp_) {
SIRTR_GET_TEMP_MV(BXpEta,workspace); // workspace size is 1
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerBOp_ );
#endif
OPT::Apply(*this->BOp_,*XpEta,*BXpEta);
this->counterBOp_ += this->blockSize_;
}
// project B onto X+eta
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerLocalProj_ );
#endif
MVT::MvTransMv(ONE,*XpEta,*BXpEta,BB);
}
}
else {
// project I onto X+eta
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerLocalProj_ );
#endif
MVT::MvTransMv(ONE,*XpEta,*XpEta,BB);
}
this->om_->stream(Debug) << "AA: " << std::endl << AA << std::endl;;
this->om_->stream(Debug) << "BB: " << std::endl << BB << std::endl;;
// do the direct solve
// save old theta first
std::vector<MagnitudeType> oldtheta(this->theta_);
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerDS_ );
#endif
ret = Utils::directSolver(this->blockSize_,AA,Teuchos::rcpFromRef(BB),S,this->theta_,rank,1);
}
this->om_->stream(Debug) << "S: " << std::endl << S << std::endl;;
TEUCHOS_TEST_FOR_EXCEPTION(ret != 0,std::logic_error,"Anasazi::SIRTR::iterate(): failure solving projected eigenproblem after retraction. ret == " << ret << "AA: " << AA << std::endl << "BB: " << BB << std::endl);
TEUCHOS_TEST_FOR_EXCEPTION(rank != this->blockSize_,RTRRitzFailure,"Anasazi::SIRTR::iterate(): retracted iterate failed in Ritz analysis. rank == " << rank);
//
// order the projected ritz values and vectors
// this ensures that the ritz vectors produced below are ordered
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerSort_ );
#endif
std::vector<int> order(this->blockSize_);
// sort the first blockSize_ values in theta_
this->sm_->sort(this->theta_, Teuchos::rcpFromRef(order), this->blockSize_); // don't catch exception
// apply the same ordering to the primitive ritz vectors
Utils::permuteVectors(order,S);
}
//
// update f(x)
this->fx_ = std::accumulate(this->theta_.begin(),this->theta_.end(),ZERO);
//
// if debugging, do rho analysis before overwriting X,AX,BX
RCP<MV> AX;
SIRTR_GET_TEMP_MV(AX,workspace); // workspace size is 0
if (this->om_->isVerbosity( Debug ) ) {
//
// compute rho
// f(X) - f(X+eta) f(X) - f(X+eta)
// rho = ----------------- = -------------------------
// m(0) - m(eta) -<2AX,eta> - .5*<Heta,eta>
MagnitudeType rhonum, rhoden, mxeta;
//
// compute rhonum
rhonum = oldfx - this->fx_;
//
// compute rhoden = -<eta,gradfx> - 0.5 <eta,H*eta>
// = -2.0*<eta,AX> - <eta,A*eta> + <eta,B*eta*theta>
// in three steps (3) (1) (2)
//
// first, compute seconder-order decrease in model (steps 1 and 2)
// get temp storage for second order decrease of model
//
// do the first-order decrease last, because we need AX below
{
// compute A*eta and then <eta,A*eta>
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerAOp_ );
#endif
OPT::Apply(*this->AOp_,*this->eta_,*AX);
this->counterAOp_ += this->blockSize_;
}
// compute A part of second order decrease into rhoden
rhoden = -RTRBase<ScalarType,MV,OP>::ginner(*this->eta_,*AX);
if (this->hasBOp_) {
// compute B*eta into AX
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerBOp_ );
#endif
OPT::Apply(*this->BOp_,*this->eta_,*AX);
this->counterBOp_ += this->blockSize_;
}
else {
// put B*eta==eta into AX
MVT::MvAddMv(ONE,*this->eta_,ZERO,*this->eta_,*AX);
}
// we need this below for computing individual rho, get it now
std::vector<MagnitudeType> eBe(this->blockSize_);
RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*AX,eBe);
// scale B*eta by theta
{
std::vector<ScalarType> oldtheta_complex(oldtheta.begin(),oldtheta.end());
MVT::MvScale( *AX, oldtheta_complex);
}
// accumulate B part of second order decrease into rhoden
rhoden += RTRBase<ScalarType,MV,OP>::ginner(*this->eta_,*AX);
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerAOp_ );
#endif
OPT::Apply(*this->AOp_,*this->X_,*AX);
this->counterAOp_ += this->blockSize_;
}
// accumulate first-order decrease of model into rhoden
rhoden += -2.0*RTRBase<ScalarType,MV,OP>::ginner(*AX,*this->eta_);
mxeta = oldfx - rhoden;
this->rho_ = rhonum / rhoden;
this->om_->stream(Debug)
<< " >> old f(x) is : " << oldfx << endl
<< " >> new f(x) is : " << this->fx_ << endl
<< " >> m_x(eta) is : " << mxeta << endl
<< " >> rhonum is : " << rhonum << endl
<< " >> rhoden is : " << rhoden << endl
<< " >> rho is : " << this->rho_ << endl;
// compute individual rho
for (int j=0; j<this->blockSize_; ++j) {
this->om_->stream(Debug)
<< " >> rho[" << j << "] : " << 1.0/(1.0+eBe[j]) << endl;
}
}
// compute Ritz vectors back into X,BX,AX
{
// release const views to X, BX
this->X_ = Teuchos::null;
this->BX_ = Teuchos::null;
// get non-const views
std::vector<int> ind(this->blockSize_);
for (int i=0; i<this->blockSize_; ++i) ind[i] = this->numAuxVecs_+i;
Teuchos::RCP<MV> X, BX;
X = MVT::CloneViewNonConst(*this->V_,ind);
if (this->hasBOp_) {
BX = MVT::CloneViewNonConst(*this->BV_,ind);
}
// compute ritz vectors, A,B products into X,AX,BX
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerLocalUpdate_ );
#endif
MVT::MvTimesMatAddMv(ONE,* XpEta,S,ZERO,*X);
MVT::MvTimesMatAddMv(ONE,*AXpEta,S,ZERO,*AX);
if (this->hasBOp_) {
MVT::MvTimesMatAddMv(ONE,*BXpEta,S,ZERO,*BX);
}
}
// clear non-const views, restore const views
X = Teuchos::null;
BX = Teuchos::null;
this->X_ = MVT::CloneView(static_cast<const MV&>(*this->V_ ),ind);
this->BX_ = MVT::CloneView(static_cast<const MV&>(*this->BV_),ind);
}
//
// return XpEta and BXpEta to temp storage
SIRTR_RELEASE_TEMP_MV(XpEta,workspace); // workspace size is 1
SIRTR_RELEASE_TEMP_MV(AXpEta,workspace); // workspace size is 2
if (this->hasBOp_) {
SIRTR_RELEASE_TEMP_MV(BXpEta,workspace); // workspace size is 3
}
//
// solveTRSubproblem destroyed R, we must recompute it
// compute R = AX - BX*theta
//
// get R back from temp storage
SIRTR_GET_TEMP_MV(this->R_,workspace); // workspace size is 2
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
TimeMonitor lcltimer( *this->timerCompRes_ );
#endif
MVT::MvAddMv( ONE, *this->BX_, ZERO, *this->BX_, *this->R_ );
{
std::vector<ScalarType> theta_comp(this->theta_.begin(),this->theta_.end());
MVT::MvScale( *this->R_, theta_comp );
}
MVT::MvAddMv( ONE, *AX, -ONE, *this->R_, *this->R_ );
}
//
// R has been updated; mark the norms as out-of-date
this->Rnorms_current_ = false;
this->R2norms_current_ = false;
//
// we are done with AX, release it
SIRTR_RELEASE_TEMP_MV(AX,workspace); // workspace size is 3
//
// get data back for delta, Hdelta and Z
SIRTR_GET_TEMP_MV(this->delta_,workspace); // workspace size is 2
SIRTR_GET_TEMP_MV(this->Hdelta_,workspace); // workspace size is 1
SIRTR_GET_TEMP_MV(this->Z_,workspace); // workspace size is 0
//
// When required, monitor some orthogonalities
if (this->om_->isVerbosity( Debug ) ) {
// Check almost everything here
typename RTRBase<ScalarType,MV,OP>::CheckList chk;
chk.checkX = true;
chk.checkBX = true;
chk.checkR = true;
this->om_->print( Debug, this->accuracyCheck(chk, "after local update") );
}
else if (this->om_->isVerbosity( OrthoDetails )) {
typename RTRBase<ScalarType,MV,OP>::CheckList chk;
chk.checkX = true;
chk.checkR = true;
this->om_->print( OrthoDetails, this->accuracyCheck(chk, "after local update") );
}
} // end while (statusTest == false)
} // end of iterate()
//////////////////////////////////////////////////////////////////////////////////////////////////
// Print the current status of the solver
template <class ScalarType, class MV, class OP>
void
SIRTR<ScalarType,MV,OP>::currentStatus(std::ostream &os)
{
using std::endl;
os.setf(std::ios::scientific, std::ios::floatfield);
os.precision(6);
os <<endl;
os <<"================================================================================" << endl;
os << endl;
os <<" SIRTR Solver Status" << endl;
os << endl;
os <<"The solver is "<<(this->initialized_ ? "initialized." : "not initialized.") << endl;
os <<"The number of iterations performed is " << this->iter_ << endl;
os <<"The current block size is " << this->blockSize_ << endl;
os <<"The number of auxiliary vectors is " << this->numAuxVecs_ << endl;
os <<"The number of operations A*x is " << this->counterAOp_ << endl;
os <<"The number of operations B*x is " << this->counterBOp_ << endl;
os <<"The number of operations B*x by the orthomanager is " << this->orthman_->getOpCounter() << endl;
os <<"The number of operations Prec*x is " << this->counterPrec_ << endl;
os <<"Parameter rho_prime is " << rho_prime_ << endl;
os <<"Inner stopping condition was " << stopReasons_[innerStop_] << endl;
os <<"Number of inner iterations was " << innerIters_ << endl;
os <<"Total number of inner iterations is " << totalInnerIters_ << endl;
os <<"f(x) is " << this->fx_ << endl;
os.setf(std::ios_base::right, std::ios_base::adjustfield);
if (this->initialized_) {
os << endl;
os <<"CURRENT EIGENVALUE ESTIMATES "<<endl;
os << std::setw(20) << "Eigenvalue"
<< std::setw(20) << "Residual(B)"
<< std::setw(20) << "Residual(2)"
<< endl;
os <<"--------------------------------------------------------------------------------"<<endl;
for (int i=0; i<this->blockSize_; i++) {
os << std::setw(20) << this->theta_[i];
if (this->Rnorms_current_) os << std::setw(20) << this->Rnorms_[i];
else os << std::setw(20) << "not current";
if (this->R2norms_current_) os << std::setw(20) << this->R2norms_[i];
else os << std::setw(20) << "not current";
os << endl;
}
}
os <<"================================================================================" << endl;
os << endl;
}
} // end Anasazi namespace
#endif // ANASAZI_SIRTR_HPP
|