/usr/include/trilinos/AnasaziRTRBase.hpp is in libtrilinos-anasazi-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file AnasaziRTRBase.hpp
\brief Base class for Implicit Riemannian Trust-Region solvers
*/
#ifndef ANASAZI_RTRBASE_HPP
#define ANASAZI_RTRBASE_HPP
#include "AnasaziTypes.hpp"
#include "AnasaziEigensolver.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "AnasaziGenOrthoManager.hpp"
#include "AnasaziSolverUtils.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"
/*! \class Anasazi::RTRBase
\brief This class is an abstract base class for Implicit Riemannian Trust-Region
based eigensolvers. The class provides the interfaces shared by the %IRTR
solvers (e.g., getState() and initialize()) as well as the shared
implementations (e.g., inner products).
%IRTR eigensolvers are capable of solving symmetric/Hermitian
%eigenvalue problems. These solvers may be used to compute
either the leftmost (smallest real, "SR") or rightmost (largest real,
"LR") eigenvalues. For more information, see the publications at the
<a href="https://people.scs.fsu.edu/~cbaker/RTRESGEV/">RTR eigensolvers
page</a>.
This class is abstract and objects cannot be instantiated. Instead,
instantiate one of the concrete derived classes: IRTR and SIRTR,
the caching and non-caching implementations of this solver. The main difference between
these solver is the memory allocated by the solvers in support of the %IRTR iteration.
The reduction in memory usage is effected by eliminating the caching of
operator applications. This also results in a reduction in vector
arithmetic required to maintain these caches. The cost is an increase
in the number of operator applications. For inexpensive operator
applications, SIRTR should provide better performance over IRTR. As the
operator applications becomes more expensive, the performance scale
tips towards the IRTR solver. <b>Note</b>, the trajectory of both
solvers is identical in exact arithmetic. However, the effects of
round-off error in the cached results mean that some difference between
the solvers may exist. This effect is seen when a large number of
iterations are required to solve the trust-region subproblem in
solveTRSubproblem(). <b>Also note</b>, the inclusion of auxiliary
vectors increases the memory requirements of these solvers linearly
with the number of auxiliary vectors. The required storage is listed in
the following table:
<center>
<table>
<tr><td align=center colspan=5>Number of vectors (bS == blockSize())</td></tr>
<tr><td>Solver</td><td>Base requirement</td><td>Generalized/B != null</td><td>Preconditioned</td><td>Generalized and Preconditioned</td></tr>
<tr><td>IRTR</td><td>10*bS</td><td>11*bS</td><td>12*bS</td><td>13*bS</td></tr>
<tr><td>SIRTR</td><td>6*bS</td><td>7*bS</td><td>7*bS</td><td>8*bS</td></tr>
</table>
</center>
\ingroup anasazi_solver_framework
\author Chris Baker
*/
namespace Anasazi {
//! @name RTRBase Structures
//@{
/** \brief Structure to contain pointers to RTR state variables.
*
* This struct is utilized by RTRBase::initialize() and RTRBase::getState().
*/
template <class ScalarType, class MV>
struct RTRState {
//! The current eigenvectors.
Teuchos::RCP<const MV> X;
//! The image of the current eigenvectors under A, or Teuchos::null is we implement a skinny solver.
Teuchos::RCP<const MV> AX;
//! The image of the current eigenvectors under B, or Teuchos::null if B was not specified.
Teuchos::RCP<const MV> BX;
//! The current residual vectors.
Teuchos::RCP<const MV> R;
//! The current Ritz values.
Teuchos::RCP<const std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > T;
/*! \brief The current rho value.
* This is only valid if the debugging level of verbosity is enabled.
*/
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType rho;
RTRState() : X(Teuchos::null),AX(Teuchos::null),BX(Teuchos::null),
R(Teuchos::null),T(Teuchos::null),rho(0) {};
};
//@}
//! @name RTR Exceptions
//@{
/** \brief RTRRitzFailure is thrown when the RTR solver is unable to
* continue a call to RTRBase::iterate() due to a failure of the algorithm.
*
* This signals that the Rayleigh-Ritz analysis of <tt>X + Eta</tt>
* detected ill-conditioning of the projected mass matrix
* and the inability to generate a set of orthogonal eigenvectors for
* the projected problem (if thrown from iterate()) or that the analysis of
* the initial iterate failed in RTRBase::initialize().
*
* After catching this exception, the user can recover the subspace via
* RTRBase::getState(). This information can be used to restart the solver.
*
*/
class RTRRitzFailure : public AnasaziError {public:
RTRRitzFailure(const std::string& what_arg) : AnasaziError(what_arg)
{}};
/** \brief RTRInitFailure is thrown when the RTR solver is unable to
* generate an initial iterate in the RTRBase::initialize() routine.
*
* This exception is thrown from the RTRBase::initialize() method, which is
* called by the user or from the RTRBase::iterate() method when isInitialized()
* == \c false.
*
*/
class RTRInitFailure : public AnasaziError {public:
RTRInitFailure(const std::string& what_arg) : AnasaziError(what_arg)
{}};
/** \brief RTROrthoFailure is thrown when an orthogonalization attempt
* fails.
*
* This is thrown in one of two scenarios. After preconditioning the residual,
* the orthogonalization manager is asked to orthogonalize the preconditioned
* residual (H) against the auxiliary vectors. If full orthogonalization
* is enabled, H is also orthogonalized against X and P and normalized.
*
* The second scenario involves the generation of new X and P from the
* basis [X H P]. When full orthogonalization is enabled, an attempt is
* made to select coefficients for X and P so that they will be
* mutually orthogonal and orthonormal.
*
* If either of these attempts fail, the solver throws an RTROrthoFailure
* exception.
*/
class RTROrthoFailure : public AnasaziError {public:
RTROrthoFailure(const std::string& what_arg) : AnasaziError(what_arg)
{}};
//@}
template <class ScalarType, class MV, class OP>
class RTRBase : public Eigensolver<ScalarType,MV,OP> {
public:
//! @name Constructor/Destructor
//@{
/*! \brief %RTRBase constructor with eigenproblem, solver utilities, and parameter list of solver options.
*
* The RTRBase class is abstract and cannot be instantiated; this constructor is called by derived classes
* IRTR and RTR.
*/
RTRBase(const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
const Teuchos::RCP<GenOrthoManager<ScalarType,MV,OP> > &ortho,
Teuchos::ParameterList ¶ms,
const std::string &solverLabel, bool skinnySolver
);
//! %RTRBase destructor
virtual ~RTRBase() {};
//@}
//! @name Solver methods
//@{
/*! \brief This method performs %RTR iterations until the status test
* indicates the need to stop or an error occurs (in which case, an
* exception is thrown).
*
* iterate() will first determine whether the solver is initialized; if
* not, it will call initialize() using default arguments. After
* initialization, the solver performs %RTR iterations until the status
* test evaluates as ::Passed, at which point the method returns to the
* caller.
*
* The %RTR iteration proceeds as follows:
* -# the trust-region subproblem at \c X is solved for update \c Eta via a call to solveTRSubproblem()
* -# the new iterate is the Ritz vectors with respect to <tt>X+Eta</tt>
* -# the eigenproblem residuals are formed with respect to the new iterate
*
* The status test is queried at the beginning of the iteration.
*
* Possible exceptions thrown include std::logic_error, std::invalid_argument or
* one of the RTR-specific exceptions.
*
*/
virtual void iterate() = 0;
/*! \brief Initialize the solver to an iterate, optionally providing the
* Ritz values and residual.
*
* The %RTR eigensolver contains a certain amount of state relating to
* the current iterate.
*
* initialize() gives the user the opportunity to manually set these,
* although this must be done with caution, abiding by the rules
* given below. All notions of orthogonality and orthonormality are derived
* from the inner product specified by the orthogonalization manager.
*
* \post
* - isInitialized() == true (see post-conditions of isInitialize())
*
* The user has the option of specifying any component of the state using
* initialize(). However, these arguments are assumed to match the
* post-conditions specified under isInitialized(). Any component of the
* state (i.e., AX) not given to initialize() will be generated.
*
* If the Ritz values relative to <tt>newstate.X</tt> are passed in <tt>newstate.T</tt>,
* then <tt>newstate.X</tt> is assume to contain Ritz vectors, i.e., <tt>newstate.T</tt>
* must be B-orthonormal and it must partially diagonalize A.
*
*/
void initialize(RTRState<ScalarType,MV>& newstate);
/*! \brief Initialize the solver with the initial vectors from the eigenproblem
* or random data.
*/
void initialize();
/*! \brief Indicates whether the solver has been initialized or not.
*
* \return bool indicating the state of the solver.
* \post
* If isInitialized() == \c true:
* - X is orthogonal to auxiliary vectors and has orthonormal columns
* - AX == A*X
* - BX == B*X if B != Teuchos::null\n
* Otherwise, BX == Teuchos::null
* - getRitzValues() returns the sorted Ritz values with respect to X
* - getResidualVecs() returns the residual vectors with respect to X
*/
bool isInitialized() const;
/*! \brief Get the current state of the eigensolver.
*
* The data is only valid if isInitialized() == \c true.
*
* \returns An RTRState object containing const pointers to the current
* solver state.
*/
RTRState<ScalarType,MV> getState() const;
//@}
//! @name Status methods
//@{
//! \brief Get the current iteration count.
int getNumIters() const;
//! \brief Reset the iteration count.
void resetNumIters();
/*! \brief Get the Ritz vectors from the previous iteration.
\return A multivector with getBlockSize() vectors containing
the sorted Ritz vectors corresponding to the most significant Ritz values.
The i-th vector of the return corresponds to the i-th Ritz vector; there is no need to use
getRitzIndex().
*/
Teuchos::RCP<const MV> getRitzVectors();
/*! \brief Get the Ritz values from the previous iteration.
*
* \return A vector of length getCurSubspaceDim() containing the Ritz values from the
* previous projected eigensolve.
*/
std::vector<Value<ScalarType> > getRitzValues();
/*! \brief Get the index used for extracting Ritz vectors from getRitzVectors().
*
* Because BlockDavidson is a Hermitian solver, all Ritz values are real and all Ritz vectors can be represented in a
* single column of a multivector. Therefore, getRitzIndex() is not needed when using the output from getRitzVectors().
*
* \return An \c int vector of size getCurSubspaceDim() composed of zeros.
*/
std::vector<int> getRitzIndex();
/*! \brief Get the current residual norms
*
* \return A vector of length getCurSubspaceDim() containing the norms of the
* residuals, with respect to the orthogonalization manager norm() method.
*/
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> getResNorms();
/*! \brief Get the current residual 2-norms
*
* \return A vector of length getCurSubspaceDim() containing the 2-norms of the
* residuals.
*/
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> getRes2Norms();
/*! \brief Get the 2-norms of the Ritz residuals.
*
* \return A vector of length getCurSubspaceDim() containing the 2-norms of the Ritz residuals.
*/
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> getRitzRes2Norms();
/*! \brief Get the dimension of the search subspace used to generate the current eigenvectors and eigenvalues.
*
* %RTR employs a sequential subspace iteration, maintaining a fixed-rank basis, as opposed to an expanding subspace
* mechanism employed by Krylov-subspace solvers like BlockKrylovSchur and BlockDavidson.
*
* \return An integer specifying the rank of the subspace generated by the eigensolver. If isInitialized() == \c false,
* the return is 0. Otherwise, the return will be getBlockSize().
*/
int getCurSubspaceDim() const;
/*! \brief Get the maximum dimension allocated for the search subspace. For %RTR, this always returns getBlockSize().
*/
int getMaxSubspaceDim() const;
//@}
//! @name Accessor routines from Eigensolver
//@{
//! Set a new StatusTest for the solver.
void setStatusTest(Teuchos::RCP<StatusTest<ScalarType,MV,OP> > test);
//! Get the current StatusTest used by the solver.
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > getStatusTest() const;
//! Get a constant reference to the eigenvalue problem.
const Eigenproblem<ScalarType,MV,OP>& getProblem() const;
/*! \brief Set the blocksize to be used by the iterative solver in solving
* this eigenproblem.
*
* If the block size is reduced, then the new iterate (and residual and
* search direction) are chosen as the subset of the current iterate
* preferred by the sort manager. Otherwise, the solver state is set to
* uninitialized.
*/
void setBlockSize(int blockSize);
//! Get the blocksize to be used by the iterative solver in solving this eigenproblem.
int getBlockSize() const;
/*! \brief Set the auxiliary vectors for the solver.
*
* Because the current iterate X cannot be assumed orthogonal to the new
* auxiliary vectors, a call to setAuxVecs() with a non-empty argument
* will reset the solver to the uninitialized state.
*
* In order to preserve the current state, the user will need to extract
* it from the solver using getState(), orthogonalize it against the new
* auxiliary vectors, and manually reinitialize the solver using
* initialize().
*
* <b>NOTE:</b> The requirements of the %IRTR solvers is such that the
* auxiliary vectors must be moved into contiguous storage with the
* current iterate. As a result, the multivector data in \c auxvecs will be copied,
* and the multivectors in \c auxvecs will no longer be referenced. The (unchanged)
* internal copies of the auxilliary vectors will be made available to the caller
* by the getAuxVecs() routine. This allows the caller to delete the caller's copies and
* instead use the copies owned by the solver, avoiding the duplication of data. This
* is not necessary, however. The partitioning of the auxiliary vectors passed to setAuxVecs() will be preserved.
*/
void setAuxVecs(const Teuchos::Array<Teuchos::RCP<const MV> > &auxvecs);
//! Get the current auxiliary vectors.
Teuchos::Array<Teuchos::RCP<const MV> > getAuxVecs() const;
//@}
//! @name Output methods
//@{
//! This method requests that the solver print out its current status to screen.
virtual void currentStatus(std::ostream &os);
//@}
protected:
//
// Convenience typedefs
//
typedef SolverUtils<ScalarType,MV,OP> Utils;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename SCT::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MAT;
const MagnitudeType ONE;
const MagnitudeType ZERO;
const MagnitudeType NANVAL;
typedef typename std::vector<MagnitudeType>::iterator vecMTiter;
typedef typename std::vector<ScalarType>::iterator vecSTiter;
//
// Internal structs
//
struct CheckList {
bool checkX, checkAX, checkBX;
bool checkEta, checkAEta, checkBEta;
bool checkR, checkQ, checkBR;
bool checkZ, checkPBX;
CheckList() : checkX(false),checkAX(false),checkBX(false),
checkEta(false),checkAEta(false),checkBEta(false),
checkR(false),checkQ(false),checkBR(false),
checkZ(false), checkPBX(false) {};
};
//
// Internal methods
//
std::string accuracyCheck(const CheckList &chk, const std::string &where) const;
// solves the model minimization
virtual void solveTRSubproblem() = 0;
// Riemannian metric
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType ginner(const MV &xi) const;
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType ginner(const MV &xi, const MV &zeta) const;
void ginnersep(const MV &xi, std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &d) const;
void ginnersep(const MV &xi, const MV &zeta, std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &d) const;
//
// Classes input through constructor that define the eigenproblem to be solved.
//
const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > problem_;
const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > sm_;
const Teuchos::RCP<OutputManager<ScalarType> > om_;
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > tester_;
const Teuchos::RCP<GenOrthoManager<ScalarType,MV,OP> > orthman_;
//
// Information obtained from the eigenproblem
//
Teuchos::RCP<const OP> AOp_;
Teuchos::RCP<const OP> BOp_;
Teuchos::RCP<const OP> Prec_;
bool hasBOp_, hasPrec_, olsenPrec_;
//
// Internal timers
//
Teuchos::RCP<Teuchos::Time> timerAOp_, timerBOp_, timerPrec_,
timerSort_,
timerLocalProj_, timerDS_,
timerLocalUpdate_, timerCompRes_,
timerOrtho_, timerInit_;
//
// Counters
//
// Number of operator applications
int counterAOp_, counterBOp_, counterPrec_;
//
// Algorithmic parameters.
//
// blockSize_ is the solver block size
int blockSize_;
//
// Current solver state
//
// initialized_ specifies that the basis vectors have been initialized and the iterate() routine
// is capable of running; _initialize is controlled by the initialize() member method
// For the implications of the state of initialized_, please see documentation for initialize()
bool initialized_;
//
// nevLocal_ reflects how much of the current basis is valid (0 <= nevLocal_ <= blockSize_)
// this tells us how many of the values in theta_ are valid Ritz values
int nevLocal_;
//
// are we implementing a skinny solver? (SkinnyIRTR)
bool isSkinny_;
//
// are we computing leftmost or rightmost eigenvalue?
bool leftMost_;
//
// State Multivecs
//
// if we are implementing a skinny solver (SkinnyIRTR),
// then some of these will never be allocated
//
// In order to handle auxiliary vectors, we need to handle the projector
// P_{[BQ BX],[BQ BX]}
// Using an orthomanager with B-inner product, this requires calling with multivectors
// [BQ,BX] and [Q,X].
// These multivectors must be combined because <[BQ,BX],[Q,X]>_B != I
// Hence, we will create two multivectors V and BV, which store
// V = [Q,X]
// BV = [BQ,BX]
//
// In the context of preconditioning, we may need to apply the projector
// P_{prec*[BQ,BX],[BQ,BX]}
// Because [BQ,BX] do not change during the supproblem solver, we will apply
// the preconditioner to [BQ,BX] only once. This result is stored in PBV.
//
// X,BX are views into V,BV
// We don't need views for Q,BQ
// Inside the subproblem solver, X,BX are constant, so we can allow these
// views to exist alongside the full view of V,BV without violating
// view semantics.
//
// Skinny solver allocates 6/7/8 multivectors:
// V_, BV_ (if hasB)
// PBV_ (if hasPrec and olsenPrec)
// R_, Z_ (regardless of hasPrec)
// eta_, delta_, Hdelta_
//
// Hefty solver allocates 10/11/12/13 multivectors:
// V_, AX_, BV_ (if hasB)
// PBV_ (if hasPrec and olsenPrec)
// R_, Z_ (if hasPrec)
// eta_, Aeta_, Beta_
// delta_, Adelta_, Bdelta_, Hdelta_
//
Teuchos::RCP<MV> V_, BV_, PBV_, // V = [Q,X]; B*V; Prec*B*V
AX_, R_, // A*X_; residual, gradient, and residual of model minimization
eta_, Aeta_, Beta_, // update vector from model minimization
delta_, Adelta_, Bdelta_, Hdelta_, // search direction in model minimization
Z_; // preconditioned residual
Teuchos::RCP<const MV> X_, BX_;
//
// auxiliary vectors
Teuchos::Array<Teuchos::RCP<const MV> > auxVecs_;
int numAuxVecs_;
//
// Number of iterations that have been performed.
int iter_;
//
// Current eigenvalues, residual norms
std::vector<MagnitudeType> theta_, Rnorms_, R2norms_, ritz2norms_;
//
// are the residual norms current with the residual?
bool Rnorms_current_, R2norms_current_;
//
// parameters solver and inner solver
MagnitudeType conv_kappa_, conv_theta_;
MagnitudeType rho_;
//
// current objective function value
MagnitudeType fx_;
};
//////////////////////////////////////////////////////////////////////////////////////////////////
// Constructor
template <class ScalarType, class MV, class OP>
RTRBase<ScalarType,MV,OP>::RTRBase(
const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
const Teuchos::RCP<GenOrthoManager<ScalarType,MV,OP> > &ortho,
Teuchos::ParameterList ¶ms,
const std::string &solverLabel, bool skinnySolver
) :
ONE(Teuchos::ScalarTraits<MagnitudeType>::one()),
ZERO(Teuchos::ScalarTraits<MagnitudeType>::zero()),
NANVAL(Teuchos::ScalarTraits<MagnitudeType>::nan()),
// problem, tools
problem_(problem),
sm_(sorter),
om_(printer),
tester_(tester),
orthman_(ortho),
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
timerAOp_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Operation A*x")),
timerBOp_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Operation B*x")),
timerPrec_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Operation Prec*x")),
timerSort_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Sorting eigenvalues")),
timerLocalProj_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Local projection")),
timerDS_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Direct solve")),
timerLocalUpdate_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Local update")),
timerCompRes_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Computing residuals")),
timerOrtho_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Orthogonalization")),
timerInit_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Initialization")),
#endif
counterAOp_(0),
counterBOp_(0),
counterPrec_(0),
// internal data
blockSize_(0),
initialized_(false),
nevLocal_(0),
isSkinny_(skinnySolver),
leftMost_(true),
auxVecs_( Teuchos::Array<Teuchos::RCP<const MV> >(0) ),
numAuxVecs_(0),
iter_(0),
Rnorms_current_(false),
R2norms_current_(false),
conv_kappa_(.1),
conv_theta_(1),
rho_( MAT::nan() ),
fx_( MAT::nan() )
{
TEUCHOS_TEST_FOR_EXCEPTION(problem_ == Teuchos::null,std::invalid_argument,
"Anasazi::RTRBase::constructor: user passed null problem pointer.");
TEUCHOS_TEST_FOR_EXCEPTION(sm_ == Teuchos::null,std::invalid_argument,
"Anasazi::RTRBase::constructor: user passed null sort manager pointer.");
TEUCHOS_TEST_FOR_EXCEPTION(om_ == Teuchos::null,std::invalid_argument,
"Anasazi::RTRBase::constructor: user passed null output manager pointer.");
TEUCHOS_TEST_FOR_EXCEPTION(tester_ == Teuchos::null,std::invalid_argument,
"Anasazi::RTRBase::constructor: user passed null status test pointer.");
TEUCHOS_TEST_FOR_EXCEPTION(orthman_ == Teuchos::null,std::invalid_argument,
"Anasazi::RTRBase::constructor: user passed null orthogonalization manager pointer.");
TEUCHOS_TEST_FOR_EXCEPTION(problem_->isProblemSet() == false, std::invalid_argument,
"Anasazi::RTRBase::constructor: problem is not set.");
TEUCHOS_TEST_FOR_EXCEPTION(problem_->isHermitian() == false, std::invalid_argument,
"Anasazi::RTRBase::constructor: problem is not Hermitian.");
// get the problem operators
AOp_ = problem_->getOperator();
TEUCHOS_TEST_FOR_EXCEPTION(AOp_ == Teuchos::null, std::invalid_argument,
"Anasazi::RTRBase::constructor: problem provides no A matrix.");
BOp_ = problem_->getM();
Prec_ = problem_->getPrec();
hasBOp_ = (BOp_ != Teuchos::null);
hasPrec_ = (Prec_ != Teuchos::null);
olsenPrec_ = params.get<bool>("Olsen Prec", true);
TEUCHOS_TEST_FOR_EXCEPTION(orthman_->getOp() != BOp_,std::invalid_argument,
"Anasazi::RTRBase::constructor: orthogonalization manager must use mass matrix for inner product.");
// set the block size and allocate data
int bs = params.get("Block Size", problem_->getNEV());
setBlockSize(bs);
// leftmost or rightmost?
leftMost_ = params.get("Leftmost",leftMost_);
conv_kappa_ = params.get("Kappa Convergence",conv_kappa_);
TEUCHOS_TEST_FOR_EXCEPTION(conv_kappa_ <= 0 || conv_kappa_ >= 1,std::invalid_argument,
"Anasazi::RTRBase::constructor: kappa must be in (0,1).");
conv_theta_ = params.get("Theta Convergence",conv_theta_);
TEUCHOS_TEST_FOR_EXCEPTION(conv_theta_ <= 0,std::invalid_argument,
"Anasazi::RTRBase::constructor: theta must be strictly postitive.");
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Set the block size and make necessary adjustments.
template <class ScalarType, class MV, class OP>
void RTRBase<ScalarType,MV,OP>::setBlockSize (int blockSize)
{
// time spent here counts towards timerInit_
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerInit_ );
#endif
// This routine only allocates space; it doesn't not perform any computation
// if solver is initialized and size is to be decreased, take the first blockSize vectors of all to preserve state
// otherwise, shrink/grow/allocate space and set solver to unitialized
Teuchos::RCP<const MV> tmp;
// grab some Multivector to Clone
// in practice, getInitVec() should always provide this, but it is possible to use a
// Eigenproblem with nothing in getInitVec() by manually initializing with initialize();
// in case of that strange scenario, we will try to Clone from R_
// we like R_ for this, because it has minimal size (blockSize_), as opposed to V_ (blockSize_+numAuxVecs_)
if (blockSize_ > 0) {
tmp = R_;
}
else {
tmp = problem_->getInitVec();
TEUCHOS_TEST_FOR_EXCEPTION(tmp == Teuchos::null,std::logic_error,
"Anasazi::RTRBase::setBlockSize(): Eigenproblem did not specify initial vectors to clone from");
}
TEUCHOS_TEST_FOR_EXCEPTION(blockSize <= 0 || blockSize > MVT::GetGlobalLength(*tmp), std::invalid_argument,
"Anasazi::RTRBase::setBlockSize was passed a non-positive block size");
// last chance to quit before causing side-effects
if (blockSize == blockSize_) {
// do nothing
return;
}
// clear views
X_ = Teuchos::null;
BX_ = Teuchos::null;
// regardless of whether we preserve any data, any content in V, BV and PBV corresponding to the
// auxiliary vectors must be retained
// go ahead and do these first
//
// two cases here:
// * we are growing (possibly, from empty)
// any aux data must be copied over, nothing from X need copying
// * we are shrinking
// any aux data must be copied over, go ahead and copy X material (initialized or not)
//
if (blockSize > blockSize_)
{
// GROWING
// get a pointer for Q-related material, and an index for extracting/setting it
Teuchos::RCP<const MV> Q;
std::vector<int> indQ(numAuxVecs_);
for (int i=0; i<numAuxVecs_; i++) indQ[i] = i;
// if numAuxVecs_ > 0, then necessarily blockSize_ > 0 (we have already been allocated once)
TEUCHOS_TEST_FOR_EXCEPTION(numAuxVecs_ > 0 && blockSize_ == 0, std::logic_error,
"Anasazi::RTRBase::setSize(): logic error. Please contact Anasazi team.");
// V
if (numAuxVecs_ > 0) Q = MVT::CloneView(*V_,indQ);
V_ = MVT::Clone(*tmp,numAuxVecs_ + blockSize);
if (numAuxVecs_ > 0) MVT::SetBlock(*Q,indQ,*V_);
// BV
if (hasBOp_) {
if (numAuxVecs_ > 0) Q = MVT::CloneView(*BV_,indQ);
BV_ = MVT::Clone(*tmp,numAuxVecs_ + blockSize);
if (numAuxVecs_ > 0) MVT::SetBlock(*Q,indQ,*BV_);
}
else {
BV_ = V_;
}
// PBV
if (hasPrec_ && olsenPrec_) {
if (numAuxVecs_ > 0) Q = MVT::CloneView(*PBV_,indQ);
PBV_ = MVT::Clone(*tmp,numAuxVecs_ + blockSize);
if (numAuxVecs_ > 0) MVT::SetBlock(*Q,indQ,*PBV_);
}
}
else
{
// SHRINKING
std::vector<int> indV(numAuxVecs_+blockSize);
for (int i=0; i<numAuxVecs_+blockSize; i++) indV[i] = i;
// V
V_ = MVT::CloneCopy(*V_,indV);
// BV
if (hasBOp_) {
BV_ = MVT::CloneCopy(*BV_,indV);
}
else {
BV_ = V_;
}
// PBV
if (hasPrec_ && olsenPrec_) {
PBV_ = MVT::CloneCopy(*PBV_,indV);
}
}
if (blockSize < blockSize_) {
// shrink vectors
blockSize_ = blockSize;
theta_.resize(blockSize_);
ritz2norms_.resize(blockSize_);
Rnorms_.resize(blockSize_);
R2norms_.resize(blockSize_);
if (initialized_) {
// shrink multivectors with copy
std::vector<int> ind(blockSize_);
for (int i=0; i<blockSize_; i++) ind[i] = i;
// Z can be deleted, no important info there
Z_ = Teuchos::null;
// we will not use tmp for cloning, clear it and free some space
tmp = Teuchos::null;
R_ = MVT::CloneCopy(*R_ ,ind);
eta_ = MVT::CloneCopy(*eta_ ,ind);
delta_ = MVT::CloneCopy(*delta_ ,ind);
Hdelta_ = MVT::CloneCopy(*Hdelta_,ind);
if (!isSkinny_) {
AX_ = MVT::CloneCopy(*AX_ ,ind);
Aeta_ = MVT::CloneCopy(*Aeta_ ,ind);
Adelta_ = MVT::CloneCopy(*Adelta_,ind);
}
else {
AX_ = Teuchos::null;
Aeta_ = Teuchos::null;
Adelta_ = Teuchos::null;
}
if (hasBOp_) {
if (!isSkinny_) {
Beta_ = MVT::CloneCopy(*Beta_,ind);
Bdelta_ = MVT::CloneCopy(*Bdelta_,ind);
}
else {
Beta_ = Teuchos::null;
Bdelta_ = Teuchos::null;
}
}
else {
Beta_ = eta_;
Bdelta_ = delta_;
}
// we need Z if we have a preconditioner
// we also use Z for temp storage in the skinny solvers
if (hasPrec_ || isSkinny_) {
Z_ = MVT::Clone(*V_,blockSize_);
}
else {
Z_ = R_;
}
}
else {
// release previous multivectors
// shrink multivectors without copying
AX_ = Teuchos::null;
R_ = Teuchos::null;
eta_ = Teuchos::null;
Aeta_ = Teuchos::null;
delta_ = Teuchos::null;
Adelta_ = Teuchos::null;
Hdelta_ = Teuchos::null;
Beta_ = Teuchos::null;
Bdelta_ = Teuchos::null;
Z_ = Teuchos::null;
R_ = MVT::Clone(*tmp,blockSize_);
eta_ = MVT::Clone(*tmp,blockSize_);
delta_ = MVT::Clone(*tmp,blockSize_);
Hdelta_ = MVT::Clone(*tmp,blockSize_);
if (!isSkinny_) {
AX_ = MVT::Clone(*tmp,blockSize_);
Aeta_ = MVT::Clone(*tmp,blockSize_);
Adelta_ = MVT::Clone(*tmp,blockSize_);
}
if (hasBOp_) {
if (!isSkinny_) {
Beta_ = MVT::Clone(*tmp,blockSize_);
Bdelta_ = MVT::Clone(*tmp,blockSize_);
}
}
else {
Beta_ = eta_;
Bdelta_ = delta_;
}
// we need Z if we have a preconditioner
// we also use Z for temp storage in the skinny solvers
if (hasPrec_ || isSkinny_) {
Z_ = MVT::Clone(*tmp,blockSize_);
}
else {
Z_ = R_;
}
} // if initialized_
} // if blockSize is shrinking
else { // if blockSize > blockSize_
// this is also the scenario for our initial call to setBlockSize(), in the constructor
initialized_ = false;
// grow/allocate vectors
theta_.resize(blockSize,NANVAL);
ritz2norms_.resize(blockSize,NANVAL);
Rnorms_.resize(blockSize,NANVAL);
R2norms_.resize(blockSize,NANVAL);
// deallocate old multivectors
AX_ = Teuchos::null;
R_ = Teuchos::null;
eta_ = Teuchos::null;
Aeta_ = Teuchos::null;
delta_ = Teuchos::null;
Adelta_ = Teuchos::null;
Hdelta_ = Teuchos::null;
Beta_ = Teuchos::null;
Bdelta_ = Teuchos::null;
Z_ = Teuchos::null;
// clone multivectors off of tmp
R_ = MVT::Clone(*tmp,blockSize);
eta_ = MVT::Clone(*tmp,blockSize);
delta_ = MVT::Clone(*tmp,blockSize);
Hdelta_ = MVT::Clone(*tmp,blockSize);
if (!isSkinny_) {
AX_ = MVT::Clone(*tmp,blockSize);
Aeta_ = MVT::Clone(*tmp,blockSize);
Adelta_ = MVT::Clone(*tmp,blockSize);
}
if (hasBOp_) {
if (!isSkinny_) {
Beta_ = MVT::Clone(*tmp,blockSize);
Bdelta_ = MVT::Clone(*tmp,blockSize);
}
}
else {
Beta_ = eta_;
Bdelta_ = delta_;
}
if (hasPrec_ || isSkinny_) {
Z_ = MVT::Clone(*tmp,blockSize);
}
else {
Z_ = R_;
}
blockSize_ = blockSize;
}
// get view of X from V, BX from BV
// these are located after the first numAuxVecs columns
{
std::vector<int> indX(blockSize_);
for (int i=0; i<blockSize_; i++) indX[i] = numAuxVecs_+i;
X_ = MVT::CloneView(*V_,indX);
if (hasBOp_) {
BX_ = MVT::CloneView(*BV_,indX);
}
else {
BX_ = X_;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Set a new StatusTest for the solver.
template <class ScalarType, class MV, class OP>
void RTRBase<ScalarType,MV,OP>::setStatusTest(Teuchos::RCP<StatusTest<ScalarType,MV,OP> > test) {
TEUCHOS_TEST_FOR_EXCEPTION(test == Teuchos::null,std::invalid_argument,
"Anasazi::RTRBase::setStatusTest() was passed a null StatusTest.");
tester_ = test;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Get the current StatusTest used by the solver.
template <class ScalarType, class MV, class OP>
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > RTRBase<ScalarType,MV,OP>::getStatusTest() const {
return tester_;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Set the auxiliary vectors
template <class ScalarType, class MV, class OP>
void RTRBase<ScalarType,MV,OP>::setAuxVecs(const Teuchos::Array<Teuchos::RCP<const MV> > &auxvecs) {
typedef typename Teuchos::Array<Teuchos::RCP<const MV> >::const_iterator tarcpmv;
// set new auxiliary vectors
auxVecs_.resize(0);
auxVecs_.reserve(auxvecs.size());
numAuxVecs_ = 0;
for (tarcpmv v=auxvecs.begin(); v != auxvecs.end(); ++v) {
numAuxVecs_ += MVT::GetNumberVecs(**v);
}
// If the solver has been initialized, X is not necessarily orthogonal to new auxiliary vectors
if (numAuxVecs_ > 0 && initialized_) {
initialized_ = false;
}
// clear X,BX views
X_ = Teuchos::null;
BX_ = Teuchos::null;
// deallocate, we'll clone off R_ below
V_ = Teuchos::null;
BV_ = Teuchos::null;
PBV_ = Teuchos::null;
// put auxvecs into V, update BV and PBV if necessary
if (numAuxVecs_ > 0) {
V_ = MVT::Clone(*R_,numAuxVecs_ + blockSize_);
int numsofar = 0;
for (tarcpmv v=auxvecs.begin(); v != auxvecs.end(); ++v) {
std::vector<int> ind(MVT::GetNumberVecs(**v));
for (size_t j=0; j<ind.size(); j++) ind[j] = numsofar++;
MVT::SetBlock(**v,ind,*V_);
auxVecs_.push_back(MVT::CloneView(*Teuchos::rcp_static_cast<const MV>(V_),ind));
}
TEUCHOS_TEST_FOR_EXCEPTION(numsofar != numAuxVecs_, std::logic_error,
"Anasazi::RTRBase::setAuxVecs(): Logic error. Please contact Anasazi team.");
// compute B*V, Prec*B*V
if (hasBOp_) {
BV_ = MVT::Clone(*R_,numAuxVecs_ + blockSize_);
OPT::Apply(*BOp_,*V_,*BV_);
}
else {
BV_ = V_;
}
if (hasPrec_ && olsenPrec_) {
PBV_ = MVT::Clone(*R_,numAuxVecs_ + blockSize_);
OPT::Apply(*Prec_,*BV_,*V_);
}
}
//
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkQ = true;
om_->print( Debug, accuracyCheck(chk, "in setAuxVecs()") );
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
/* Initialize the state of the solver
*
* POST-CONDITIONS:
*
* initialized_ == true
* X is orthonormal, orthogonal to auxVecs_
* AX = A*X if not skinnny
* BX = B*X if hasBOp_
* theta_ contains Ritz values of X
* R = AX - BX*diag(theta_)
*/
template <class ScalarType, class MV, class OP>
void RTRBase<ScalarType,MV,OP>::initialize(RTRState<ScalarType,MV>& newstate)
{
// NOTE: memory has been allocated by setBlockSize(). Use SetBlock below; do not Clone
// NOTE: Overall time spent in this routine is counted to timerInit_; portions will also be counted towards other primitives
// clear const views to X,BX in V,BV
// work with temporary non-const views
X_ = Teuchos::null;
BX_ = Teuchos::null;
Teuchos::RCP<MV> X, BX;
{
std::vector<int> ind(blockSize_);
for (int i=0; i<blockSize_; ++i) ind[i] = numAuxVecs_+i;
X = MVT::CloneViewNonConst(*V_,ind);
if (hasBOp_) {
BX = MVT::CloneViewNonConst(*BV_,ind);
}
else {
BX = X;
}
}
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor inittimer( *timerInit_ );
#endif
std::vector<int> bsind(blockSize_);
for (int i=0; i<blockSize_; i++) bsind[i] = i;
// in RTR, X (the subspace iterate) is primary
// the order of dependence follows like so.
// --init-> X
// --op apply-> AX,BX
// --ritz analysis-> theta
//
// if the user specifies all data for a level, we will accept it.
// otherwise, we will generate the whole level, and all subsequent levels.
//
// the data members are ordered based on dependence, and the levels are
// partitioned according to the amount of work required to produce the
// items in a level.
//
// inconsitent multivectors widths and lengths will not be tolerated, and
// will be treated with exceptions.
// set up X, AX, BX: get them from "state" if user specified them
if (newstate.X != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.X) != MVT::GetGlobalLength(*X),
std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): vector length of newstate.X not correct." );
// newstate.X must have blockSize_ vectors; any more will be ignored
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.X) < blockSize_,
std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): newstate.X must have at least block size vectors.");
// put data in X
MVT::SetBlock(*newstate.X,bsind,*X);
// put data in AX
// if we are implementing a skinny solver, then we don't have memory allocated for AX
// in this case, point AX at Z (skinny solvers allocate Z) and use it for temporary storage
// we will clear the pointer later
if (isSkinny_) {
AX_ = Z_;
}
if (newstate.AX != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.AX) != MVT::GetGlobalLength(*X),
std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): vector length of newstate.AX not correct." );
// newstate.AX must have blockSize_ vectors; any more will be ignored
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.AX) < blockSize_,
std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): newstate.AX must have at least block size vectors.");
MVT::SetBlock(*newstate.AX,bsind,*AX_);
}
else {
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerAOp_ );
#endif
OPT::Apply(*AOp_,*X,*AX_);
counterAOp_ += blockSize_;
}
// we generated AX; we will generate R as well
newstate.R = Teuchos::null;
}
// put data in BX
// skinny solvers always allocate BX if hasB, so this is unconditionally appropriate
if (hasBOp_) {
if (newstate.BX != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.BX) != MVT::GetGlobalLength(*X),
std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): vector length of newstate.BX not correct." );
// newstate.BX must have blockSize_ vectors; any more will be ignored
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.BX) < blockSize_,
std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): newstate.BX must have at least block size vectors.");
MVT::SetBlock(*newstate.BX,bsind,*BX);
}
else {
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerBOp_ );
#endif
OPT::Apply(*BOp_,*X,*BX);
counterBOp_ += blockSize_;
}
// we generated BX; we will generate R as well
newstate.R = Teuchos::null;
}
}
else {
// the assignment BX_==X_ would be redundant; take advantage of this opportunity to debug a little
TEUCHOS_TEST_FOR_EXCEPTION(BX != X, std::logic_error, "Anasazi::RTRBase::initialize(): solver invariant not satisfied (BX==X).");
}
}
else {
// user did not specify X
// clear state so we won't use any data from it below
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
// generate something and projectAndNormalize
Teuchos::RCP<const MV> ivec = problem_->getInitVec();
TEUCHOS_TEST_FOR_EXCEPTION(ivec == Teuchos::null,std::logic_error,
"Anasazi::RTRBase::initialize(): Eigenproblem did not specify initial vectors to clone from.");
int initSize = MVT::GetNumberVecs(*ivec);
if (initSize > blockSize_) {
// we need only the first blockSize_ vectors from ivec; get a view of them
initSize = blockSize_;
std::vector<int> ind(blockSize_);
for (int i=0; i<blockSize_; i++) ind[i] = i;
ivec = MVT::CloneView(*ivec,ind);
}
// assign ivec to first part of X
if (initSize > 0) {
std::vector<int> ind(initSize);
for (int i=0; i<initSize; i++) ind[i] = i;
MVT::SetBlock(*ivec,ind,*X);
}
// fill the rest of X with random
if (blockSize_ > initSize) {
std::vector<int> ind(blockSize_ - initSize);
for (int i=0; i<blockSize_ - initSize; i++) ind[i] = initSize + i;
Teuchos::RCP<MV> rX = MVT::CloneViewNonConst(*X,ind);
MVT::MvRandom(*rX);
rX = Teuchos::null;
}
// put data in BX
if (hasBOp_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerBOp_ );
#endif
OPT::Apply(*BOp_,*X,*BX);
counterBOp_ += blockSize_;
}
else {
// the assignment BX==X would be redundant; take advantage of this opportunity to debug a little
TEUCHOS_TEST_FOR_EXCEPTION(BX != X, std::logic_error, "Anasazi::RTRBase::initialize(): solver invariant not satisfied (BX==X).");
}
// remove auxVecs from X and normalize it
if (numAuxVecs_ > 0) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerOrtho_ );
#endif
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > dummyC;
int rank = orthman_->projectAndNormalizeMat(*X,auxVecs_,dummyC,Teuchos::null,BX);
TEUCHOS_TEST_FOR_EXCEPTION(rank != blockSize_, RTRInitFailure,
"Anasazi::RTRBase::initialize(): Couldn't generate initial basis of full rank.");
}
else {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerOrtho_ );
#endif
int rank = orthman_->normalizeMat(*X,Teuchos::null,BX);
TEUCHOS_TEST_FOR_EXCEPTION(rank != blockSize_, RTRInitFailure,
"Anasazi::RTRBase::initialize(): Couldn't generate initial basis of full rank.");
}
// put data in AX
if (isSkinny_) {
AX_ = Z_;
}
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerAOp_ );
#endif
OPT::Apply(*AOp_,*X,*AX_);
counterAOp_ += blockSize_;
}
} // end if (newstate.X != Teuchos::null)
// set up Ritz values
if (newstate.T != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( (signed int)(newstate.T->size()) < blockSize_,
std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): newstate.T must contain at least block size Ritz values.");
for (int i=0; i<blockSize_; i++) {
theta_[i] = (*newstate.T)[i];
}
}
else {
// get ritz vecs/vals
Teuchos::SerialDenseMatrix<int,ScalarType> AA(blockSize_,blockSize_),
BB(blockSize_,blockSize_),
S(blockSize_,blockSize_);
// project A
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerLocalProj_ );
#endif
MVT::MvTransMv(ONE,*X,*AX_,AA);
if (hasBOp_) {
MVT::MvTransMv(ONE,*X,*BX,BB);
}
}
nevLocal_ = blockSize_;
// solve the projected problem
// project B
int ret;
if (hasBOp_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerDS_ );
#endif
ret = Utils::directSolver(blockSize_,AA,Teuchos::rcpFromRef(BB),S,theta_,nevLocal_,1);
}
else {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerDS_ );
#endif
ret = Utils::directSolver(blockSize_,AA,Teuchos::null,S,theta_,nevLocal_,10);
}
TEUCHOS_TEST_FOR_EXCEPTION(ret != 0,RTRInitFailure,
"Anasazi::RTRBase::initialize(): failure solving projected eigenproblem after retraction. LAPACK returns " << ret);
TEUCHOS_TEST_FOR_EXCEPTION(nevLocal_ != blockSize_,RTRInitFailure,"Anasazi::RTRBase::initialize(): retracted iterate failed in Ritz analysis.");
// We only have blockSize_ ritz pairs, ergo we do not need to select.
// However, we still require them to be ordered correctly
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerSort_ );
#endif
std::vector<int> order(blockSize_);
//
// sort the first blockSize_ values in theta_
sm_->sort(theta_, Teuchos::rcpFromRef(order), blockSize_); // don't catch exception
//
// apply the same ordering to the primitive ritz vectors
Utils::permuteVectors(order,S);
}
// compute ritz residual norms
{
Teuchos::BLAS<int,ScalarType> blas;
Teuchos::SerialDenseMatrix<int,ScalarType> RR(blockSize_,blockSize_);
// RR = AA*S - BB*S*diag(theta)
int info;
if (hasBOp_) {
info = RR.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,ONE,BB,S,ZERO);
TEUCHOS_TEST_FOR_EXCEPTION(info != 0, std::logic_error, "Anasazi::RTRBase::initialize(): Logic error calling SerialDenseMatrix::multiply.");
}
else {
RR.assign(S);
}
for (int i=0; i<blockSize_; i++) {
blas.SCAL(blockSize_,theta_[i],RR[i],1);
}
info = RR.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,ONE,AA,S,-ONE);
TEUCHOS_TEST_FOR_EXCEPTION(info != 0, std::logic_error, "Anasazi::RTRBase::initialize(): Logic error calling SerialDenseMatrix::multiply.");
for (int i=0; i<blockSize_; i++) {
ritz2norms_[i] = blas.NRM2(blockSize_,RR[i],1);
}
}
// update the solution
// use R as local work space
// Z may already be in use as work space (holding AX if isSkinny)
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerLocalUpdate_ );
#endif
// X <- X*S
MVT::MvAddMv( ONE, *X, ZERO, *X, *R_ );
MVT::MvTimesMatAddMv( ONE, *R_, S, ZERO, *X );
// AX <- AX*S
MVT::MvAddMv( ONE, *AX_, ZERO, *AX_, *R_ );
MVT::MvTimesMatAddMv( ONE, *R_, S, ZERO, *AX_ );
if (hasBOp_) {
// BX <- BX*S
MVT::MvAddMv( ONE, *BX, ZERO, *BX, *R_ );
MVT::MvTimesMatAddMv( ONE, *R_, S, ZERO, *BX );
}
}
}
// done modifying X,BX; clear temp views and setup const views
X = Teuchos::null;
BX = Teuchos::null;
{
std::vector<int> ind(blockSize_);
for (int i=0; i<blockSize_; ++i) ind[i] = numAuxVecs_+i;
this->X_ = MVT::CloneView(static_cast<const MV&>(*V_),ind);
if (hasBOp_) {
this->BX_ = MVT::CloneView(static_cast<const MV&>(*BV_),ind);
}
else {
this->BX_ = this->X_;
}
}
// get objective function value
fx_ = std::accumulate(theta_.begin(),theta_.end(),ZERO);
// set up R
if (newstate.R != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.R) < blockSize_,
std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): newstate.R must have blockSize number of vectors." );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.R) != MVT::GetGlobalLength(*R_),
std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): vector length of newstate.R not correct." );
MVT::SetBlock(*newstate.R,bsind,*R_);
}
else {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerCompRes_ );
#endif
// form R <- AX - BX*T
MVT::MvAddMv(ZERO,*AX_,ONE,*AX_,*R_);
Teuchos::SerialDenseMatrix<int,ScalarType> T(blockSize_,blockSize_);
T.putScalar(ZERO);
for (int i=0; i<blockSize_; i++) T(i,i) = theta_[i];
MVT::MvTimesMatAddMv(-ONE,*BX_,T,ONE,*R_);
}
// R has been updated; mark the norms as out-of-date
Rnorms_current_ = false;
R2norms_current_ = false;
// if isSkinny, then AX currently points to Z for temp storage
// set AX back to null
if (isSkinny_) {
AX_ = Teuchos::null;
}
// finally, we are initialized
initialized_ = true;
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkX = true;
chk.checkAX = true;
chk.checkBX = true;
chk.checkR = true;
chk.checkQ = true;
om_->print( Debug, accuracyCheck(chk, "after initialize()") );
}
}
template <class ScalarType, class MV, class OP>
void RTRBase<ScalarType,MV,OP>::initialize()
{
RTRState<ScalarType,MV> empty;
initialize(empty);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// compute/return residual B-norms
template <class ScalarType, class MV, class OP>
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
RTRBase<ScalarType,MV,OP>::getResNorms() {
if (Rnorms_current_ == false) {
// Update the residual norms
orthman_->norm(*R_,Rnorms_);
Rnorms_current_ = true;
}
return Rnorms_;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// compute/return residual 2-norms
template <class ScalarType, class MV, class OP>
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
RTRBase<ScalarType,MV,OP>::getRes2Norms() {
if (R2norms_current_ == false) {
// Update the residual 2-norms
MVT::MvNorm(*R_,R2norms_);
R2norms_current_ = true;
}
return R2norms_;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Check accuracy, orthogonality, and other debugging stuff
//
// bools specify which tests we want to run (instead of running more than we actually care about)
//
// we don't bother checking the following because they are computed explicitly:
// AH == A*H
//
//
// checkX : X orthonormal
// orthogonal to auxvecs
// checkAX : check AX == A*X
// checkBX : check BX == B*X
// checkEta : check that Eta'*B*X == 0
// orthogonal to auxvecs
// checkAEta : check that AEta = A*Eta
// checkBEta : check that BEta = B*Eta
// checkR : check R orthogonal to X
// checkBR : check R B-orthogonal to X, valid in and immediately after solveTRSubproblem
// checkQ : check that auxiliary vectors are actually orthonormal
//
// TODO:
// add checkTheta
//
template <class ScalarType, class MV, class OP>
std::string RTRBase<ScalarType,MV,OP>::accuracyCheck( const CheckList &chk, const std::string &where ) const
{
using std::setprecision;
using std::scientific;
using std::setw;
using std::endl;
std::stringstream os;
MagnitudeType tmp;
os << " Debugging checks: " << where << endl;
// X and friends
if (chk.checkX && initialized_) {
tmp = orthman_->orthonormError(*X_);
os << " >> Error in X^H B X == I : " << scientific << setprecision(10) << tmp << endl;
for (Array_size_type i=0; i<auxVecs_.size(); i++) {
tmp = orthman_->orthogError(*X_,*auxVecs_[i]);
os << " >> Error in X^H B Q[" << i << "] == 0 : " << scientific << setprecision(10) << tmp << endl;
}
}
if (chk.checkAX && !isSkinny_ && initialized_) {
tmp = Utils::errorEquality(*X_, *AX_, AOp_);
os << " >> Error in AX == A*X : " << scientific << setprecision(10) << tmp << endl;
}
if (chk.checkBX && hasBOp_ && initialized_) {
Teuchos::RCP<MV> BX = MVT::Clone(*this->X_,this->blockSize_);
OPT::Apply(*BOp_,*this->X_,*BX);
tmp = Utils::errorEquality(*BX, *BX_);
os << " >> Error in BX == B*X : " << scientific << setprecision(10) << tmp << endl;
}
// Eta and friends
if (chk.checkEta && initialized_) {
tmp = orthman_->orthogError(*X_,*eta_);
os << " >> Error in X^H B Eta == 0 : " << scientific << setprecision(10) << tmp << endl;
for (Array_size_type i=0; i<auxVecs_.size(); i++) {
tmp = orthman_->orthogError(*eta_,*auxVecs_[i]);
os << " >> Error in Eta^H B Q[" << i << "]==0 : " << scientific << setprecision(10) << tmp << endl;
}
}
if (chk.checkAEta && !isSkinny_ && initialized_) {
tmp = Utils::errorEquality(*eta_, *Aeta_, AOp_);
os << " >> Error in AEta == A*Eta : " << scientific << setprecision(10) << tmp << endl;
}
if (chk.checkBEta && !isSkinny_ && hasBOp_ && initialized_) {
tmp = Utils::errorEquality(*eta_, *Beta_, BOp_);
os << " >> Error in BEta == B*Eta : " << scientific << setprecision(10) << tmp << endl;
}
// R: this is not B-orthogonality, but standard euclidean orthogonality
if (chk.checkR && initialized_) {
Teuchos::SerialDenseMatrix<int,ScalarType> xTx(blockSize_,blockSize_);
MVT::MvTransMv(ONE,*X_,*R_,xTx);
tmp = xTx.normFrobenius();
os << " >> Error in X^H R == 0 : " << scientific << setprecision(10) << tmp << endl;
}
// BR: this is B-orthogonality: this is only valid inside and immediately after solveTRSubproblem
// only check if B != I, otherwise, it is equivalent to the above test
if (chk.checkBR && hasBOp_ && initialized_) {
Teuchos::SerialDenseMatrix<int,ScalarType> xTx(blockSize_,blockSize_);
MVT::MvTransMv(ONE,*BX_,*R_,xTx);
tmp = xTx.normFrobenius();
os << " >> Error in X^H B R == 0 : " << scientific << setprecision(10) << tmp << endl;
}
// Z: Z is preconditioned R, should be on tangent plane
if (chk.checkZ && initialized_) {
Teuchos::SerialDenseMatrix<int,ScalarType> xTx(blockSize_,blockSize_);
MVT::MvTransMv(ONE,*BX_,*Z_,xTx);
tmp = xTx.normFrobenius();
os << " >> Error in X^H B Z == 0 : " << scientific << setprecision(10) << tmp << endl;
}
// Q
if (chk.checkQ) {
for (Array_size_type i=0; i<auxVecs_.size(); i++) {
tmp = orthman_->orthonormError(*auxVecs_[i]);
os << " >> Error in Q[" << i << "]^H B Q[" << i << "]==I: " << scientific << setprecision(10) << tmp << endl;
for (Array_size_type j=i+1; j<auxVecs_.size(); j++) {
tmp = orthman_->orthogError(*auxVecs_[i],*auxVecs_[j]);
os << " >> Error in Q[" << i << "]^H B Q[" << j << "]==0: " << scientific << setprecision(10) << tmp << endl;
}
}
}
os << endl;
return os.str();
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Print the current status of the solver
template <class ScalarType, class MV, class OP>
void
RTRBase<ScalarType,MV,OP>::currentStatus(std::ostream &os)
{
using std::setprecision;
using std::scientific;
using std::setw;
using std::endl;
os <<endl;
os <<"================================================================================" << endl;
os << endl;
os <<" RTRBase Solver Status" << endl;
os << endl;
os <<"The solver is "<<(initialized_ ? "initialized." : "not initialized.") << endl;
os <<"The number of iterations performed is " << iter_ << endl;
os <<"The current block size is " << blockSize_ << endl;
os <<"The number of auxiliary vectors is " << numAuxVecs_ << endl;
os <<"The number of operations A*x is " << counterAOp_ << endl;
os <<"The number of operations B*x is " << counterBOp_ << endl;
os <<"The number of operations Prec*x is " << counterPrec_ << endl;
os <<"The most recent rho was " << scientific << setprecision(10) << rho_ << endl;
os <<"The current value of f(x) is " << scientific << setprecision(10) << fx_ << endl;
if (initialized_) {
os << endl;
os <<"CURRENT EIGENVALUE ESTIMATES "<<endl;
os << setw(20) << "Eigenvalue"
<< setw(20) << "Residual(B)"
<< setw(20) << "Residual(2)"
<< endl;
os <<"--------------------------------------------------------------------------------"<<endl;
for (int i=0; i<blockSize_; i++) {
os << scientific << setprecision(10) << setw(20) << theta_[i];
if (Rnorms_current_) os << scientific << setprecision(10) << setw(20) << Rnorms_[i];
else os << scientific << setprecision(10) << setw(20) << "not current";
if (R2norms_current_) os << scientific << setprecision(10) << setw(20) << R2norms_[i];
else os << scientific << setprecision(10) << setw(20) << "not current";
os << endl;
}
}
os <<"================================================================================" << endl;
os << endl;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Inner product 1
template <class ScalarType, class MV, class OP>
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
RTRBase<ScalarType,MV,OP>::ginner(const MV &xi) const
{
std::vector<MagnitudeType> d(MVT::GetNumberVecs(xi));
MVT::MvNorm(xi,d);
MagnitudeType ret = 0;
for (vecMTiter i=d.begin(); i != d.end(); ++i) {
ret += (*i)*(*i);
}
return ret;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Inner product 2
template <class ScalarType, class MV, class OP>
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
RTRBase<ScalarType,MV,OP>::ginner(const MV &xi, const MV &zeta) const
{
std::vector<ScalarType> d(MVT::GetNumberVecs(xi));
MVT::MvDot(xi,zeta,d);
return SCT::real(std::accumulate(d.begin(),d.end(),SCT::zero()));
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Inner product 1 without trace accumulation
template <class ScalarType, class MV, class OP>
void RTRBase<ScalarType,MV,OP>::ginnersep(
const MV &xi,
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> &d) const
{
MVT::MvNorm(xi,d);
for (vecMTiter i=d.begin(); i != d.end(); ++i) {
(*i) = (*i)*(*i);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Inner product 2 without trace accumulation
template <class ScalarType, class MV, class OP>
void RTRBase<ScalarType,MV,OP>::ginnersep(
const MV &xi, const MV &zeta,
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> &d) const
{
std::vector<ScalarType> dC(MVT::GetNumberVecs(xi));
MVT::MvDot(xi,zeta,dC);
vecMTiter iR=d.begin();
vecSTiter iS=dC.begin();
for (; iR != d.end(); iR++, iS++) {
(*iR) = SCT::real(*iS);
}
}
template <class ScalarType, class MV, class OP>
Teuchos::Array<Teuchos::RCP<const MV> > RTRBase<ScalarType,MV,OP>::getAuxVecs() const {
return auxVecs_;
}
template <class ScalarType, class MV, class OP>
int RTRBase<ScalarType,MV,OP>::getBlockSize() const {
return(blockSize_);
}
template <class ScalarType, class MV, class OP>
const Eigenproblem<ScalarType,MV,OP>& RTRBase<ScalarType,MV,OP>::getProblem() const {
return(*problem_);
}
template <class ScalarType, class MV, class OP>
int RTRBase<ScalarType,MV,OP>::getMaxSubspaceDim() const {
return blockSize_;
}
template <class ScalarType, class MV, class OP>
int RTRBase<ScalarType,MV,OP>::getCurSubspaceDim() const
{
if (!initialized_) return 0;
return nevLocal_;
}
template <class ScalarType, class MV, class OP>
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
RTRBase<ScalarType,MV,OP>::getRitzRes2Norms()
{
std::vector<MagnitudeType> ret = ritz2norms_;
ret.resize(nevLocal_);
return ret;
}
template <class ScalarType, class MV, class OP>
std::vector<Value<ScalarType> >
RTRBase<ScalarType,MV,OP>::getRitzValues()
{
std::vector<Value<ScalarType> > ret(nevLocal_);
for (int i=0; i<nevLocal_; i++) {
ret[i].realpart = theta_[i];
ret[i].imagpart = ZERO;
}
return ret;
}
template <class ScalarType, class MV, class OP>
Teuchos::RCP<const MV>
RTRBase<ScalarType,MV,OP>::getRitzVectors()
{
return X_;
}
template <class ScalarType, class MV, class OP>
void RTRBase<ScalarType,MV,OP>::resetNumIters()
{
iter_=0;
}
template <class ScalarType, class MV, class OP>
int RTRBase<ScalarType,MV,OP>::getNumIters() const
{
return iter_;
}
template <class ScalarType, class MV, class OP>
RTRState<ScalarType,MV> RTRBase<ScalarType,MV,OP>::getState() const
{
RTRState<ScalarType,MV> state;
state.X = X_;
state.AX = AX_;
if (hasBOp_) {
state.BX = BX_;
}
else {
state.BX = Teuchos::null;
}
state.rho = rho_;
state.R = R_;
state.T = Teuchos::rcp(new std::vector<MagnitudeType>(theta_));
return state;
}
template <class ScalarType, class MV, class OP>
bool RTRBase<ScalarType,MV,OP>::isInitialized() const
{
return initialized_;
}
template <class ScalarType, class MV, class OP>
std::vector<int> RTRBase<ScalarType,MV,OP>::getRitzIndex()
{
std::vector<int> ret(nevLocal_,0);
return ret;
}
} // end Anasazi namespace
#endif // ANASAZI_RTRBASE_HPP
|