This file is indexed.

/usr/include/trilinos/AnasaziMultiVec.hpp is in libtrilinos-anasazi-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef ANASAZI_MULTI_VEC_HPP
#define ANASAZI_MULTI_VEC_HPP

/// \file AnasaziMultiVec.hpp
/// \brief Interface for multivectors used by Anasazi' linear solvers.
///
/// We provide two options for letting Anasazi' linear solvers use
/// arbitrary multivector types.  One is via compile-time
/// polymorphism, by specializing Anasazi::MultiVecTraits.  The other
/// is via run-time polymorphism, by implementing Anasazi::MultiVec
/// (the interface defined in this header file).  Anasazi ultimately
/// only uses Anasazi::MultiVecTraits (it uses Anasazi::MultiVec via a
/// specialization of Anasazi::MultiVecTraits for Anasazi::MultiVec),
/// so the preferred way to tell Anasazi how to use your multivector
/// class is via an Anasazi:: MultiVecTraits specialization.  However,
/// some users find a run-time polymorphic interface useful, so we
/// provide it as a service to them.

#include "AnasaziConfigDefs.hpp"
#include "AnasaziMultiVecTraits.hpp"

namespace Anasazi {

/// \class MultiVec
/// \brief Interface for multivectors used by Anasazi's linear solvers.
/// \author Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist
///
/// \tparam ScalarType The type of entries of the multivector.
///
/// Anasazi accesses multivectors through a traits interface called
/// MultiVecTraits.  If you want to use Anasazi with your own
/// multivector class MV, you may either specialize MultiVecTraits for
/// MV, or you may wrap MV in your own class that implements MultiVec.
/// Specializing MultiVecTraits works via compile-time polymorphism,
/// whereas implementing the MultiVec interface works via run-time
/// polymorphism.  You may pick whichever option you like.  However,
/// specializing MultiVecTraits is the preferred method.  This is
/// because Anasazi's linear solvers always use a specialization of
/// MultiVecTraits to access multivector operations.  They only use
/// MultiVec through a specialization of the MultiVecTraits traits
/// class, which is implemented below in this header file.
///
/// If you want your multivector class (or a wrapper thereof) to
/// implement the MultiVec interface, you should inherit from
/// MultiVec<ScalarType>, where ScalarType is the type of entries in
/// the multivector.  For example, a multivector with entries of type
/// double would inherit from MultiVec<double>.
template <class ScalarType>
class MultiVec {
public:
  //! @name Constructor/Destructor
  //@{ 
  //! Default constructor.
  MultiVec() {}

  //! Destructor (virtual for memory safety of derived classes).
  virtual ~MultiVec () {}

  //@}
  //! @name Creation methods
  //@{ 

  /// \brief Create a new MultiVec with \c numvecs columns.
  /// \return Pointer to the new multivector with uninitialized values.
  virtual MultiVec<ScalarType> * Clone ( const int numvecs ) const = 0;

  /// \brief Create a new MultiVec and copy contents of \c *this into it (deep copy).
  /// \return Pointer to the new multivector	
  virtual MultiVec<ScalarType> * CloneCopy () const = 0;
	
  /*! \brief Creates a new Anasazi::MultiVec and copies the selected contents of \c *this 
    into the new vector (deep copy).  The copied 
    vectors from \c *this are indicated by the \c index.size() indices in \c index.

    \return Pointer to the new multivector	
  */
  virtual MultiVec<ScalarType> * CloneCopy ( const std::vector<int>& index ) const = 0;

  /*! \brief Creates a new Anasazi::MultiVec that shares the selected contents of \c *this.
    The index of the \c numvecs vectors shallow copied from \c *this are indicated by the
    indices given in \c index.

    \return Pointer to the new multivector	
  */
  virtual MultiVec<ScalarType> * CloneViewNonConst ( const std::vector<int>& index ) = 0;
	
  /*! \brief Creates a new Anasazi::MultiVec that shares the selected contents of \c *this.
    The index of the \c numvecs vectors shallow copied from \c *this are indicated by the
    indices given in \c index.

    \return Pointer to the new multivector	
  */
  virtual const MultiVec<ScalarType> * CloneView ( const std::vector<int>& index ) const = 0;

  //@}
  //! @name Dimension information methods	
  //@{ 

  //! The number of rows in the multivector.
  virtual ptrdiff_t GetGlobalLength () const = 0;

  //! The number of vectors (i.e., columns) in the multivector.
  virtual int GetNumberVecs () const = 0;

  //@}
  //! @name Update methods
  //@{ 

  //! Update \c *this with \c alpha * \c A * \c B + \c beta * (\c *this).
  virtual void 
  MvTimesMatAddMv (ScalarType alpha, 
		   const MultiVec<ScalarType>& A, 
		   const Teuchos::SerialDenseMatrix<int,ScalarType>& B, ScalarType beta) = 0;

  //! Replace \c *this with \c alpha * \c A + \c beta * \c B.
  virtual void MvAddMv ( ScalarType alpha, const MultiVec<ScalarType>& A, ScalarType beta, const MultiVec<ScalarType>& B ) = 0;

  //! Scale each element of the vectors in \c *this with \c alpha.
  virtual void MvScale ( ScalarType alpha ) = 0;

  //! Scale each element of the <tt>i</tt>-th vector in \c *this with <tt>alpha[i]</tt>.
  virtual void MvScale ( const std::vector<ScalarType>& alpha ) = 0;

  /*! \brief Compute a dense matrix \c B through the matrix-matrix multiply 
    \c alpha * \c A^T * (\c *this).
  */
  virtual void MvTransMv ( ScalarType alpha, const MultiVec<ScalarType>& A, Teuchos::SerialDenseMatrix<int,ScalarType>& B
#ifdef HAVE_ANASAZI_EXPERIMENTAL
			   , ConjType conj = Anasazi::CONJ
#endif				 
			   ) const = 0;

  /// \brief Compute the dot product of each column of *this with the corresponding column of A.
  ///
  /// Compute a vector \c b whose entries are the individual
  /// dot-products.  That is, <tt>b[i] = A[i]^H * (*this)[i]</tt>
  /// where <tt>A[i]</tt> is the i-th column of A.
  virtual void MvDot ( const MultiVec<ScalarType>& A, std::vector<ScalarType> & b 
#ifdef HAVE_ANASAZI_EXPERIMENTAL
		       , ConjType conj = Anasazi::CONJ
#endif
		       ) const = 0;
  
  //@}
  //! @name Norm method
  //@{ 

  /// \brief Compute the 2-norm of each vector in \c *this.  
  ///
  /// \param normvec [out] On output, normvec[i] holds the 2-norm of the
  ///   \c i-th vector of \c *this.
  virtual void MvNorm ( std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> & normvec ) const = 0;

  //@}
  //! @name Initialization methods
  //@{ 

  /// \brief Copy the vectors in \c A to a set of vectors in \c *this.  
  ///
  /// The \c numvecs vectors in \c A are copied to a subset of vectors
  /// in \c *this indicated by the indices given in \c index.
  virtual void SetBlock ( const MultiVec<ScalarType>& A, const std::vector<int>& index ) = 0;
	
  //! Fill all the vectors in \c *this with random numbers.
  virtual void MvRandom () = 0;

  //! Replace each element of the vectors in \c *this with \c alpha.
  virtual void MvInit ( ScalarType alpha ) = 0;

  //@}
  //! @name Print method
  //@{ 

  //! Print \c *this multivector to the \c os output stream.
  virtual void MvPrint ( std::ostream& os ) const = 0;
  //@}

#ifdef HAVE_ANASAZI_TSQR
  //! @name TSQR-related methods
  //@{ 

  /// \brief Compute the QR factorization *this = QR, using TSQR.
  ///
  /// The *this multivector on input is the multivector A to factor.
  /// It is overwritten with garbage on output.
  ///
  /// \param Q [out] On input: a multivector with the same number of
  ///   rows and columns as A (the *this multivector).  Its contents
  ///   are overwritten on output with the (explicitly stored) Q
  ///   factor in the QR factorization of A.
  ///
  /// \param R [out] On output: the R factor in the QR factorization
  ///   of the (input) multivector A.
  ///
  /// \param forceNonnegativeDiagonal [in] If true, then (if
  ///   necessary) do extra work (modifying both the Q and R
  ///   factors) in order to force the R factor to have a
  ///   nonnegative diagonal.
  ///
  /// For syntax's sake, we provide a default implementation of this
  /// method that throws std::logic_error.  You should implement this
  /// method if you intend to use TsqrOrthoManager or
  /// TsqrMatOrthoManager with your subclass of MultiVec.
  virtual void 
  factorExplicit (MultiVec<ScalarType>& Q, 
		  Teuchos::SerialDenseMatrix<int, ScalarType>& R,
		  const bool forceNonnegativeDiagonal=false)
  {
    TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "The Anasazi::MultiVec<" 
      << Teuchos::TypeNameTraits<ScalarType>::name() << "> subclass which you "
      "are using does not implement the TSQR-related method factorExplicit().");
  }

  /// \brief Use result of factorExplicit() to compute rank-revealing decomposition.
  ///
  /// When calling this method, the *this multivector should be the Q
  /// factor output of factorExplicit().  Using that Q factor and the
  /// R factor from factorExplicit(), compute the singular value
  /// decomposition (SVD) of R (\f$R = U \Sigma V^*\f$).  If R is full
  /// rank (with respect to the given relative tolerance tol), don't
  /// change Q (= *this) or R.  Otherwise, compute \f$Q := Q \cdot
  /// U\f$ and \f$R := \Sigma V^*\f$ in place (the latter may be no
  /// longer upper triangular).
  ///
  /// The *this multivector on input must be the explicit Q factor
  /// output of a previous call to factorExplicit().  On output: On
  /// output: If R is of full numerical rank with respect to the
  /// tolerance tol, Q is unmodified.  Otherwise, Q is updated so that
  /// the first rank columns of Q are a basis for the column space of
  /// A (the original matrix whose QR factorization was computed by
  /// factorExplicit()).  The remaining columns of Q are a basis for
  /// the null space of A.
  ///
  /// \param R [in/out] On input: N by N upper triangular matrix with
  ///   leading dimension LDR >= N.  On output: if input is full rank,
  ///   R is unchanged on output.  Otherwise, if \f$R = U \Sigma
  ///   V^*\f$ is the SVD of R, on output R is overwritten with
  ///   \f$\Sigma \cdot V^*\f$.  This is also an N by N matrix, but
  ///   may not necessarily be upper triangular.
  ///
  /// \param tol [in] Relative tolerance for computing the numerical
  ///   rank of the matrix R.
  ///
  /// For syntax's sake, we provide a default implementation of this
  /// method that throws std::logic_error.  You should implement this
  /// method if you intend to use TsqrOrthoManager or
  /// TsqrMatOrthoManager with your subclass of MultiVec.
  virtual int
  revealRank (Teuchos::SerialDenseMatrix<int, ScalarType>& R,
	      const typename Teuchos::ScalarTraits<ScalarType>::magnitudeType& tol)
  {
    TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "The Anasazi::MultiVec<" 
      << Teuchos::TypeNameTraits<ScalarType>::name() << "> subclass which you "
      "are using does not implement the TSQR-related method revealRank().");
  }

  //@}
#endif // HAVE_ANASAZI_TSQR
};

namespace details {
/// \class MultiVecTsqrAdapter
/// \brief TSQR adapter for MultiVec.
///
/// TSQR (Tall Skinny QR factorization) is an orthogonalization
/// kernel that is as accurate as Householder QR, yet requires only
/// \f$2 \log P\f$ messages between $P$ MPI processes, independently
/// of the number of columns in the multivector.  
///
/// TSQR works independently of the particular multivector
/// implementation, and interfaces to the latter via an adapter
/// class.  Each multivector type MV needs its own adapter class.
/// The specialization of MultiVecTraits for MV refers to its
/// corresponding adapter class as its \c tsqr_adaptor_type [sic;
/// sorry about the lack of standard spelling of "adapter"] typedef.
///
/// This class is the TSQR adapter for MultiVec.  It merely calls 
/// MultiVec's corresponding methods for TSQR functionality.
template<class ScalarType>
class MultiVecTsqrAdapter {
public:
  typedef MultiVec<ScalarType> MV;
  typedef ScalarType scalar_type; 
  typedef int ordinal_type; // This doesn't matter either
  typedef int node_type; // Nor does this
  typedef Teuchos::SerialDenseMatrix<ordinal_type, scalar_type> dense_matrix_type;
  typedef typename Teuchos::ScalarTraits<scalar_type>::magnitudeType magnitude_type;
  
  //! Compute QR factorization A = QR, using TSQR.
  void
  factorExplicit (MV& A,
		  MV& Q,
		  dense_matrix_type& R,
		  const bool forceNonnegativeDiagonal=false)
  {
    A.factorExplicit (Q, R, forceNonnegativeDiagonal);
  }

  //! Compute rank-revealing decomposition using results of factorExplicit().
  int
  revealRank (MV& Q,
	      dense_matrix_type& R,
	      const magnitude_type& tol)
  {
    return Q.revealRank (R, tol);
  }
};
} // namespace details

  /// \brief Specialization of MultiVecTraits for Belos::MultiVec.
  ///
  /// Anasazi interfaces to every multivector implementation through a
  /// specialization of MultiVecTraits.  Thus, we provide a
  /// specialization of MultiVecTraits for the MultiVec run-time
  /// polymorphic interface above.
  ///
  /// \tparam ScalarType The type of entries in the multivector; the
  ///   template parameter of MultiVec.
  template<class ScalarType>
  class MultiVecTraits<ScalarType,MultiVec<ScalarType> > {
  public:
    //! @name Creation methods
    //@{ 

    /// \brief Create a new empty \c MultiVec containing \c numvecs columns.
    /// \return Reference-counted pointer to the new \c MultiVec.
    static Teuchos::RCP<MultiVec<ScalarType> > 
    Clone (const MultiVec<ScalarType>& mv, const int numvecs) {
      return Teuchos::rcp (const_cast<MultiVec<ScalarType>&> (mv).Clone (numvecs)); 
    }

    /*! \brief Creates a new \c Anasazi::MultiVec and copies contents of \c mv into the new vector (deep copy).
      
      \return Reference-counted pointer to the new \c Anasazi::MultiVec.
    */
    static Teuchos::RCP<MultiVec<ScalarType> > CloneCopy( const MultiVec<ScalarType>& mv )
    { return Teuchos::rcp( const_cast<MultiVec<ScalarType>&>(mv).CloneCopy() ); }

    /*! \brief Creates a new \c Anasazi::MultiVec and copies the selected contents of \c mv into the new vector (deep copy).  

      The copied vectors from \c mv are indicated by the \c index.size() indices in \c index.      
      \return Reference-counted pointer to the new \c Anasazi::MultiVec.
    */
    static Teuchos::RCP<MultiVec<ScalarType> > CloneCopy( const MultiVec<ScalarType>& mv, const std::vector<int>& index )
    { return Teuchos::rcp( const_cast<MultiVec<ScalarType>&>(mv).CloneCopy(index) ); }

    /*! \brief Creates a new \c Anasazi::MultiVec that shares the selected contents of \c mv (shallow copy).

    The index of the \c numvecs vectors shallow copied from \c mv are indicated by the indices given in \c index.
    \return Reference-counted pointer to the new \c Anasazi::MultiVec.
    */    
    static Teuchos::RCP<MultiVec<ScalarType> > CloneViewNonConst( MultiVec<ScalarType>& mv, const std::vector<int>& index )
    { return Teuchos::rcp( mv.CloneViewNonConst(index) ); }

    /*! \brief Creates a new const \c Anasazi::MultiVec that shares the selected contents of \c mv (shallow copy).

    The index of the \c numvecs vectors shallow copied from \c mv are indicated by the indices given in \c index.
    \return Reference-counted pointer to the new const \c Anasazi::MultiVec.
    */      
    static Teuchos::RCP<const MultiVec<ScalarType> > CloneView( const MultiVec<ScalarType>& mv, const std::vector<int>& index )
    { return Teuchos::rcp( const_cast<MultiVec<ScalarType>&>(mv).CloneView(index) ); }

    //@}

    //! @name Attribute methods
    //@{ 

    //! Obtain the vector length of \c mv.
    static ptrdiff_t GetGlobalLength( const MultiVec<ScalarType>& mv )
    { return mv.GetGlobalLength(); }

    //! Obtain the number of vectors in \c mv
    static int GetNumberVecs( const MultiVec<ScalarType>& mv )
    { return mv.GetNumberVecs(); }

    //@}

    //! @name Update methods
    //@{ 

    /*! \brief Update \c mv with \f$ \alpha AB + \beta mv \f$.
     */
    static void MvTimesMatAddMv( ScalarType alpha, const MultiVec<ScalarType>& A, 
				 const Teuchos::SerialDenseMatrix<int,ScalarType>& B, 
				 ScalarType beta, MultiVec<ScalarType>& mv )
    { mv.MvTimesMatAddMv(alpha, A, B, beta); }

    /*! \brief Replace \c mv with \f$\alpha A + \beta B\f$.
     */
    static void MvAddMv( ScalarType alpha, const MultiVec<ScalarType>& A, ScalarType beta, const MultiVec<ScalarType>& B, MultiVec<ScalarType>& mv )
    { mv.MvAddMv(alpha, A, beta, B); }

    /*! \brief Compute a dense matrix \c B through the matrix-matrix multiply \f$ \alpha A^Tmv \f$.
     */
    static void MvTransMv( ScalarType alpha, const MultiVec<ScalarType>& A, const MultiVec<ScalarType>& mv, Teuchos::SerialDenseMatrix<int,ScalarType>& B
#ifdef HAVE_ANASAZI_EXPERIMENTAL
			   , ConjType conj = Anasazi::CONJ
#endif
			   )
    { mv.MvTransMv(alpha, A, B
#ifdef HAVE_ANASAZI_EXPERIMENTAL
		   , conj
#endif
		   ); }
    
    /*! \brief Compute a vector \c b where the components are the individual dot-products of the \c i-th columns of \c A and \c mv, i.e.\f$b[i] = A[i]^H mv[i]\f$.
     */
    static void MvDot( const MultiVec<ScalarType>& mv, const MultiVec<ScalarType>& A, std::vector<ScalarType> & b
#ifdef HAVE_ANASAZI_EXPERIMENTAL
		       , ConjType conj = Anasazi::CONJ
#endif
		       )
    { mv.MvDot( A, b
#ifdef HAVE_ANASAZI_EXPERIMENTAL
		, conj
#endif
		); }

    //! Scale each element of the vectors in \c *this with \c alpha.
    static void MvScale ( MultiVec<ScalarType>& mv, ScalarType alpha )
    { mv.MvScale( alpha ); }
    
    //! Scale each element of the \c i-th vector in \c *this with \c alpha[i].
    static void MvScale ( MultiVec<ScalarType>& mv, const std::vector<ScalarType>& alpha )
    { mv.MvScale( alpha ); }
    
    //@}
    //! @name Norm method
    //@{ 

    /*! \brief Compute the 2-norm of each individual vector of \c mv.  
      Upon return, \c normvec[i] holds the value of \f$||mv_i||_2\f$, the \c i-th column of \c mv.
    */
    static void MvNorm( const MultiVec<ScalarType>& mv, std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> & normvec )
    { mv.MvNorm(normvec); }

    //@}
    //! @name Initialization methods
    //@{ 
    /*! \brief Copy the vectors in \c A to a set of vectors in \c mv indicated by the indices given in \c index.

    The \c numvecs vectors in \c A are copied to a subset of vectors in \c mv indicated by the indices given in \c index,
    i.e.<tt> mv[index[i]] = A[i]</tt>.
    */
    static void SetBlock( const MultiVec<ScalarType>& A, const std::vector<int>& index, MultiVec<ScalarType>& mv )
    { mv.SetBlock(A, index); }

    /*! \brief Replace the vectors in \c mv with random vectors.
     */
    static void MvRandom( MultiVec<ScalarType>& mv )
    { mv.MvRandom(); }

    /*! \brief Replace each element of the vectors in \c mv with \c alpha.
     */
    static void MvInit( MultiVec<ScalarType>& mv, ScalarType alpha = Teuchos::ScalarTraits<ScalarType>::zero() )
    { mv.MvInit(alpha); }

    //@}
    //! @name Print method
    //@{ 

    //! Print the \c mv multi-vector to the \c os output stream.
    static void MvPrint( const MultiVec<ScalarType>& mv, std::ostream& os )
    { mv.MvPrint(os); }

    //@}

#ifdef HAVE_ANASAZI_TSQR
    /// \typedef tsqr_adaptor_type
    /// \brief TSQR adapter for MultiVec.
    ///
    /// Our TSQR adapter for MultiVec calls MultiVec's virtual
    /// methods.  If you want to use TSQR with your MultiVec subclass,
    /// you must implement these methods yourself, as the default
    /// implementations throw std::logic_error.
    typedef details::MultiVecTsqrAdapter<ScalarType> tsqr_adaptor_type;
#endif // HAVE_ANASAZI_TSQR
  };

} // namespace Anasazi

#endif

// end of file AnasaziMultiVec.hpp