This file is indexed.

/usr/include/trilinos/AnasaziGeneralizedDavidsonSolMgr.hpp is in libtrilinos-anasazi-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef ANASAZI_GENERALIZED_DAVIDSON_SOLMGR_HPP
#define ANASAZI_GENERALIZED_DAVIDSON_SOLMGR_HPP

/*! \file AnasaziGeneralizedDavidsonSolMgr.hpp
 *  \brief The Anasazi::GeneralizedDavidsonSolMgr provides a solver manager for the GeneralizedDavidson eigensolver.
*/

#include "Teuchos_ParameterList.hpp"
#include "Teuchos_RCPDecl.hpp"

#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "AnasaziEigenproblem.hpp"
#include "AnasaziSolverManager.hpp"
#include "AnasaziBasicOrthoManager.hpp"
#include "AnasaziSVQBOrthoManager.hpp"
#include "AnasaziICGSOrthoManager.hpp"
#include "AnasaziBasicOutputManager.hpp"
#include "AnasaziBasicSort.hpp"
#include "AnasaziGeneralizedDavidson.hpp"
#include "AnasaziStatusTestResNorm.hpp"
#include "AnasaziStatusTestWithOrdering.hpp"

using Teuchos::RCP;

/** \example GeneralizedDavidson/GeneralizedDavidsonEpetraExFileIfpack.cpp
    This is an example of how to use the Anasazi::GeneralizedDavidsonSolMgr solver manager, using Epetra data structures and an Ifpack preconditioner.  */

namespace Anasazi {

/*!
 * \class GeneralizedDavidsonSolMgr
 * \brief Solver Manager for GeneralizedDavidson
 *
 * This class provides a simple interface to the GeneralizedDavidson
 * eigensolver.  This manager creates
 * appropriate orthogonalization/sort/output managers based on user
 * specified ParameterList entries (or selects suitable defaults),
 * provides access to solver functionality, and manages the restarting
 * process.
 *
 * This class is currently only implemented for real scalar types
 * (i.e. float, double).

 \ingroup anasazi_solver_framework

 \author Steven Hamilton
 */
template <class ScalarType, class MV, class OP>
class GeneralizedDavidsonSolMgr : public SolverManager<ScalarType,MV,OP>
{
    public:

        /*!
         * \brief Basic constructor for GeneralizedDavidsonSolMgr
         *
         * This constructor accepts the Eigenproblem to be solved and a parameter list of options
         * for the solver.
         * The following options control the behavior
         * of the solver:
         * - "Which" -- a string specifying the desired eigenvalues: SM, LM, SR, LR, SI, or LI. Default: "LM."
         * - "Block Size" -- block size used by algorithm.  Default: 1.
         * - "Maximum Subspace Dimension" -- maximum number of basis vectors for subspace.  Two
         *  (for standard eigenvalue problems) or three (for generalized eigenvalue problems) sets of basis
         *  vectors of this size will be required. Default: 3*problem->getNEV()*"Block Size"
         * - "Restart Dimension" -- Number of vectors retained after a restart.  Default: NEV
         * - "Maximum Restarts" -- an int specifying the maximum number of restarts the underlying solver
         *  is allowed to perform.  Default: 20
         * - "Orthogonalization" -- a string specifying the desired orthogonalization: DGKS, SVQB, ICGS.
         *   Default: "SVQB"
         * - "Verbosity" -- a sum of MsgType specifying the verbosity.  Default: AnasaziErrors
         * - "Convergence Tolerance" -- a MagnitudeType specifying the level that residual norms must
         *  reach to decide convergence.  Default: machine precision
         * - "Relative Convergence Tolerance" -- a bool specifying whether residual norms should be
         *  scaled by the magnitude of the corresponding Ritz value.  Care should be taken when performing
         *  scaling for problems where the eigenvalue can be very large or very small.  Default: "false".
         * - "Initial Guess" -- how should initial vector be selected: "Random" or "User".
         *   If "User," the value in problem->getInitVec() will be used.  Default: "Random".
         * - "Print Number of Ritz Values" -- an int specifying how many Ritz values should be printed
         *   at each iteration.  Default: "NEV".
         */
        GeneralizedDavidsonSolMgr( const RCP< Eigenproblem<ScalarType,MV,OP> > &problem,
                                   Teuchos::ParameterList &pl );

        /*!
         * \brief Return the eigenvalue problem.
         */
        const Eigenproblem<ScalarType,MV,OP> & getProblem() const { return *d_problem; }

        /*!
         * \brief Get the iteration count for the most recent call to solve()
         */
        int getNumIters() const { return d_solver->getNumIters(); }

        /*!
         * \brief This method performs possibly repeated calls to the underlying eigensolver's iterate()
         *  routine until the problem has been solved (as decided by the StatusTest) or the solver manager decides to quit.
         */
        ReturnType solve();

    private:

        void getRestartState( GeneralizedDavidsonState<ScalarType,MV> &state );

        typedef MultiVecTraits<ScalarType,MV>        MVT;
        typedef Teuchos::ScalarTraits<ScalarType>    ST;
        typedef typename ST::magnitudeType           MagnitudeType;
        typedef Teuchos::ScalarTraits<MagnitudeType> MT;

        RCP< Eigenproblem<ScalarType,MV,OP> >           d_problem;
        RCP< GeneralizedDavidson<ScalarType,MV,OP> >    d_solver;
        RCP< OutputManager<ScalarType> >                d_outputMan;
        RCP< OrthoManager<ScalarType,MV> >              d_orthoMan;
        RCP< SortManager<MagnitudeType> >               d_sortMan;
        RCP< StatusTest<ScalarType,MV,OP> >             d_tester;
        int d_maxRestarts;
        int d_restartDim;

}; // class GeneralizedDavidsonSolMgr

//---------------------------------------------------------------------------//
// Prevent instantiation on complex scalar type
//---------------------------------------------------------------------------//
template <class MagnitudeType, class MV, class OP>
class GeneralizedDavidsonSolMgr<std::complex<MagnitudeType>,MV,OP>
{
  public:

    typedef std::complex<MagnitudeType> ScalarType;
    GeneralizedDavidsonSolMgr(
            const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
            Teuchos::ParameterList &pl )
    {
        // Provide a compile error when attempting to instantiate on complex type
        MagnitudeType::this_class_is_missing_a_specialization();
    }
};

//---------------------------------------------------------------------------//
// Start member definitions
//---------------------------------------------------------------------------//

//---------------------------------------------------------------------------//
// Constructor
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
GeneralizedDavidsonSolMgr<ScalarType,MV,OP>::GeneralizedDavidsonSolMgr(
        const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
        Teuchos::ParameterList &pl )
   : d_problem(problem)
{
    TEUCHOS_TEST_FOR_EXCEPTION( d_problem == Teuchos::null,                std::invalid_argument, "Problem not given to solver manager." );
    TEUCHOS_TEST_FOR_EXCEPTION( !d_problem->isProblemSet(),                std::invalid_argument, "Problem not set." );
    TEUCHOS_TEST_FOR_EXCEPTION( d_problem->getA() == Teuchos::null &&
                                d_problem->getOperator() == Teuchos::null, std::invalid_argument, "A operator not supplied on Eigenproblem." );
    TEUCHOS_TEST_FOR_EXCEPTION( d_problem->getInitVec() == Teuchos::null,  std::invalid_argument, "No vector to clone from on Eigenproblem." );
    TEUCHOS_TEST_FOR_EXCEPTION( d_problem->getNEV() <= 0,                  std::invalid_argument, "Number of requested eigenvalues must be positive.");

    if( !pl.isType<int>("Block Size") )
    {
        pl.set<int>("Block Size",1);
    }

    if( !pl.isType<int>("Maximum Subspace Dimension") )
    {
        pl.set<int>("Maximum Subspace Dimension",3*problem->getNEV()*pl.get<int>("Block Size"));
    }

    if( !pl.isType<int>("Print Number of Ritz Values") )
    {
        int numToPrint = std::max( pl.get<int>("Block Size"), d_problem->getNEV() );
        pl.set<int>("Print Number of Ritz Values",numToPrint);
    }

    // Get convergence info
    MagnitudeType tol = pl.get<MagnitudeType>("Convergence Tolerance", MT::eps() );
    TEUCHOS_TEST_FOR_EXCEPTION( pl.get<MagnitudeType>("Convergence Tolerance") <= MT::zero(),
                                std::invalid_argument, "Convergence Tolerance must be greater than zero." );

    // Get maximum restarts
    if( pl.isType<int>("Maximum Restarts") )
    {
        d_maxRestarts = pl.get<int>("Maximum Restarts");
        TEUCHOS_TEST_FOR_EXCEPTION( d_maxRestarts < 0, std::invalid_argument, "Maximum Restarts must be non-negative" );
    }
    else
    {
        d_maxRestarts = 20;
    }

    // Get maximum restarts
    d_restartDim = pl.get<int>("Restart Dimension",d_problem->getNEV());
    TEUCHOS_TEST_FOR_EXCEPTION( d_restartDim < d_problem->getNEV(),
            std::invalid_argument, "Restart Dimension must be at least NEV" );

    // Get initial guess type
    std::string initType;
    if( pl.isType<std::string>("Initial Guess") )
    {
        initType = pl.get<std::string>("Initial Guess");
        TEUCHOS_TEST_FOR_EXCEPTION( initType!="User" && initType!="Random", std::invalid_argument,
                                    "Initial Guess type must be 'User' or 'Random'." );
    }
    else
    {
        initType = "User";
    }

    // Get sort type
    std::string which;
    if( pl.isType<std::string>("Which") )
    {
        which = pl.get<std::string>("Which");
        TEUCHOS_TEST_FOR_EXCEPTION( which!="LM" && which!="SM" && which!="LR" && which!="SR" && which!="LI" && which!="SI",
                                    std::invalid_argument,
                                    "Which must be one of LM,SM,LR,SR,LI,SI." );
    }
    else
    {
        which = "LM";
    }

    // Build sort manager (currently must be stored as pointer to derived class)
    d_sortMan = Teuchos::rcp( new BasicSort<MagnitudeType>(which) );

    // Build orthogonalization manager
    std::string ortho = pl.get<std::string>("Orthogonalization","SVQB");
    TEUCHOS_TEST_FOR_EXCEPTION( ortho!="DGKS" && ortho!= "SVQB" && ortho!="ICGS", std::invalid_argument,
                                "Anasazi::GeneralizedDavidsonSolMgr::constructor: Invalid orthogonalization type" );

    if( ortho=="DGKS" )
    {
        d_orthoMan = Teuchos::rcp( new BasicOrthoManager<ScalarType,MV,OP>() );
    }
    else if( ortho=="SVQB" )
    {
        d_orthoMan = Teuchos::rcp( new SVQBOrthoManager<ScalarType,MV,OP>() );
    }
    else if( ortho=="ICGS" )
    {
        d_orthoMan = Teuchos::rcp( new ICGSOrthoManager<ScalarType,MV,OP>() );
    }

    // Build StatusTest
    bool scaleRes  = false; // Always false, scaling the residual is handled by the solver
    bool failOnNaN = false;
    RCP<StatusTest<ScalarType,MV,OP> > resNormTest = Teuchos::rcp(
            new StatusTestResNorm<ScalarType,MV,OP>(tol,d_problem->getNEV(),
                                                    RES_2NORM,scaleRes,failOnNaN) );
    d_tester = Teuchos::rcp( new StatusTestWithOrdering<ScalarType,MV,OP>(resNormTest,d_sortMan,d_problem->getNEV()) );

    // Build output manager
    int verbosity = pl.get<int>("Verbosity",Errors);
    d_outputMan = Teuchos::rcp( new BasicOutputManager<ScalarType>() );
    d_outputMan->setVerbosity( verbosity );

    // Build solver
    d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidsonSolMgr: Building solver" << std::endl;
    d_solver = Teuchos::rcp( new GeneralizedDavidson<ScalarType,MV,OP>( problem, d_sortMan, d_outputMan, d_tester, d_orthoMan, pl ) );

    TEUCHOS_TEST_FOR_EXCEPTION(d_solver->getMaxSubspaceDim() < d_restartDim, std::invalid_argument,
        "The maximum size of the subspace dimension (" << d_solver->getMaxSubspaceDim() << ") must "
        "not be smaller than the size of the restart space (" << d_restartDim << "). "
        "Please adjust \"Restart Dimension\" and/or \"Maximum Subspace Dimension\" parameters.");

}

//---------------------------------------------------------------------------//
// Solve
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
ReturnType GeneralizedDavidsonSolMgr<ScalarType,MV,OP>::solve()
{
    Eigensolution<ScalarType,MV> sol;
    sol.numVecs = 0;
    d_problem->setSolution(sol);

    d_solver->initialize();
    int restarts = 0;
    while( 1 )
    {
        // Call iterate on the solver
        d_solver->iterate();

        // If the solver converged, we're done
        if( d_tester->getStatus() == Passed )
            break;

        // If we're already at maximum number of restarts, wrap it up
        if( restarts == d_maxRestarts )
            break;

        // We need to restart
        d_solver->sortProblem( d_restartDim );
        GeneralizedDavidsonState<ScalarType,MV> state = d_solver->getState();
        getRestartState( state );
        d_solver->initialize( state );
        restarts++;
    }

    // Output final state
    if( d_outputMan->isVerbosity(FinalSummary) )
        d_solver->currentStatus(d_outputMan->stream(FinalSummary));

    // Fill solution struct
    sol.numVecs = d_tester->howMany();
    if( sol.numVecs > 0 )
    {
        std::vector<int> whichVecs = d_tester->whichVecs();
        std::vector<int> origIndex = d_solver->getRitzIndex();

        // Make sure no conjugate pairs are split
        // Because these are not sorted we have to check all values
        for( int i=0; i<sol.numVecs; ++i )
        {
            if( origIndex[ whichVecs[i] ] == 1 )
            {
                if( std::find( whichVecs.begin(), whichVecs.end(), whichVecs[i]+1 ) == whichVecs.end() )
                {
                    whichVecs.push_back( whichVecs[i]+1 );
                    sol.numVecs++;
                }
            }
            else if( origIndex[ whichVecs[i] ] == -1 )
            {
                if( std::find( whichVecs.begin(), whichVecs.end(), whichVecs[i]-1 ) == whichVecs.end() )
                {
                    whichVecs.push_back( whichVecs[i]-1 );
                    sol.numVecs++;
                }
            }
        }

        if( d_outputMan->isVerbosity(Debug) )
        {
            d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidsonSolMgr: "
                << sol.numVecs << " eigenpairs converged" << std::endl;
        }

        // Sort converged values
        std::vector< Value<ScalarType> > origVals = d_solver->getRitzValues();
        std::vector<MagnitudeType> realParts;
        std::vector<MagnitudeType> imagParts;
        for( int i=0; i<sol.numVecs; ++i )
        {
            realParts.push_back( origVals[whichVecs[i]].realpart );
            imagParts.push_back( origVals[whichVecs[i]].imagpart );
        }

        std::vector<int> permVec(sol.numVecs);
        d_sortMan->sort( realParts, imagParts, Teuchos::rcpFromRef(permVec), sol.numVecs );

        // Create new which vector
        std::vector<int> newWhich;
        for( int i=0; i<sol.numVecs; ++i )
            newWhich.push_back( whichVecs[permVec[i]] );

        // Check if converged vectors are ordered
        bool ordered = true;
        for( int i=0; i<sol.numVecs; ++i )
        {
            if( newWhich[i]!=i )
            {
                ordered = false;
                break;
            }
        }

        if( ordered  )
        {
            // Everything is ordered, pull directly from solver and resize
            sol.index = origIndex;
            sol.index.resize(sol.numVecs);
            sol.Evals = d_solver->getRitzValues();
            sol.Evals.resize(sol.numVecs);
        }
        else
        {
            // Manually copy values into sol

            sol.index.resize(sol.numVecs);
            sol.Evals.resize(sol.numVecs);

            for( int i=0; i<sol.numVecs; ++i )
            {
                sol.index[i] = origIndex[ newWhich[i] ];
                sol.Evals[i] = origVals[  newWhich[i] ];
            }
        }
        sol.Evecs = MVT::CloneCopy( *(d_solver->getRitzVectors()), newWhich );
    }
    d_problem->setSolution(sol);

    // Return convergence status
    if( sol.numVecs < d_problem->getNEV() )
        return Unconverged;

    return Converged;
}

//---------------------------------------------------------------------------//
// Update GeneralizedDavidson state for restarting
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidsonSolMgr<ScalarType,MV,OP>::getRestartState(
        GeneralizedDavidsonState<ScalarType,MV> &state )
{
    TEUCHOS_TEST_FOR_EXCEPTION( state.curDim <= d_restartDim, std::runtime_error,
            "Anasazi::GeneralizedDavidsonSolMgr: State dimension at restart is smaller than Restart Dimension" );

    std::vector<int> ritzIndex = d_solver->getRitzIndex();

    // Don't split conjugate pair when restarting
    int restartDim = d_restartDim;
    if( ritzIndex[d_restartDim-1]==1 )
        restartDim++;

    d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidsonSolMgr: Restarting with "
        << restartDim << " vectors" << std::endl;

    // We have already sorted the problem with d_restartDim "best" values
    //  in the leading position.  If we partition the Schur vectors (Z)
    //  of the projected problem as Z = [Z_wanted Z_unwanted], then the
    //  search subspace after the restart is V_restart = V*Z_wanted
    //  (same for AV,BV)

    // Get view of wanted portion of Z
    const Teuchos::SerialDenseMatrix<int,ScalarType> Z_wanted =
        Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*state.Z,state.curDim,restartDim);

    // Get indices for restart
    std::vector<int> allIndices(state.curDim);
    for( int i=0; i<state.curDim; ++i )
        allIndices[i] = i;

    RCP<const MV>  V_orig = MVT::CloneView( *state.V,  allIndices );

    // Get indices for restart
    std::vector<int> restartIndices(restartDim);
    for( int i=0; i<restartDim; ++i )
        restartIndices[i] = i;

    // Views of subspace vectors to be updated
    RCP<MV>  V_restart  = MVT::CloneViewNonConst( *state.V,  restartIndices );

    // Temp storage
    RCP<MV> restartVecs = MVT::Clone(*state.V,restartDim);

    // Reset V
    MVT::MvTimesMatAddMv(ST::one(),*V_orig,Z_wanted,ST::zero(),*restartVecs);
    MVT::SetBlock(*restartVecs,restartIndices,*V_restart);

    // V, Z each have orthonormal columns, therefore V*Z should as well
    if( d_outputMan->isVerbosity(Debug) )
    {
        MagnitudeType orthErr = d_orthoMan->orthonormError(*V_restart);
        std::stringstream os;
        os << " >> Anasazi::GeneralizedDavidsonSolMgr: Error in V^T V == I after restart : " << orthErr << std::endl;
        d_outputMan->print(Debug,os.str());
    }

    // Reset AV
    RCP<MV> AV_restart  = MVT::CloneViewNonConst( *state.AV, restartIndices );
    RCP<const MV> AV_orig = MVT::CloneView( *state.AV, allIndices );

    MVT::MvTimesMatAddMv(ST::one(),*AV_orig,Z_wanted,ST::zero(),*restartVecs);
    MVT::SetBlock(*restartVecs,restartIndices,*AV_restart);

    int err;

    // Update matrix projection as Z^{*}(V^{*}AV)Z
    const Teuchos::SerialDenseMatrix<int,ScalarType> VAV_orig( Teuchos::View, *state.VAV, state.curDim, state.curDim );
    Teuchos::SerialDenseMatrix<int,ScalarType> tmpMat(state.curDim, restartDim);
    err = tmpMat.multiply( Teuchos::NO_TRANS, Teuchos::NO_TRANS, ST::one(), VAV_orig, Z_wanted, ST::zero() );
    TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, "GeneralizedDavidsonSolMgr::getRestartState: multiply returned nonzero error code" );

    Teuchos::SerialDenseMatrix<int,ScalarType> VAV_restart( Teuchos::View, *state.VAV, restartDim, restartDim );
    err = VAV_restart.multiply( Teuchos::TRANS, Teuchos::NO_TRANS, ST::one(), Z_wanted, tmpMat, ST::zero() );
    TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, "GeneralizedDavidsonSolMgr::getRestartState: multiply returned nonzero error code" );

    if( d_problem->getM() != Teuchos::null )
    {
        // Reset BV
        RCP<const MV> BV_orig     = MVT::CloneView( *state.BV, allIndices );
        RCP<MV>       BV_restart  = MVT::CloneViewNonConst( *state.BV, restartIndices );

        MVT::MvTimesMatAddMv(ST::one(),*BV_orig,Z_wanted,ST::zero(),*restartVecs);
        MVT::SetBlock(*restartVecs,restartIndices,*BV_restart);


        // Update matrix projection as Z^{*}(V^{*}BV)Z
        const Teuchos::SerialDenseMatrix<int,ScalarType> VBV_orig( Teuchos::View, *state.VBV, state.curDim, state.curDim );
        err = tmpMat.multiply( Teuchos::NO_TRANS, Teuchos::NO_TRANS, ST::one(), VBV_orig, Z_wanted, ST::zero() );
        TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, "GeneralizedDavidsonSolMgr::getRestartState: multiply returned nonzero error code" );

        Teuchos::SerialDenseMatrix<int,ScalarType> VBV_restart( Teuchos::View, *state.VBV, restartDim, restartDim );
        VBV_restart.multiply( Teuchos::TRANS, Teuchos::NO_TRANS, ST::one(), Z_wanted, tmpMat, ST::zero() );
        TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, "GeneralizedDavidsonSolMgr::getRestartState: multiply returned nonzero error code" );
    }

    // Set Q,Z to identity
    state.Q->putScalar( ST::zero() );
    state.Z->putScalar( ST::zero() );
    for( int ii=0; ii<restartDim; ii++ )
    {
       (*state.Q)(ii,ii)= ST::one();
       (*state.Z)(ii,ii)= ST::one();
    }

    // Update current dimension
    state.curDim = restartDim;
}

} // namespace Anasazi

#endif // ANASAZI_GENERALIZED_DAVIDSON_SOLMGR_HPP