/usr/include/trilinos/AnasaziGeneralizedDavidsonSolMgr.hpp is in libtrilinos-anasazi-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef ANASAZI_GENERALIZED_DAVIDSON_SOLMGR_HPP
#define ANASAZI_GENERALIZED_DAVIDSON_SOLMGR_HPP
/*! \file AnasaziGeneralizedDavidsonSolMgr.hpp
* \brief The Anasazi::GeneralizedDavidsonSolMgr provides a solver manager for the GeneralizedDavidson eigensolver.
*/
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_RCPDecl.hpp"
#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "AnasaziEigenproblem.hpp"
#include "AnasaziSolverManager.hpp"
#include "AnasaziBasicOrthoManager.hpp"
#include "AnasaziSVQBOrthoManager.hpp"
#include "AnasaziICGSOrthoManager.hpp"
#include "AnasaziBasicOutputManager.hpp"
#include "AnasaziBasicSort.hpp"
#include "AnasaziGeneralizedDavidson.hpp"
#include "AnasaziStatusTestResNorm.hpp"
#include "AnasaziStatusTestWithOrdering.hpp"
using Teuchos::RCP;
/** \example GeneralizedDavidson/GeneralizedDavidsonEpetraExFileIfpack.cpp
This is an example of how to use the Anasazi::GeneralizedDavidsonSolMgr solver manager, using Epetra data structures and an Ifpack preconditioner. */
namespace Anasazi {
/*!
* \class GeneralizedDavidsonSolMgr
* \brief Solver Manager for GeneralizedDavidson
*
* This class provides a simple interface to the GeneralizedDavidson
* eigensolver. This manager creates
* appropriate orthogonalization/sort/output managers based on user
* specified ParameterList entries (or selects suitable defaults),
* provides access to solver functionality, and manages the restarting
* process.
*
* This class is currently only implemented for real scalar types
* (i.e. float, double).
\ingroup anasazi_solver_framework
\author Steven Hamilton
*/
template <class ScalarType, class MV, class OP>
class GeneralizedDavidsonSolMgr : public SolverManager<ScalarType,MV,OP>
{
public:
/*!
* \brief Basic constructor for GeneralizedDavidsonSolMgr
*
* This constructor accepts the Eigenproblem to be solved and a parameter list of options
* for the solver.
* The following options control the behavior
* of the solver:
* - "Which" -- a string specifying the desired eigenvalues: SM, LM, SR, LR, SI, or LI. Default: "LM."
* - "Block Size" -- block size used by algorithm. Default: 1.
* - "Maximum Subspace Dimension" -- maximum number of basis vectors for subspace. Two
* (for standard eigenvalue problems) or three (for generalized eigenvalue problems) sets of basis
* vectors of this size will be required. Default: 3*problem->getNEV()*"Block Size"
* - "Restart Dimension" -- Number of vectors retained after a restart. Default: NEV
* - "Maximum Restarts" -- an int specifying the maximum number of restarts the underlying solver
* is allowed to perform. Default: 20
* - "Orthogonalization" -- a string specifying the desired orthogonalization: DGKS, SVQB, ICGS.
* Default: "SVQB"
* - "Verbosity" -- a sum of MsgType specifying the verbosity. Default: AnasaziErrors
* - "Convergence Tolerance" -- a MagnitudeType specifying the level that residual norms must
* reach to decide convergence. Default: machine precision
* - "Relative Convergence Tolerance" -- a bool specifying whether residual norms should be
* scaled by the magnitude of the corresponding Ritz value. Care should be taken when performing
* scaling for problems where the eigenvalue can be very large or very small. Default: "false".
* - "Initial Guess" -- how should initial vector be selected: "Random" or "User".
* If "User," the value in problem->getInitVec() will be used. Default: "Random".
* - "Print Number of Ritz Values" -- an int specifying how many Ritz values should be printed
* at each iteration. Default: "NEV".
*/
GeneralizedDavidsonSolMgr( const RCP< Eigenproblem<ScalarType,MV,OP> > &problem,
Teuchos::ParameterList &pl );
/*!
* \brief Return the eigenvalue problem.
*/
const Eigenproblem<ScalarType,MV,OP> & getProblem() const { return *d_problem; }
/*!
* \brief Get the iteration count for the most recent call to solve()
*/
int getNumIters() const { return d_solver->getNumIters(); }
/*!
* \brief This method performs possibly repeated calls to the underlying eigensolver's iterate()
* routine until the problem has been solved (as decided by the StatusTest) or the solver manager decides to quit.
*/
ReturnType solve();
private:
void getRestartState( GeneralizedDavidsonState<ScalarType,MV> &state );
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef Teuchos::ScalarTraits<ScalarType> ST;
typedef typename ST::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MT;
RCP< Eigenproblem<ScalarType,MV,OP> > d_problem;
RCP< GeneralizedDavidson<ScalarType,MV,OP> > d_solver;
RCP< OutputManager<ScalarType> > d_outputMan;
RCP< OrthoManager<ScalarType,MV> > d_orthoMan;
RCP< SortManager<MagnitudeType> > d_sortMan;
RCP< StatusTest<ScalarType,MV,OP> > d_tester;
int d_maxRestarts;
int d_restartDim;
}; // class GeneralizedDavidsonSolMgr
//---------------------------------------------------------------------------//
// Prevent instantiation on complex scalar type
//---------------------------------------------------------------------------//
template <class MagnitudeType, class MV, class OP>
class GeneralizedDavidsonSolMgr<std::complex<MagnitudeType>,MV,OP>
{
public:
typedef std::complex<MagnitudeType> ScalarType;
GeneralizedDavidsonSolMgr(
const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
Teuchos::ParameterList &pl )
{
// Provide a compile error when attempting to instantiate on complex type
MagnitudeType::this_class_is_missing_a_specialization();
}
};
//---------------------------------------------------------------------------//
// Start member definitions
//---------------------------------------------------------------------------//
//---------------------------------------------------------------------------//
// Constructor
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
GeneralizedDavidsonSolMgr<ScalarType,MV,OP>::GeneralizedDavidsonSolMgr(
const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
Teuchos::ParameterList &pl )
: d_problem(problem)
{
TEUCHOS_TEST_FOR_EXCEPTION( d_problem == Teuchos::null, std::invalid_argument, "Problem not given to solver manager." );
TEUCHOS_TEST_FOR_EXCEPTION( !d_problem->isProblemSet(), std::invalid_argument, "Problem not set." );
TEUCHOS_TEST_FOR_EXCEPTION( d_problem->getA() == Teuchos::null &&
d_problem->getOperator() == Teuchos::null, std::invalid_argument, "A operator not supplied on Eigenproblem." );
TEUCHOS_TEST_FOR_EXCEPTION( d_problem->getInitVec() == Teuchos::null, std::invalid_argument, "No vector to clone from on Eigenproblem." );
TEUCHOS_TEST_FOR_EXCEPTION( d_problem->getNEV() <= 0, std::invalid_argument, "Number of requested eigenvalues must be positive.");
if( !pl.isType<int>("Block Size") )
{
pl.set<int>("Block Size",1);
}
if( !pl.isType<int>("Maximum Subspace Dimension") )
{
pl.set<int>("Maximum Subspace Dimension",3*problem->getNEV()*pl.get<int>("Block Size"));
}
if( !pl.isType<int>("Print Number of Ritz Values") )
{
int numToPrint = std::max( pl.get<int>("Block Size"), d_problem->getNEV() );
pl.set<int>("Print Number of Ritz Values",numToPrint);
}
// Get convergence info
MagnitudeType tol = pl.get<MagnitudeType>("Convergence Tolerance", MT::eps() );
TEUCHOS_TEST_FOR_EXCEPTION( pl.get<MagnitudeType>("Convergence Tolerance") <= MT::zero(),
std::invalid_argument, "Convergence Tolerance must be greater than zero." );
// Get maximum restarts
if( pl.isType<int>("Maximum Restarts") )
{
d_maxRestarts = pl.get<int>("Maximum Restarts");
TEUCHOS_TEST_FOR_EXCEPTION( d_maxRestarts < 0, std::invalid_argument, "Maximum Restarts must be non-negative" );
}
else
{
d_maxRestarts = 20;
}
// Get maximum restarts
d_restartDim = pl.get<int>("Restart Dimension",d_problem->getNEV());
TEUCHOS_TEST_FOR_EXCEPTION( d_restartDim < d_problem->getNEV(),
std::invalid_argument, "Restart Dimension must be at least NEV" );
// Get initial guess type
std::string initType;
if( pl.isType<std::string>("Initial Guess") )
{
initType = pl.get<std::string>("Initial Guess");
TEUCHOS_TEST_FOR_EXCEPTION( initType!="User" && initType!="Random", std::invalid_argument,
"Initial Guess type must be 'User' or 'Random'." );
}
else
{
initType = "User";
}
// Get sort type
std::string which;
if( pl.isType<std::string>("Which") )
{
which = pl.get<std::string>("Which");
TEUCHOS_TEST_FOR_EXCEPTION( which!="LM" && which!="SM" && which!="LR" && which!="SR" && which!="LI" && which!="SI",
std::invalid_argument,
"Which must be one of LM,SM,LR,SR,LI,SI." );
}
else
{
which = "LM";
}
// Build sort manager (currently must be stored as pointer to derived class)
d_sortMan = Teuchos::rcp( new BasicSort<MagnitudeType>(which) );
// Build orthogonalization manager
std::string ortho = pl.get<std::string>("Orthogonalization","SVQB");
TEUCHOS_TEST_FOR_EXCEPTION( ortho!="DGKS" && ortho!= "SVQB" && ortho!="ICGS", std::invalid_argument,
"Anasazi::GeneralizedDavidsonSolMgr::constructor: Invalid orthogonalization type" );
if( ortho=="DGKS" )
{
d_orthoMan = Teuchos::rcp( new BasicOrthoManager<ScalarType,MV,OP>() );
}
else if( ortho=="SVQB" )
{
d_orthoMan = Teuchos::rcp( new SVQBOrthoManager<ScalarType,MV,OP>() );
}
else if( ortho=="ICGS" )
{
d_orthoMan = Teuchos::rcp( new ICGSOrthoManager<ScalarType,MV,OP>() );
}
// Build StatusTest
bool scaleRes = false; // Always false, scaling the residual is handled by the solver
bool failOnNaN = false;
RCP<StatusTest<ScalarType,MV,OP> > resNormTest = Teuchos::rcp(
new StatusTestResNorm<ScalarType,MV,OP>(tol,d_problem->getNEV(),
RES_2NORM,scaleRes,failOnNaN) );
d_tester = Teuchos::rcp( new StatusTestWithOrdering<ScalarType,MV,OP>(resNormTest,d_sortMan,d_problem->getNEV()) );
// Build output manager
int verbosity = pl.get<int>("Verbosity",Errors);
d_outputMan = Teuchos::rcp( new BasicOutputManager<ScalarType>() );
d_outputMan->setVerbosity( verbosity );
// Build solver
d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidsonSolMgr: Building solver" << std::endl;
d_solver = Teuchos::rcp( new GeneralizedDavidson<ScalarType,MV,OP>( problem, d_sortMan, d_outputMan, d_tester, d_orthoMan, pl ) );
TEUCHOS_TEST_FOR_EXCEPTION(d_solver->getMaxSubspaceDim() < d_restartDim, std::invalid_argument,
"The maximum size of the subspace dimension (" << d_solver->getMaxSubspaceDim() << ") must "
"not be smaller than the size of the restart space (" << d_restartDim << "). "
"Please adjust \"Restart Dimension\" and/or \"Maximum Subspace Dimension\" parameters.");
}
//---------------------------------------------------------------------------//
// Solve
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
ReturnType GeneralizedDavidsonSolMgr<ScalarType,MV,OP>::solve()
{
Eigensolution<ScalarType,MV> sol;
sol.numVecs = 0;
d_problem->setSolution(sol);
d_solver->initialize();
int restarts = 0;
while( 1 )
{
// Call iterate on the solver
d_solver->iterate();
// If the solver converged, we're done
if( d_tester->getStatus() == Passed )
break;
// If we're already at maximum number of restarts, wrap it up
if( restarts == d_maxRestarts )
break;
// We need to restart
d_solver->sortProblem( d_restartDim );
GeneralizedDavidsonState<ScalarType,MV> state = d_solver->getState();
getRestartState( state );
d_solver->initialize( state );
restarts++;
}
// Output final state
if( d_outputMan->isVerbosity(FinalSummary) )
d_solver->currentStatus(d_outputMan->stream(FinalSummary));
// Fill solution struct
sol.numVecs = d_tester->howMany();
if( sol.numVecs > 0 )
{
std::vector<int> whichVecs = d_tester->whichVecs();
std::vector<int> origIndex = d_solver->getRitzIndex();
// Make sure no conjugate pairs are split
// Because these are not sorted we have to check all values
for( int i=0; i<sol.numVecs; ++i )
{
if( origIndex[ whichVecs[i] ] == 1 )
{
if( std::find( whichVecs.begin(), whichVecs.end(), whichVecs[i]+1 ) == whichVecs.end() )
{
whichVecs.push_back( whichVecs[i]+1 );
sol.numVecs++;
}
}
else if( origIndex[ whichVecs[i] ] == -1 )
{
if( std::find( whichVecs.begin(), whichVecs.end(), whichVecs[i]-1 ) == whichVecs.end() )
{
whichVecs.push_back( whichVecs[i]-1 );
sol.numVecs++;
}
}
}
if( d_outputMan->isVerbosity(Debug) )
{
d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidsonSolMgr: "
<< sol.numVecs << " eigenpairs converged" << std::endl;
}
// Sort converged values
std::vector< Value<ScalarType> > origVals = d_solver->getRitzValues();
std::vector<MagnitudeType> realParts;
std::vector<MagnitudeType> imagParts;
for( int i=0; i<sol.numVecs; ++i )
{
realParts.push_back( origVals[whichVecs[i]].realpart );
imagParts.push_back( origVals[whichVecs[i]].imagpart );
}
std::vector<int> permVec(sol.numVecs);
d_sortMan->sort( realParts, imagParts, Teuchos::rcpFromRef(permVec), sol.numVecs );
// Create new which vector
std::vector<int> newWhich;
for( int i=0; i<sol.numVecs; ++i )
newWhich.push_back( whichVecs[permVec[i]] );
// Check if converged vectors are ordered
bool ordered = true;
for( int i=0; i<sol.numVecs; ++i )
{
if( newWhich[i]!=i )
{
ordered = false;
break;
}
}
if( ordered )
{
// Everything is ordered, pull directly from solver and resize
sol.index = origIndex;
sol.index.resize(sol.numVecs);
sol.Evals = d_solver->getRitzValues();
sol.Evals.resize(sol.numVecs);
}
else
{
// Manually copy values into sol
sol.index.resize(sol.numVecs);
sol.Evals.resize(sol.numVecs);
for( int i=0; i<sol.numVecs; ++i )
{
sol.index[i] = origIndex[ newWhich[i] ];
sol.Evals[i] = origVals[ newWhich[i] ];
}
}
sol.Evecs = MVT::CloneCopy( *(d_solver->getRitzVectors()), newWhich );
}
d_problem->setSolution(sol);
// Return convergence status
if( sol.numVecs < d_problem->getNEV() )
return Unconverged;
return Converged;
}
//---------------------------------------------------------------------------//
// Update GeneralizedDavidson state for restarting
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidsonSolMgr<ScalarType,MV,OP>::getRestartState(
GeneralizedDavidsonState<ScalarType,MV> &state )
{
TEUCHOS_TEST_FOR_EXCEPTION( state.curDim <= d_restartDim, std::runtime_error,
"Anasazi::GeneralizedDavidsonSolMgr: State dimension at restart is smaller than Restart Dimension" );
std::vector<int> ritzIndex = d_solver->getRitzIndex();
// Don't split conjugate pair when restarting
int restartDim = d_restartDim;
if( ritzIndex[d_restartDim-1]==1 )
restartDim++;
d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidsonSolMgr: Restarting with "
<< restartDim << " vectors" << std::endl;
// We have already sorted the problem with d_restartDim "best" values
// in the leading position. If we partition the Schur vectors (Z)
// of the projected problem as Z = [Z_wanted Z_unwanted], then the
// search subspace after the restart is V_restart = V*Z_wanted
// (same for AV,BV)
// Get view of wanted portion of Z
const Teuchos::SerialDenseMatrix<int,ScalarType> Z_wanted =
Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*state.Z,state.curDim,restartDim);
// Get indices for restart
std::vector<int> allIndices(state.curDim);
for( int i=0; i<state.curDim; ++i )
allIndices[i] = i;
RCP<const MV> V_orig = MVT::CloneView( *state.V, allIndices );
// Get indices for restart
std::vector<int> restartIndices(restartDim);
for( int i=0; i<restartDim; ++i )
restartIndices[i] = i;
// Views of subspace vectors to be updated
RCP<MV> V_restart = MVT::CloneViewNonConst( *state.V, restartIndices );
// Temp storage
RCP<MV> restartVecs = MVT::Clone(*state.V,restartDim);
// Reset V
MVT::MvTimesMatAddMv(ST::one(),*V_orig,Z_wanted,ST::zero(),*restartVecs);
MVT::SetBlock(*restartVecs,restartIndices,*V_restart);
// V, Z each have orthonormal columns, therefore V*Z should as well
if( d_outputMan->isVerbosity(Debug) )
{
MagnitudeType orthErr = d_orthoMan->orthonormError(*V_restart);
std::stringstream os;
os << " >> Anasazi::GeneralizedDavidsonSolMgr: Error in V^T V == I after restart : " << orthErr << std::endl;
d_outputMan->print(Debug,os.str());
}
// Reset AV
RCP<MV> AV_restart = MVT::CloneViewNonConst( *state.AV, restartIndices );
RCP<const MV> AV_orig = MVT::CloneView( *state.AV, allIndices );
MVT::MvTimesMatAddMv(ST::one(),*AV_orig,Z_wanted,ST::zero(),*restartVecs);
MVT::SetBlock(*restartVecs,restartIndices,*AV_restart);
int err;
// Update matrix projection as Z^{*}(V^{*}AV)Z
const Teuchos::SerialDenseMatrix<int,ScalarType> VAV_orig( Teuchos::View, *state.VAV, state.curDim, state.curDim );
Teuchos::SerialDenseMatrix<int,ScalarType> tmpMat(state.curDim, restartDim);
err = tmpMat.multiply( Teuchos::NO_TRANS, Teuchos::NO_TRANS, ST::one(), VAV_orig, Z_wanted, ST::zero() );
TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, "GeneralizedDavidsonSolMgr::getRestartState: multiply returned nonzero error code" );
Teuchos::SerialDenseMatrix<int,ScalarType> VAV_restart( Teuchos::View, *state.VAV, restartDim, restartDim );
err = VAV_restart.multiply( Teuchos::TRANS, Teuchos::NO_TRANS, ST::one(), Z_wanted, tmpMat, ST::zero() );
TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, "GeneralizedDavidsonSolMgr::getRestartState: multiply returned nonzero error code" );
if( d_problem->getM() != Teuchos::null )
{
// Reset BV
RCP<const MV> BV_orig = MVT::CloneView( *state.BV, allIndices );
RCP<MV> BV_restart = MVT::CloneViewNonConst( *state.BV, restartIndices );
MVT::MvTimesMatAddMv(ST::one(),*BV_orig,Z_wanted,ST::zero(),*restartVecs);
MVT::SetBlock(*restartVecs,restartIndices,*BV_restart);
// Update matrix projection as Z^{*}(V^{*}BV)Z
const Teuchos::SerialDenseMatrix<int,ScalarType> VBV_orig( Teuchos::View, *state.VBV, state.curDim, state.curDim );
err = tmpMat.multiply( Teuchos::NO_TRANS, Teuchos::NO_TRANS, ST::one(), VBV_orig, Z_wanted, ST::zero() );
TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, "GeneralizedDavidsonSolMgr::getRestartState: multiply returned nonzero error code" );
Teuchos::SerialDenseMatrix<int,ScalarType> VBV_restart( Teuchos::View, *state.VBV, restartDim, restartDim );
VBV_restart.multiply( Teuchos::TRANS, Teuchos::NO_TRANS, ST::one(), Z_wanted, tmpMat, ST::zero() );
TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, "GeneralizedDavidsonSolMgr::getRestartState: multiply returned nonzero error code" );
}
// Set Q,Z to identity
state.Q->putScalar( ST::zero() );
state.Z->putScalar( ST::zero() );
for( int ii=0; ii<restartDim; ii++ )
{
(*state.Q)(ii,ii)= ST::one();
(*state.Z)(ii,ii)= ST::one();
}
// Update current dimension
state.curDim = restartDim;
}
} // namespace Anasazi
#endif // ANASAZI_GENERALIZED_DAVIDSON_SOLMGR_HPP
|