/usr/include/trilinos/AnasaziEpetraAdapter.hpp is in libtrilinos-anasazi-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file AnasaziEpetraAdapter.hpp
\brief Declarations of Anasazi multi-vector and operator classes using Epetra_MultiVector and Epetra_Operator classes
*/
#ifndef ANASAZI_EPETRA_ADAPTER_HPP
#define ANASAZI_EPETRA_ADAPTER_HPP
#include "AnasaziConfigDefs.hpp"
#include "Anasaziepetra_DLLExportMacro.h"
#include "AnasaziTypes.hpp"
#include "AnasaziMultiVec.hpp"
#include "AnasaziOperator.hpp"
#include "Teuchos_Assert.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Epetra_MultiVector.h"
#include "Epetra_Vector.h"
#include "Epetra_Operator.h"
#include "Epetra_Map.h"
#include "Epetra_LocalMap.h"
#if defined(HAVE_ANASAZI_TPETRA) && defined(HAVE_ANASAZI_TSQR)
# include <Tpetra_ConfigDefs.hpp> // HAVE_TPETRA_EPETRA
# if defined(HAVE_TPETRA_EPETRA)
# include <Epetra_TsqrAdaptor.hpp>
# endif // defined(HAVE_TPETRA_EPETRA)
#endif // defined(HAVE_ANASAZI_TPETRA) && defined(HAVE_ANASAZI_TSQR)
namespace Anasazi {
//! @name Epetra Adapter Exceptions
//@{
/** \brief EpetraMultiVecFailure is thrown when a return value from an Epetra
* call on an Epetra_MultiVector is non-zero.
*/
class EpetraMultiVecFailure : public AnasaziError {public:
EpetraMultiVecFailure(const std::string& what_arg) : AnasaziError(what_arg)
{}};
/** \brief EpetraOpFailure is thrown when a return value from an Epetra
* call on an Epetra_Operator is non-zero.
*/
class EpetraOpFailure : public AnasaziError {public:
EpetraOpFailure(const std::string& what_arg) : AnasaziError(what_arg)
{}};
//@}
//! @name Epetra_MultiVector Accessor Interface
//@{
/** \brief EpetraMultiVecAccessor is an interfaceto allow any Anasazi::MultiVec implementation
* that is based on Epetra_MultiVector to use the various Anasazi::Operator interfaces defined for Epetra_Operator.
*/
class EpetraMultiVecAccessor {
public:
//! Destructor
virtual ~EpetraMultiVecAccessor() {};
/*! \brief Return the pointer to the Epetra_MultiVector object. */
virtual Epetra_MultiVector* GetEpetraMultiVec() { return 0; }
/*! \brief Return the pointer to the Epetra_MultiVector object. */
virtual const Epetra_MultiVector* GetEpetraMultiVec() const { return 0; }
};
//@}
///////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraMultiVec-----------------
//
///////////////////////////////////////////////////////////////
/*!
\brief Basic adapter class for Anasazi::MultiVec that uses Epetra_MultiVector.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraMultiVec : public MultiVec<double>, public Epetra_MultiVector, public EpetraMultiVecAccessor {
public:
//! @name Constructors/Destructors
//@{
//! Basic EpetraMultiVec constructor.
/*! @param Map [in] An Epetra_LocalMap, Epetra_Map or Epetra_BlockMap.
@param numvecs [in] Number of vectors in multi-vector.
\returns Pointer to an EpetraMultiVec
*/
EpetraMultiVec(const Epetra_BlockMap& Map_in, const int numvecs);
//! Copy constructor.
EpetraMultiVec(const Epetra_MultiVector & P_vec);
//! Create multi-vector with values from two dimensional array.
/*! @param Map [in] An Epetra_LocalMap, Epetra_Map or Epetra_BlockMap
@param array [in] Pointer to an array of double precision numbers. The first vector starts at \c array, the
second at \c array+stride, and so on. This array is copied.
@param numvecs [in] Number of vectors in the multi-vector.
@param stride [in] The stride between vectors in memory of \c array.
\returns Pointer to an EpetraMultiVec
*/
EpetraMultiVec(const Epetra_BlockMap& Map_in, double * array, const int numvecs, const int stride=0);
//! Create multi-vector from list of vectors in an existing EpetraMultiVec.
/*! @param CV [in] Enumerated type set to Copy or View.
@param P_vec [in] An existing fully constructed Epetra_MultiVector.
@param index [in] A integer vector containing the indices of the vectors to copy out of \c P_vec.
\returns Pointer to an EpetraMultiVec
*/
EpetraMultiVec(Epetra_DataAccess CV, const Epetra_MultiVector& P_vec, const std::vector<int>& index);
//! Destructor
virtual ~EpetraMultiVec() {};
//@}
//! @name Creation methods
//@{
/*! \brief Creates a new empty EpetraMultiVec containing \c numvecs columns.
\returns Pointer to an EpetraMultiVec
*/
MultiVec<double> * Clone ( const int numvecs ) const;
/*! \brief Creates a new EpetraMultiVec and copies contents of \c *this into
the new vector (deep copy).
\returns Pointer to an EpetraMultiVec
*/
MultiVec<double> * CloneCopy () const;
/*! \brief Creates a new EpetraMultiVec and copies the selected contents of \c *this
into the new vector (deep copy).
The copied vectors from \c *this are indicated by the \c index.size() indices in \c index.
\returns Pointer to an EpetraMultiVec
*/
MultiVec<double> * CloneCopy ( const std::vector<int>& index ) const;
/*! \brief Creates a new EpetraMultiVec that shares the selected contents of \c *this.
The index of the \c numvecs vectors shallow copied from \c *this are indicated by the
indices given in \c index.
\returns Pointer to an EpetraMultiVec
*/
MultiVec<double> * CloneViewNonConst ( const std::vector<int>& index );
/*! \brief Creates a new EpetraMultiVec that shares the selected contents of \c *this.
The index of the \c numvecs vectors shallow copied from \c *this are indicated by the
indices given in \c index.
\returns Pointer to an EpetraMultiVec
*/
const MultiVec<double> * CloneView ( const std::vector<int>& index ) const;
//@}
//! The number of rows in the multivector.
ptrdiff_t GetGlobalLength () const
{
if ( Map().GlobalIndicesLongLong() )
return static_cast<ptrdiff_t>( GlobalLength64() );
else
return static_cast<ptrdiff_t>( GlobalLength() );
}
//! @name Attribute methods
//! Obtain the vector length of *this.
int GetNumberVecs () const { return NumVectors(); }
//@}
//! @name Update methods
//@{
/*! \brief Update \c *this with \f$\alpha AB + \beta (*this)\f$.
*/
void MvTimesMatAddMv ( double alpha, const MultiVec<double>& A,
const Teuchos::SerialDenseMatrix<int,double>& B,
double beta );
/*! \brief Replace \c *this with \f$\alpha A + \beta B\f$.
*/
void MvAddMv ( double alpha, const MultiVec<double>& A,
double beta, const MultiVec<double>& B);
/*! \brief Compute a dense matrix \c B through the matrix-matrix multiply \f$\alpha A^T(*this)\f$.
*/
void MvTransMv ( double alpha, const MultiVec<double>& A, Teuchos::SerialDenseMatrix<int,double>& B
#ifdef HAVE_ANASAZI_EXPERIMENTAL
, ConjType conj = Anasazi::CONJ
#endif
) const;
/*! \brief Compute a vector \c b where the components are the individual dot-products, i.e. \f$ b[i] = A[i]^H(this[i])\f$ where \c A[i] is the i-th column of \c A.
*/
void MvDot ( const MultiVec<double>& A, std::vector<double> &b
#ifdef HAVE_ANASAZI_EXPERIMENTAL
, ConjType conj = Anasazi::CONJ
#endif
) const;
/*! \brief Scale each element of the vectors in \c *this with \c alpha.
*/
void MvScale ( double alpha ) {
TEUCHOS_TEST_FOR_EXCEPTION( this->Scale( alpha )!=0, EpetraMultiVecFailure,
"Anasazi::EpetraMultiVec::MvScale call to Epetra_MultiVector::Scale() returned a nonzero value.");
}
/*! \brief Scale each element of the \c i-th vector in \c *this with \c alpha[i].
*/
void MvScale ( const std::vector<double>& alpha );
//@}
//! @name Norm method
//@{
/*! \brief Compute the 2-norm of each individual vector of \c *this.
Upon return, \c normvec[i] holds the 2-norm of the \c i-th vector of \c *this
*/
void MvNorm ( std::vector<double> & normvec ) const {
if (((int)normvec.size() >= GetNumberVecs()) ) {
TEUCHOS_TEST_FOR_EXCEPTION( this->Norm2(&normvec[0])!=0, EpetraMultiVecFailure,
"Anasazi::EpetraMultiVec::MvNorm call to Epetra_MultiVector::Norm2() returned a nonzero value.");
}
};
//@}
//! @name Initialization methods
//@{
/*! \brief Copy the vectors in \c A to a set of vectors in \c *this.
The \c numvecs vectors in \c A are copied to a subset of vectors in \c *this
indicated by the indices given in \c index.
*/
void SetBlock ( const MultiVec<double>& A, const std::vector<int>& index );
/*! \brief Fill the vectors in \c *this with random numbers.
*/
void MvRandom() {
TEUCHOS_TEST_FOR_EXCEPTION( this->Random()!=0, EpetraMultiVecFailure,
"Anasazi::EpetraMultiVec::MvRandom call to Epetra_MultiVector::Random() returned a nonzero value.");
};
/*! \brief Replace each element of the vectors in \c *this with \c alpha.
*/
void MvInit ( double alpha ) {
TEUCHOS_TEST_FOR_EXCEPTION( this->PutScalar( alpha )!=0, EpetraMultiVecFailure,
"Anasazi::EpetraMultiVec::MvInit call to Epetra_MultiVector::PutScalar() returned a nonzero value.");
};
//! @name Accessor methods (inherited from EpetraMultiVecAccessor)
//@{
/*! \brief Return the pointer to the Epetra_MultiVector object. */
Epetra_MultiVector* GetEpetraMultiVec() { return this; };
/*! \brief Return the pointer to the Epetra_MultiVector object. */
const Epetra_MultiVector* GetEpetraMultiVec() const { return this; };
//@}
//@}
//! @name Print method
//@{
/*! \brief Print \c *this EpetraMultiVec.
*/
void MvPrint( std::ostream& os ) const { os << *this << std::endl; };
//@}
private:
};
//-------------------------------------------------------------
///////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraOp---------------------
//
///////////////////////////////////////////////////////////////
/*!
\brief Basic adapter class for Anasazi::Operator that uses Epetra_Operator.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraOp : public virtual Operator<double> {
public:
//! @name Constructor/Destructor
//@{
//! Basic constructor. Accepts reference-counted pointer to an Epetra_Operator.
EpetraOp(const Teuchos::RCP<Epetra_Operator> &Op );
//! Destructor
~EpetraOp();
//@}
//! @name Operator application method
//@{
/*! \brief This method takes the Anasazi::MultiVec \c X and
applies the operator to it resulting in the Anasazi::MultiVec \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
//@}
private:
//use pragmas to disable some false-positive warnings for windows
// sharedlibs export
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<Epetra_Operator> Epetra_Op;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
};
//-------------------------------------------------------------
///////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraGenOp--------------------
//
///////////////////////////////////////////////////////////////
/*!
\brief Adapter class for creating an operators often used in solving generalized eigenproblems.
This class will apply the operation \f$A^{-1}M\f$ [default] or \f$AM\f$, for the \c Apply method of the
Epetra_Operator / Anasazi::Operator. The Anasazi::EpetraGenOp operator is useful when spectral
transformations are used within eigensolvers. For instance, \f$A^{-1}M\f$ is a shift and invert
spectral transformation commonly used with Anasazi::BlockKrylovSchur to compute the smallest-magnitude
eigenvalues for the eigenproblem \f$Ax = \lambda Mx\f$.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraGenOp : public virtual Operator<double>, public virtual Epetra_Operator {
public:
//! Basic constructor for applying operator \f$A^{-1}M\f$ [default] or \f$AM\f$.
/*! If \c isAInverse is true this operator will apply \f$A^{-1}M\f$, else
it will apply \f$AM\f$.
*/
EpetraGenOp(const Teuchos::RCP<Epetra_Operator> &AOp,
const Teuchos::RCP<Epetra_Operator> &MOp,
bool isAInverse = true );
//! Destructor
~EpetraGenOp();
//! Apply method [inherited from Anasazi::Operator class]
/*! This method will apply \f$A^{-1}M\f$ or \f$AM\f$ to \c X, returning \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
//! Apply method [inherited from Epetra_Operator class]
/*! This method will apply \f$A^{-1}M\f$ or \f$AM\f$ to \c X, returning \c Y.
*/
int Apply(const Epetra_MultiVector &X, Epetra_MultiVector &Y) const;
//! Apply inverse method [inherited from Epetra_Operator class]
/*! This method will apply \f$(A^{-1}M)^{-1}\f$ or \f$(AM)^{-1}\f$ to \c X, returning \c Y.
*/
int ApplyInverse(const Epetra_MultiVector &X, Epetra_MultiVector &Y) const;
//! Returns a character string describing the operator.
const char* Label() const { return "Epetra_Operator applying A^{-1}M"; };
//! Returns the current UseTranspose setting [always false for this operator].
bool UseTranspose() const { return (false); };
//! If set true, the transpose of this operator will be applied [not functional for this operator].
int SetUseTranspose(bool /*UseTranspose_in*/) { return 0; };
//! Returns true if this object can provide an approximate inf-norm [always false for this operator].
bool HasNormInf() const { return (false); };
//! Returns the infinity norm of the global matrix [not functional for this operator].
double NormInf() const { return (-1.0); };
//! Returns the Epetra_Comm communicator associated with this operator.
const Epetra_Comm& Comm() const { return Epetra_AOp->Comm(); };
//! Returns the Epetra_Map object associated with the domain of this operator.
const Epetra_Map& OperatorDomainMap() const { return Epetra_AOp->OperatorDomainMap(); };
//! Returns the Epetra_Map object associated with the range of this operator.
const Epetra_Map& OperatorRangeMap() const { return Epetra_AOp->OperatorRangeMap(); };
private:
bool isAInverse;
//use pragmas to disable some false-positive warnings for windows
// sharedlibs export
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<Epetra_Operator> Epetra_AOp;
Teuchos::RCP<Epetra_Operator> Epetra_MOp;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
};
///////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraSymOp--------------------
//
///////////////////////////////////////////////////////////////
/*!
\brief Adapter class for creating a symmetric operator from an Epetra_Operator.
This class will apply the operation \f$A^TA\f$ [default] or \f$AA^T\f$, for the \c Apply method of the
Epetra_Operator / Anasazi::Operator. The Anasazi::EpetraSymOp operator is useful when trying to compute
a few singular values of the operator \f$A\f$. The singular values are the square-root of the eigenvalues
of \f$A^TA\f$ and \f$AA^T\f$.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraSymOp : public virtual Operator<double>, public virtual Epetra_Operator {
public:
//! Basic constructor for applying operator \f$A^TA\f$ [default] or \f$AA^T\f$.
/*! If \c isTrans is false this operator will apply \f$A^TA\f$, else it will apply \f$AA^T\f$.
*/
EpetraSymOp(const Teuchos::RCP<Epetra_Operator> &Op, bool isTrans = false );
//! Destructor
~EpetraSymOp();
//! Apply method [inherited from Anasazi::Operator class]
/*! This method will apply \f$A^TA\f$ or \f$AA^T\f$ to \c X, returning \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
//! Apply method [inherited from Epetra_Operator class]
/*! This method will apply \f$A^TA\f$ or \f$AA^T\f$ to \c X, returning \c Y.
*/
int Apply(const Epetra_MultiVector &X, Epetra_MultiVector &Y) const;
//! Apply inverse method [inherited from Epetra_Operator class]
/*! This method will apply \f$(A^TA)^{-1}\f$ or \f$(AA^T)^{-1}\f$ to \c X, returning \c Y.
\note This method is only defined if \f$A^{-1}\f$ is defined for the given Epetra_Operator.
*/
int ApplyInverse(const Epetra_MultiVector &X, Epetra_MultiVector &Y) const;
//! Returns a character string describing the operator.
const char* Label() const { return "Epetra_Operator applying A^TA or AA^T"; };
//! Returns the current UseTranspose setting [always false for this operator].
bool UseTranspose() const { return (false); };
//! If set true, the transpose of this operator will be applied [not functional for this operator].
int SetUseTranspose(bool /*UseTranspose_in*/) { return 0; };
//! Returns true if this object can provide an approximate inf-norm [always false for this operator].
bool HasNormInf() const { return (false); };
//! Returns the infinity norm of the global matrix [not functional for this operator].
double NormInf() const { return (-1.0); };
//! Returns the Epetra_Comm communicator associated with this operator.
const Epetra_Comm& Comm() const { return Epetra_Op->Comm(); };
//! Returns the Epetra_Map object associated with the domain of this operator.
const Epetra_Map& OperatorDomainMap() const { return Epetra_Op->OperatorDomainMap(); };
//! Returns the Epetra_Map object associated with the range of this operator.
const Epetra_Map& OperatorRangeMap() const { return Epetra_Op->OperatorRangeMap(); };
private:
//use pragmas to disable false-positive warnings in generating windows sharedlib exports
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<Epetra_Operator> Epetra_Op;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
bool isTrans_;
};
//////////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraSymMVOp---------------------
//
//////////////////////////////////////////////////////////////////
/*!
\brief Adapter class for creating a symmetric operator from an Epetra_MultiVector.
This class will apply the operation \f$A^TA\f$ [default] or \f$AA^T\f$, for the \c Apply method of the
Epetra_Operator / Anasazi::Operator. The Anasazi::EpetraSymMvOp operator is useful when trying to compute
a few singular values of the Epetra_MultiVector \f$A\f$. The singular values are the square-root of the
eigenvalues of \f$A^TA\f$ and \f$AA^T\f$.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraSymMVOp : public virtual Operator<double> {
public:
//! Basic constructor for applying operator \f$A^TA\f$ [default] or \f$AA^T\f$.
/*! If \c isTrans is false this operator will apply \f$A^TA\f$, else it will apply \f$AA^T\f$.
*/
EpetraSymMVOp(const Teuchos::RCP<const Epetra_MultiVector> &MV,
bool isTrans = false );
//! Destructor
~EpetraSymMVOp() {};
//! Apply method
/*! This method will apply \f$A^TA\f$ or \f$AA^T\f$ to \c X, returning \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
private:
//use pragmas to disable some false-positive warnings for windows
// sharedlibs export
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<const Epetra_MultiVector> Epetra_MV;
Teuchos::RCP<const Epetra_Map> MV_localmap;
Teuchos::RCP<const Epetra_BlockMap> MV_blockmap;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
bool isTrans_;
};
//////////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraWSymMVOp---------------------
//
//////////////////////////////////////////////////////////////////
/*!
\brief Adapter class for creating a weighted operator from an Epetra_MultiVector and Epetra_Operator.
This class will apply the operation \f$A^T*W*A\f$ for the \c Apply method of the
Anasazi::Operator. The Anasazi::EpetraWSymMvOp operator is useful when trying to compute
a few singular values of the Epetra_MultiVector \f$A\f$ under the weighting matrix \f$W\f$.
The singular values are the square-root of the eigenvalues of \f$A^T*W*A\f$.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraWSymMVOp : public virtual Operator<double> {
public:
//! Basic constructor for applying operator \f$A^T*W*A\f$.
EpetraWSymMVOp(const Teuchos::RCP<const Epetra_MultiVector> &MV,
const Teuchos::RCP<Epetra_Operator> &OP );
//! Destructor
~EpetraWSymMVOp() {};
//! Apply method
/*! This method will apply \f$(WA)^T*WA\f$ to \c X, returning \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
private:
//use pragmas to disable some false-positive warnings for windows
// sharedlibs export
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<const Epetra_MultiVector> Epetra_MV;
Teuchos::RCP<Epetra_Operator> Epetra_OP;
Teuchos::RCP<Epetra_MultiVector> Epetra_WMV;
Teuchos::RCP<const Epetra_Map> MV_localmap;
Teuchos::RCP<const Epetra_BlockMap> MV_blockmap;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
};
//////////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraW2SymMVOp---------------------
//
//////////////////////////////////////////////////////////////////
/*!
\brief Adapter class for creating a weighted symmetric operator from an Epetra_MultiVector and Epetra_Operator.
This class will apply the operation \f$(WA)^T*WA\f$ for the \c Apply method of the
Anasazi::Operator. The Anasazi::EpetraW2SymMvOp operator is useful when trying to compute
a few singular values of the Epetra_MultiVector \f$A\f$ under the weighting matrix \f$W\f$.
The singular values are the square-root of the eigenvalues of \f$(WA)^T*WA\f$.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraW2SymMVOp : public virtual Operator<double> {
public:
//! Basic constructor for applying operator \f$A^T*W*A\f$.
EpetraW2SymMVOp(const Teuchos::RCP<const Epetra_MultiVector> &MV,
const Teuchos::RCP<Epetra_Operator> &OP );
//! Destructor
~EpetraW2SymMVOp() {};
//! Apply method
/*! This method will apply \f$(WA)^T*WA\f$ to \c X, returning \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
private:
//use pragmas to disable some false-positive warnings for windows
// sharedlibs export
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<const Epetra_MultiVector> Epetra_MV;
Teuchos::RCP<Epetra_Operator> Epetra_OP;
Teuchos::RCP<Epetra_MultiVector> Epetra_WMV;
Teuchos::RCP<const Epetra_Map> MV_localmap;
Teuchos::RCP<const Epetra_BlockMap> MV_blockmap;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
};
////////////////////////////////////////////////////////////////////
//
// Implementation of the Anasazi::MultiVecTraits for Epetra::MultiVector.
//
////////////////////////////////////////////////////////////////////
/*!
\brief Template specialization of Anasazi::MultiVecTraits class using the Epetra_MultiVector class.
This interface will ensure that any Epetra_MultiVector will be accepted by the Anasazi
templated solvers.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
template<>
class MultiVecTraits<double, Epetra_MultiVector>
{
public:
//! @name Creation methods
//@{
/*! \brief Creates a new empty Epetra_MultiVector containing \c numVecs columns.
\return Reference-counted pointer to the new Epetra_MultiVector.
*/
static Teuchos::RCP<Epetra_MultiVector>
Clone (const Epetra_MultiVector& mv, const int outNumVecs)
{
TEUCHOS_TEST_FOR_EXCEPTION(outNumVecs <= 0, std::invalid_argument,
"Belos::MultiVecTraits<double, Epetra_MultiVector>::"
"Clone(mv, outNumVecs = " << outNumVecs << "): "
"outNumVecs must be positive.");
// FIXME (mfh 13 Jan 2011) Anasazi currently lets Epetra fill in
// the entries of the returned multivector with zeros, but Belos
// does not. We retain this different behavior for now, but the
// two versions will need to be reconciled.
return Teuchos::rcp (new Epetra_MultiVector (mv.Map(), outNumVecs));
}
/*! \brief Creates a new Epetra_MultiVector and copies contents of \c mv into the new vector (deep copy).
\return Reference-counted pointer to the new Epetra_MultiVector.
*/
static Teuchos::RCP<Epetra_MultiVector>
CloneCopy (const Epetra_MultiVector& mv)
{
return Teuchos::rcp (new Epetra_MultiVector (mv));
}
/*! \brief Creates a new Epetra_MultiVector and copies the selected contents of \c mv into the new vector (deep copy).
The copied vectors from \c mv are indicated by the \c indeX.size() indices in \c index.
\return Reference-counted pointer to the new Epetra_MultiVector.
*/
static Teuchos::RCP<Epetra_MultiVector>
CloneCopy (const Epetra_MultiVector& mv, const std::vector<int>& index)
{
const int inNumVecs = GetNumberVecs (mv);
const int outNumVecs = index.size();
// Simple, inexpensive tests of the index vector.
TEUCHOS_TEST_FOR_EXCEPTION(outNumVecs == 0, std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneCopy(mv, index = {}): At least one vector must be"
" cloned from mv.");
if (outNumVecs > inNumVecs)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneCopy(mv, index = {";
for (int k = 0; k < outNumVecs - 1; ++k)
os << index[k] << ", ";
os << index[outNumVecs-1] << "}): There are " << outNumVecs
<< " indices to copy, but only " << inNumVecs << " columns of mv.";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, os.str());
}
#ifdef TEUCHOS_DEBUG
// In debug mode, we perform more expensive tests of the index
// vector, to ensure all the elements are in range.
// Dereferencing the iterator is valid because index has length
// > 0.
const int minIndex = *std::min_element (index.begin(), index.end());
const int maxIndex = *std::max_element (index.begin(), index.end());
if (minIndex < 0)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneCopy(mv, index = {";
for (int k = 0; k < outNumVecs - 1; ++k)
os << index[k] << ", ";
os << index[outNumVecs-1] << "}): Indices must be nonnegative, but "
"the smallest index " << minIndex << " is negative.";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, os.str());
}
if (maxIndex >= inNumVecs)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneCopy(mv, index = {";
for (int k = 0; k < outNumVecs - 1; ++k)
os << index[k] << ", ";
os << index[outNumVecs-1] << "}): Indices must be strictly less than "
"the number of vectors " << inNumVecs << " in mv; the largest index "
<< maxIndex << " is out of bounds.";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, os.str());
}
#endif // TEUCHOS_DEBUG
// Cast to nonconst, because Epetra_MultiVector's constructor
// wants a nonconst int array argument. It doesn't actually
// change the entries of the array.
std::vector<int>& tmpind = const_cast< std::vector<int>& > (index);
return Teuchos::rcp (new Epetra_MultiVector (Epetra_DataAccess::Copy, mv, &tmpind[0], index.size()));
}
static Teuchos::RCP<Epetra_MultiVector>
CloneCopy (const Epetra_MultiVector& mv, const Teuchos::Range1D& index)
{
const int inNumVecs = GetNumberVecs (mv);
const int outNumVecs = index.size();
const bool validRange = outNumVecs > 0 && index.lbound() >= 0 &&
index.ubound() < inNumVecs;
if (! validRange)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<double,Epetra_MultiVector>::Clone(mv,"
"index=[" << index.lbound() << ", " << index.ubound() << "]): ";
TEUCHOS_TEST_FOR_EXCEPTION(outNumVecs == 0, std::invalid_argument,
os.str() << "Column index range must be nonempty.");
TEUCHOS_TEST_FOR_EXCEPTION(index.lbound() < 0, std::invalid_argument,
os.str() << "Column index range must be nonnegative.");
TEUCHOS_TEST_FOR_EXCEPTION(index.ubound() >= inNumVecs, std::invalid_argument,
os.str() << "Column index range must not exceed "
"number of vectors " << inNumVecs << " in the "
"input multivector.");
}
return Teuchos::rcp (new Epetra_MultiVector (Epetra_DataAccess::Copy, mv, index.lbound(), index.size()));
}
/*! \brief Creates a new Epetra_MultiVector that shares the selected contents of \c mv (shallow copy).
The index of the \c numvecs vectors shallow copied from \c mv are indicated by the indices given in \c index.
\return Reference-counted pointer to the new Epetra_MultiVector.
*/
static Teuchos::RCP<Epetra_MultiVector>
CloneViewNonConst (Epetra_MultiVector& mv, const std::vector<int>& index)
{
const int inNumVecs = GetNumberVecs (mv);
const int outNumVecs = index.size();
// Simple, inexpensive tests of the index vector.
TEUCHOS_TEST_FOR_EXCEPTION(outNumVecs == 0, std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneViewNonConst(mv, index = {}): The output view "
"must have at least one column.");
if (outNumVecs > inNumVecs)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneViewNonConst(mv, index = {";
for (int k = 0; k < outNumVecs - 1; ++k)
os << index[k] << ", ";
os << index[outNumVecs-1] << "}): There are " << outNumVecs
<< " indices to view, but only " << inNumVecs << " columns of mv.";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, os.str());
}
#ifdef TEUCHOS_DEBUG
// In debug mode, we perform more expensive tests of the index
// vector, to ensure all the elements are in range.
// Dereferencing the iterator is valid because index has length
// > 0.
const int minIndex = *std::min_element (index.begin(), index.end());
const int maxIndex = *std::max_element (index.begin(), index.end());
if (minIndex < 0)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneViewNonConst(mv, index = {";
for (int k = 0; k < outNumVecs - 1; ++k)
os << index[k] << ", ";
os << index[outNumVecs-1] << "}): Indices must be nonnegative, but "
"the smallest index " << minIndex << " is negative.";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, os.str());
}
if (maxIndex >= inNumVecs)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneViewNonConst(mv, index = {";
for (int k = 0; k < outNumVecs - 1; ++k)
os << index[k] << ", ";
os << index[outNumVecs-1] << "}): Indices must be strictly less than "
"the number of vectors " << inNumVecs << " in mv; the largest index "
<< maxIndex << " is out of bounds.";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, os.str());
}
#endif // TEUCHOS_DEBUG
// Cast to nonconst, because Epetra_MultiVector's constructor
// wants a nonconst int array argument. It doesn't actually
// change the entries of the array.
std::vector<int>& tmpind = const_cast< std::vector<int>& > (index);
return Teuchos::rcp (new Epetra_MultiVector (Epetra_DataAccess::View, mv, &tmpind[0], index.size()));
}
static Teuchos::RCP<Epetra_MultiVector>
CloneViewNonConst (Epetra_MultiVector& mv, const Teuchos::Range1D& index)
{
const bool validRange = index.size() > 0 &&
index.lbound() >= 0 &&
index.ubound() < mv.NumVectors();
if (! validRange)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<double,Epetra_MultiVector>::CloneView"
"NonConst(mv,index=[" << index.lbound() << ", " << index.ubound()
<< "]): ";
TEUCHOS_TEST_FOR_EXCEPTION(index.size() == 0, std::invalid_argument,
os.str() << "Column index range must be nonempty.");
TEUCHOS_TEST_FOR_EXCEPTION(index.lbound() < 0, std::invalid_argument,
os.str() << "Column index range must be nonnegative.");
TEUCHOS_TEST_FOR_EXCEPTION(index.ubound() >= mv.NumVectors(),
std::invalid_argument,
os.str() << "Column index range must not exceed "
"number of vectors " << mv.NumVectors() << " in "
"the input multivector.");
}
return Teuchos::rcp (new Epetra_MultiVector (Epetra_DataAccess::View, mv, index.lbound(), index.size()));
}
/*! \brief Creates a new const Epetra_MultiVector that shares the selected contents of \c mv (shallow copy).
The index of the \c numvecs vectors shallow copied from \c mv are indicated by the indices given in \c index.
\return Reference-counted pointer to the new const Epetra_MultiVector.
*/
static Teuchos::RCP<const Epetra_MultiVector>
CloneView (const Epetra_MultiVector& mv, const std::vector<int>& index)
{
const int inNumVecs = GetNumberVecs (mv);
const int outNumVecs = index.size();
// Simple, inexpensive tests of the index vector.
TEUCHOS_TEST_FOR_EXCEPTION(outNumVecs == 0, std::invalid_argument,
"Belos::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneView(mv, index = {}): The output view "
"must have at least one column.");
if (outNumVecs > inNumVecs)
{
std::ostringstream os;
os << "Belos::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneView(mv, index = {";
for (int k = 0; k < outNumVecs - 1; ++k)
os << index[k] << ", ";
os << index[outNumVecs-1] << "}): There are " << outNumVecs
<< " indices to view, but only " << inNumVecs << " columns of mv.";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, os.str());
}
#ifdef TEUCHOS_DEBUG
// In debug mode, we perform more expensive tests of the index
// vector, to ensure all the elements are in range.
// Dereferencing the iterator is valid because index has length
// > 0.
const int minIndex = *std::min_element (index.begin(), index.end());
const int maxIndex = *std::max_element (index.begin(), index.end());
if (minIndex < 0)
{
std::ostringstream os;
os << "Belos::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneView(mv, index = {";
for (int k = 0; k < outNumVecs - 1; ++k)
os << index[k] << ", ";
os << index[outNumVecs-1] << "}): Indices must be nonnegative, but "
"the smallest index " << minIndex << " is negative.";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, os.str());
}
if (maxIndex >= inNumVecs)
{
std::ostringstream os;
os << "Belos::MultiVecTraits<double,Epetra_MultiVector>::"
"CloneView(mv, index = {";
for (int k = 0; k < outNumVecs - 1; ++k)
os << index[k] << ", ";
os << index[outNumVecs-1] << "}): Indices must be strictly less than "
"the number of vectors " << inNumVecs << " in mv; the largest index "
<< maxIndex << " is out of bounds.";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, os.str());
}
#endif // TEUCHOS_DEBUG
// Cast to nonconst, because Epetra_MultiVector's constructor
// wants a nonconst int array argument. It doesn't actually
// change the entries of the array.
std::vector<int>& tmpind = const_cast< std::vector<int>& > (index);
return Teuchos::rcp (new Epetra_MultiVector (Epetra_DataAccess::View, mv, &tmpind[0], index.size()));
}
static Teuchos::RCP<Epetra_MultiVector>
CloneView (const Epetra_MultiVector& mv, const Teuchos::Range1D& index)
{
const bool validRange = index.size() > 0 &&
index.lbound() >= 0 &&
index.ubound() < mv.NumVectors();
if (! validRange)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<double,Epetra_MultiVector>::CloneView"
"(mv,index=[" << index.lbound() << ", " << index.ubound()
<< "]): ";
TEUCHOS_TEST_FOR_EXCEPTION(index.size() == 0, std::invalid_argument,
os.str() << "Column index range must be nonempty.");
TEUCHOS_TEST_FOR_EXCEPTION(index.lbound() < 0, std::invalid_argument,
os.str() << "Column index range must be nonnegative.");
TEUCHOS_TEST_FOR_EXCEPTION(index.ubound() >= mv.NumVectors(),
std::invalid_argument,
os.str() << "Column index range must not exceed "
"number of vectors " << mv.NumVectors() << " in "
"the input multivector.");
}
return Teuchos::rcp (new Epetra_MultiVector(Epetra_DataAccess::View, mv, index.lbound(), index.size()));
}
//@}
//! @name Attribute methods
//@{
//! Obtain the vector length of \c mv.
static ptrdiff_t GetGlobalLength( const Epetra_MultiVector& mv )
{
if (mv.Map().GlobalIndicesLongLong())
return static_cast<ptrdiff_t>( mv.GlobalLength64() );
else
return static_cast<ptrdiff_t>( mv.GlobalLength() );
}
//! Obtain the number of vectors in \c mv
static int GetNumberVecs( const Epetra_MultiVector& mv )
{ return mv.NumVectors(); }
static bool HasConstantStride( const Epetra_MultiVector& mv )
{ return mv.ConstantStride(); }
//@}
//! @name Update methods
//@{
/*! \brief Update \c mv with \f$ \alpha AB + \beta mv \f$.
*/
static void MvTimesMatAddMv( double alpha, const Epetra_MultiVector& A,
const Teuchos::SerialDenseMatrix<int,double>& B,
double beta, Epetra_MultiVector& mv )
{
Epetra_LocalMap LocalMap(B.numRows(), 0, mv.Map().Comm());
Epetra_MultiVector B_Pvec(Epetra_DataAccess::View, LocalMap, B.values(), B.stride(), B.numCols());
TEUCHOS_TEST_FOR_EXCEPTION( mv.Multiply( 'N', 'N', alpha, A, B_Pvec, beta )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvTimesMatAddMv call to Epetra_MultiVector::Multiply() returned a nonzero value.");
}
/*! \brief Replace \c mv with \f$\alpha A + \beta B\f$.
*/
static void MvAddMv( double alpha, const Epetra_MultiVector& A, double beta, const Epetra_MultiVector& B, Epetra_MultiVector& mv )
{
// epetra mv.Update(alpha,A,beta,B,gamma) will check
// alpha == 0.0
// and
// beta == 0.0
// and based on this will call
// mv.Update(beta,B,gamma)
// or
// mv.Update(alpha,A,gamma)
//
// mv.Update(alpha,A,gamma)
// will then check for one of
// gamma == 0
// or
// gamma == 1
// or
// alpha == 1
// in that order. however, it will not look for the combination
// alpha == 1 and gamma = 0
// which is a common use case when we wish to assign
// mv = A (in which case alpha == 1, beta == gamma == 0)
// or
// mv = B (in which case beta == 1, alpha == gamma == 0)
//
// therefore, we will check for these use cases ourselves
if (beta == 0.0) {
if (alpha == 1.0) {
// assign
mv = A;
}
else {
// single update
TEUCHOS_TEST_FOR_EXCEPTION( mv.Update( alpha, A, 0.0 )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvAddMv call to Epetra_MultiVector::Update(alpha,A,0.0) returned a nonzero value.");
}
}
else if (alpha == 0.0) {
if (beta == 1.0) {
// assign
mv = B;
}
else {
// single update
TEUCHOS_TEST_FOR_EXCEPTION( mv.Update( beta, B, 0.0 )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvAddMv call to Epetra_MultiVector::Update(beta,B,0.0) returned a nonzero value.");
}
}
else {
// double update
TEUCHOS_TEST_FOR_EXCEPTION( mv.Update( alpha, A, beta, B, 0.0 )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvAddMv call to Epetra_MultiVector::Update(alpha,A,beta,B,0.0) returned a nonzero value.");
}
}
/*! \brief Compute a dense matrix \c B through the matrix-matrix multiply \f$ \alpha A^Tmv \f$.
*/
static void MvTransMv( double alpha, const Epetra_MultiVector& A, const Epetra_MultiVector& mv, Teuchos::SerialDenseMatrix<int,double>& B
#ifdef HAVE_ANASAZI_EXPERIMENTAL
, ConjType conj = Anasazi::CONJ
#endif
)
{
Epetra_LocalMap LocalMap(B.numRows(), 0, mv.Map().Comm());
Epetra_MultiVector B_Pvec(Epetra_DataAccess::View, LocalMap, B.values(), B.stride(), B.numCols());
TEUCHOS_TEST_FOR_EXCEPTION( B_Pvec.Multiply( 'T', 'N', alpha, A, mv, 0.0 )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvTransMv call to Epetra_MultiVector::Multiply() returned a nonzero value.");
}
/*! \brief Compute a vector \c b where the components are the individual dot-products of the \c i-th columns of \c A and \c mv, i.e.\f$b[i] = A[i]^Tmv[i]\f$.
*/
static void MvDot( const Epetra_MultiVector& A, const Epetra_MultiVector& B, std::vector<double> &b
#ifdef HAVE_ANASAZI_EXPERIMENTAL
, ConjType conj = Anasazi::CONJ
#endif
)
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_TEST_FOR_EXCEPTION(A.NumVectors() != B.NumVectors(),std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::MvDot(A,B,b): A and B must have the same number of vectors.");
TEUCHOS_TEST_FOR_EXCEPTION(b.size() != (unsigned int)A.NumVectors(),std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::MvDot(A,B,b): b must have room for all dot products.");
#endif
TEUCHOS_TEST_FOR_EXCEPTION( A.Dot( B, &b[0] )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvDot(A,B,b) call to Epetra_MultiVector::Dot() returned a nonzero value.");
}
//@}
//! @name Norm method
//@{
/*! \brief Compute the 2-norm of each individual vector of \c mv.
Upon return, \c normvec[i] holds the value of \f$||mv_i||_2\f$, the \c i-th column of \c mv.
*/
static void MvNorm( const Epetra_MultiVector& mv, std::vector<double> &normvec )
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_TEST_FOR_EXCEPTION((unsigned int)mv.NumVectors() != normvec.size(),std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::MvNorm(mv,normvec): normvec must be the same size of mv.");
#endif
TEUCHOS_TEST_FOR_EXCEPTION( mv.Norm2(&normvec[0])!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvNorm call to Epetra_MultiVector::Norm2() returned a nonzero value.");
}
//@}
//! @name Initialization methods
//@{
/*! \brief Copy the vectors in \c A to a set of vectors in \c mv indicated by the indices given in \c index.
*/
static void
SetBlock (const Epetra_MultiVector& A,
const std::vector<int>& index,
Epetra_MultiVector& mv)
{
const int inNumVecs = GetNumberVecs (A);
const int outNumVecs = index.size();
// FIXME (mfh 13 Jan 2011) Belos allows A to have more columns
// than index.size(), in which case we just take the first
// index.size() columns of A. Anasazi requires that A have the
// same number of columns as index.size(). Changing Anasazi's
// behavior should not break existing Anasazi solvers, but the
// tests need to be done.
if (inNumVecs != outNumVecs)
{
std::ostringstream os;
os << "Belos::MultiVecTraits<double,Epetra_MultiVector>::"
"SetBlock(A, mv, index = {";
if (outNumVecs > 0)
{
for (int k = 0; k < outNumVecs - 1; ++k)
os << index[k] << ", ";
os << index[outNumVecs-1];
}
os << "}): A has only " << inNumVecs << " columns, but there are "
<< outNumVecs << " indices in the index vector.";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, os.str());
}
// Make a view of the columns of mv indicated by the index std::vector.
Teuchos::RCP<Epetra_MultiVector> mv_view = CloneViewNonConst (mv, index);
// View of columns [0, outNumVecs-1] of the source multivector A.
// If A has fewer columns than mv_view, then create a view of
// the first outNumVecs columns of A.
Teuchos::RCP<const Epetra_MultiVector> A_view;
if (outNumVecs == inNumVecs)
A_view = Teuchos::rcpFromRef (A); // Const, non-owning RCP
else
A_view = CloneView (A, Teuchos::Range1D(0, outNumVecs - 1));
// Assignment calls Epetra_MultiVector::Assign(), which deeply
// copies the data directly, ignoring the underlying
// Epetra_Map(s). If A and mv don't have the same data
// distribution (Epetra_Map), this may result in incorrect or
// undefined behavior. Epetra_MultiVector::Update() also
// ignores the Epetra_Maps, so we might as well just use the
// (perhaps slightly cheaper) Assign() method via operator=().
*mv_view = *A_view;
}
static void
SetBlock (const Epetra_MultiVector& A,
const Teuchos::Range1D& index,
Epetra_MultiVector& mv)
{
const int numColsA = A.NumVectors();
const int numColsMv = mv.NumVectors();
// 'index' indexes into mv; it's the index set of the target.
const bool validIndex = index.lbound() >= 0 && index.ubound() < numColsMv;
// We can't take more columns out of A than A has.
const bool validSource = index.size() <= numColsA;
if (! validIndex || ! validSource)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<double, Epetra_MultiVector>::SetBlock"
"(A, index=[" << index.lbound() << ", " << index.ubound() << "], "
"mv): ";
TEUCHOS_TEST_FOR_EXCEPTION(index.lbound() < 0, std::invalid_argument,
os.str() << "Range lower bound must be nonnegative.");
TEUCHOS_TEST_FOR_EXCEPTION(index.ubound() >= numColsMv, std::invalid_argument,
os.str() << "Range upper bound must be less than "
"the number of columns " << numColsA << " in the "
"'mv' output argument.");
TEUCHOS_TEST_FOR_EXCEPTION(index.size() > numColsA, std::invalid_argument,
os.str() << "Range must have no more elements than"
" the number of columns " << numColsA << " in the "
"'A' input argument.");
TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "Should never get here!");
}
// View of columns [index.lbound(), index.ubound()] of the
// target multivector mv. We avoid view creation overhead by
// only creating a view if the index range is different than [0,
// (# columns in mv) - 1].
Teuchos::RCP<Epetra_MultiVector> mv_view;
if (index.lbound() == 0 && index.ubound()+1 == numColsMv)
mv_view = Teuchos::rcpFromRef (mv); // Non-const, non-owning RCP
else
mv_view = CloneViewNonConst (mv, index);
// View of columns [0, index.size()-1] of the source multivector
// A. If A has fewer columns than mv_view, then create a view
// of the first index.size() columns of A.
Teuchos::RCP<const Epetra_MultiVector> A_view;
if (index.size() == numColsA)
A_view = Teuchos::rcpFromRef (A); // Const, non-owning RCP
else
A_view = CloneView (A, Teuchos::Range1D(0, index.size()-1));
// Assignment calls Epetra_MultiVector::Assign(), which deeply
// copies the data directly, ignoring the underlying
// Epetra_Map(s). If A and mv don't have the same data
// distribution (Epetra_Map), this may result in incorrect or
// undefined behavior. Epetra_MultiVector::Update() also
// ignores the Epetra_Maps, so we might as well just use the
// (perhaps slightly cheaper) Assign() method via operator=().
*mv_view = *A_view;
}
static void
Assign (const Epetra_MultiVector& A,
Epetra_MultiVector& mv)
{
const int numColsA = GetNumberVecs (A);
const int numColsMv = GetNumberVecs (mv);
if (numColsA > numColsMv)
{
std::ostringstream os;
os << "Anasazi::MultiVecTraits<double, Epetra_MultiVector>::Assign"
"(A, mv): ";
TEUCHOS_TEST_FOR_EXCEPTION(numColsA > numColsMv, std::invalid_argument,
os.str() << "Input multivector 'A' has "
<< numColsA << " columns, but output multivector "
"'mv' has only " << numColsMv << " columns.");
TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "Should never get here!");
}
// View of the first [0, numColsA-1] columns of mv.
Teuchos::RCP<Epetra_MultiVector> mv_view;
if (numColsMv == numColsA)
mv_view = Teuchos::rcpFromRef (mv); // Non-const, non-owning RCP
else // numColsMv > numColsA
mv_view = CloneView (mv, Teuchos::Range1D(0, numColsA - 1));
// Assignment calls Epetra_MultiVector::Assign(), which deeply
// copies the data directly, ignoring the underlying
// Epetra_Map(s). If A and mv don't have the same data
// distribution (Epetra_Map), this may result in incorrect or
// undefined behavior. Epetra_MultiVector::Update() also
// ignores the Epetra_Maps, so we might as well just use the
// (perhaps slightly cheaper) Assign() method via operator=().
*mv_view = A;
}
/*! \brief Scale each element of the vectors in \c mv with \c alpha.
*/
static void MvScale ( Epetra_MultiVector& mv, double alpha )
{
TEUCHOS_TEST_FOR_EXCEPTION( mv.Scale( alpha )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvScale call to Epetra_MultiVector::Scale(mv,double alpha) returned a nonzero value.");
}
/*! \brief Scale each element of the \c i-th vector in \c mv with \c alpha[i].
*/
static void MvScale ( Epetra_MultiVector& mv, const std::vector<double>& alpha )
{
// Check to make sure the vector is as long as the multivector has columns.
int numvecs = mv.NumVectors();
#ifdef TEUCHOS_DEBUG
TEUCHOS_TEST_FOR_EXCEPTION( alpha.size() != (unsigned int)numvecs, std::invalid_argument,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvScale(mv,vector alpha): size of alpha inconsistent with number of vectors in mv.")
#endif
for (int i=0; i<numvecs; i++) {
TEUCHOS_TEST_FOR_EXCEPTION( mv(i)->Scale(alpha[i])!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvScale call to Epetra_MultiVector::Scale() returned a nonzero value.");
}
}
/*! \brief Replace the vectors in \c mv with random vectors.
*/
static void MvRandom( Epetra_MultiVector& mv )
{
TEUCHOS_TEST_FOR_EXCEPTION( mv.Random()!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvRandom call to Epetra_MultiVector::Random() returned a nonzero value.");
}
/*! \brief Replace each element of the vectors in \c mv with \c alpha.
*/
static void MvInit( Epetra_MultiVector& mv, double alpha = Teuchos::ScalarTraits<double>::zero() )
{
TEUCHOS_TEST_FOR_EXCEPTION( mv.PutScalar(alpha)!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvInit call to Epetra_MultiVector::PutScalar() returned a nonzero value.");
}
//@}
//! @name Print method
//@{
/*! \brief Print the \c mv multi-vector to the \c os output stream.
*/
static void MvPrint( const Epetra_MultiVector& mv, std::ostream& os )
{ os << mv << std::endl; }
//@}
#if defined(HAVE_ANASAZI_TPETRA) && defined(HAVE_ANASAZI_TSQR)
# if defined(HAVE_TPETRA_EPETRA)
/// \typedef tsqr_adaptor_type
/// \brief TsqrAdaptor specialization for Epetra_MultiVector
///
/// \note This lives in Tpetra, for various hackish reasons.
///
typedef Epetra::TsqrAdaptor tsqr_adaptor_type;
# endif // defined(HAVE_TPETRA_EPETRA)
#endif // defined(HAVE_ANASAZI_TPETRA) && defined(HAVE_ANASAZI_TSQR)
};
////////////////////////////////////////////////////////////////////
//
// Implementation of the Anasazi::OperatorTraits for Epetra::Operator.
//
////////////////////////////////////////////////////////////////////
/*!
\brief Template specialization of Anasazi::OperatorTraits class using the Epetra_Operator virtual base class and
Epetra_MultiVector class.
This interface will ensure that any Epetra_Operator and Epetra_MultiVector will be accepted by the Anasazi
templated solvers.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
template <>
class OperatorTraits < double, Epetra_MultiVector, Epetra_Operator >
{
public:
/*! \brief This method takes the Epetra_MultiVector \c x and
applies the Epetra_Operator \c Op to it resulting in the Epetra_MultiVector \c y.
*/
static void Apply ( const Epetra_Operator& Op,
const Epetra_MultiVector& x,
Epetra_MultiVector& y )
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_TEST_FOR_EXCEPTION(x.NumVectors() != y.NumVectors(),std::invalid_argument,
"Anasazi::OperatorTraits<double,Epetra_MultiVector,Epetra_Operator>::Apply(Op,x,y): x and y must have the same number of columns.");
#endif
int ret = Op.Apply(x,y);
TEUCHOS_TEST_FOR_EXCEPTION(ret != 0, OperatorError,
"Anasazi::OperatorTraits<double,Epetra_Multivector,Epetra_Operator>::Apply(): Error in Epetra_Operator::Apply(). Code " << ret);
}
};
} // end of Anasazi namespace
#endif
// end of file ANASAZI_EPETRA_ADAPTER_HPP
|