/usr/include/trilinos/AnasaziEigenproblem.hpp is in libtrilinos-anasazi-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef ANASAZI_EIGENPROBLEM_H
#define ANASAZI_EIGENPROBLEM_H
/*! \file AnasaziEigenproblem.hpp
\brief Abstract base class which defines the interface required by an eigensolver and
status test class to compute solutions to an eigenproblem
*/
#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_RCP.hpp"
/*! \class Anasazi::Eigenproblem
\brief This class defines the interface required by an eigensolver and status
test class to compute solutions to an eigenproblem.
*/
namespace Anasazi {
template<class ScalarType, class MV, class OP>
class Eigenproblem {
public:
//! @name Constructors/Destructor
//@{
//! Empty constructor
Eigenproblem() {};
//! Destructor.
virtual ~Eigenproblem() {};
//@}
//! @name Set Methods
//@{
/*! \brief Set the operator for which eigenvalues will be computed.
*
* \note This may be different from the \c A if a spectral transformation
* is employed. For example, this operator may apply the operation
* \f$(A-\sigma I)^{-1}\f$ if you are looking for eigenvalues of \c A
* around \f$\sigma\f$.
*/
virtual void setOperator( const Teuchos::RCP<const OP> &Op ) = 0;
//! \brief Set the operator \c A of the eigenvalue problem \f$Ax=\lambda Mx\f$.
virtual void setA( const Teuchos::RCP<const OP> &A ) = 0;
//! \brief Set the operator \c M of the eigenvalue problem \f$Ax=\lambda Mx\f$.
virtual void setM( const Teuchos::RCP<const OP> &M ) = 0;
//! \brief Set the preconditioner for this eigenvalue problem \f$Ax=\lambda Mx\f$.
virtual void setPrec( const Teuchos::RCP<const OP> &Prec ) = 0;
/*! \brief Set the initial guess.
*
* \note This multivector should have the same number of columns as the blocksize.
*/
virtual void setInitVec( const Teuchos::RCP<MV> &InitVec ) = 0;
/*! \brief Set auxiliary vectors.
*
* \note This multivector can have any number of columns, and most likely
* will contain vectors that will be used by the eigensolver to
* orthogonalize against.
*/
virtual void setAuxVecs( const Teuchos::RCP<const MV> &AuxVecs ) = 0;
//! The number of eigenvalues (NEV) that are requested.
virtual void setNEV( int nev ) = 0;
/*! \brief Specify the symmetry of the eigenproblem.
*
* This knowledge may allow the solver to take advantage of the eigenproblems' symmetry.
* Some computational work may be avoided by setting this properly.
*/
virtual void setHermitian( bool isSym ) = 0;
/*! \brief Specify that this eigenproblem is fully defined.
*
* This routine serves multiple purpose:
* <ul>
* <li> sanity check that the eigenproblem has been fully and consistently defined
* <li> opportunity for the eigenproblem to allocate internal storage for eigenvalues
* and eigenvectors (to be used by eigensolvers and solver managers)
* </ul>
*
* \note The user MUST call this routine before they send the eigenproblem to any solver or solver manager.
*
* \returns \c true signifies success, \c false signifies error.
*/
virtual bool setProblem() = 0;
/*! \brief Set the solution to the eigenproblem.
*
* This mechanism allows an Eigensolution struct to be associated with an Eigenproblem object.
* setSolution() is usually called by a solver manager at the end of its SolverManager::solve()
* routine.
*/
virtual void setSolution(const Eigensolution<ScalarType,MV> &sol) = 0;
//@}
//! @name Accessor Methods
//@{
//! Get a pointer to the operator for which eigenvalues will be computed.
virtual Teuchos::RCP<const OP> getOperator() const = 0;
//! Get a pointer to the operator \c A of the eigenproblem \f$AX=\lambda Mx\f$.
virtual Teuchos::RCP<const OP> getA() const = 0;
//! Get a pointer to the operator \c M of the eigenproblem \f$AX=\lambda Mx\f$.
virtual Teuchos::RCP<const OP> getM() const = 0;
//! Get a pointer to the preconditioner.
virtual Teuchos::RCP<const OP> getPrec() const = 0;
//! Get a pointer to the initial vector
virtual Teuchos::RCP<const MV> getInitVec() const = 0;
//! Get a pointer to the auxiliary vector
virtual Teuchos::RCP<const MV> getAuxVecs() const = 0;
//! Get the number of eigenvalues (NEV) that are required by this eigenproblem.
virtual int getNEV() const = 0;
//! Get the symmetry information for this eigenproblem.
virtual bool isHermitian() const = 0;
//! If the problem has been set, this method will return true.
virtual bool isProblemSet() const = 0;
/*! \brief Get the solution to the eigenproblem.
*
* There is no computation associated with this method. It only provides a
* mechanism for associating an Eigensolution with a Eigenproblem.
*/
virtual const Eigensolution<ScalarType,MV> & getSolution() const = 0;
//@}
};
} // end Anasazi namespace
#endif
// end AnasaziEigenproblem.hpp
|