/usr/include/trilinos/AnasaziBlockKrylovSchurSolMgr.hpp is in libtrilinos-anasazi-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef ANASAZI_BLOCK_KRYLOV_SCHUR_SOLMGR_HPP
#define ANASAZI_BLOCK_KRYLOV_SCHUR_SOLMGR_HPP
/// \file AnasaziBlockKrylovSchurSolMgr.hpp
/// \brief The Anasazi::BlockKrylovSchurSolMgr class provides a user
/// interface for the block Krylov-Schur eigensolver.
#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "AnasaziEigenproblem.hpp"
#include "AnasaziSolverManager.hpp"
#include "AnasaziSolverUtils.hpp"
#include "AnasaziBlockKrylovSchur.hpp"
#include "AnasaziBasicSort.hpp"
#include "AnasaziSVQBOrthoManager.hpp"
#include "AnasaziBasicOrthoManager.hpp"
#include "AnasaziStatusTestResNorm.hpp"
#include "AnasaziStatusTestWithOrdering.hpp"
#include "AnasaziStatusTestCombo.hpp"
#include "AnasaziStatusTestOutput.hpp"
#include "AnasaziBasicOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_TimeMonitor.hpp"
/** \example BlockKrylovSchur/BlockKrylovSchurEpetraEx.cpp
\brief Use Anasazi::BlockKrylovSchurSolMgr to solve a standard
(not generalized) eigenvalue problem, using Epetra data
structures.
*/
/// \example BlockKrylovSchur/BlockKrylovSchurEpetraExGenAmesos.cpp
/// \brief Compute smallest eigenvalues of a generalized eigenvalue
/// problem, using block Krylov-Schur with Epetra and an Amesos direct
/// solver.
///
/// This example computes the eigenvalues of smallest magnitude of a
/// generalized eigenvalue problem \f$K x = \lambda M x\f$, using
/// Anasazi's implementation of the block Krylov-Schur method, with
/// Epetra linear algebra and a direct solver from the Amesos package.
///
/// Anasazi computes the smallest-magnitude eigenvalues using a
/// shift-and-invert strategy. For simplicity, this example uses a
/// shift of zero. It illustrates the general pattern for using
/// Anasazi for this problem:
///
/// 1. Construct an "operator" A such that \f$Az = K^{-1} M z\f$.
/// 2. Use Anasazi to solve \f$Az = \sigma z\f$, which is a spectral
/// transformation of the original problem \f$K x = \lambda M x\f$.
/// 3. The eigenvalues \f$\lambda\f$ of the original problem are the
/// inverses of the eigenvalues \f$\sigma\f$ of the transformed
/// problem.
///
/// In the example, the "operator A such that \f$A z = K^{-1} M z\f$"
/// is a subclass of Epetra_Operator. The Apply method of that
/// operator takes the vector b, and computes \f$x = K^{-1} M b\f$.
/// It does so first by applying the matrix M, and then by solving the
/// linear system \f$K x = M b\f$ for x. Trilinos implements many
/// different ways to solve linear systems. The example uses the
/// sparse direct solver KLU to do so. Trilinos' Amesos package has
/// an interface to KLU.
/** \example BlockKrylovSchur/BlockKrylovSchurEpetraExGenAztecOO.cpp
\brief Use Anasazi::BlockKrylovSchurSolMgr to solve a generalized
eigenvalue problem, using Epetra data stuctures and the AztecOO
package of iterative linear solvers and preconditioners.
*/
/** \example BlockKrylovSchur/BlockKrylovSchurEpetraExGenBelos.cpp
\brief Use Anasazi::BlockKrylovSchurSolMgr to solve a generalized
eigenvalue problem, using Epetra data stuctures and the Belos
iterative linear solver package.
*/
/** \example BlockKrylovSchur/BlockKrylovSchurEpetraExSVD.cpp
\brief Use Anasazi::BlockKrylovSchurSolMgr to compute a singular
value decomposition (SVD), using Epetra data structures.
*/
namespace Anasazi {
/*! \class BlockKrylovSchurSolMgr
*
* \brief The Anasazi::BlockKrylovSchurSolMgr provides a flexible solver manager over the BlockKrylovSchur eigensolver.
*
* The solver manager provides to the solver a StatusTestCombo object constructed as follows:<br>
* <tt>combo = globaltest OR debugtest</tt><br>
* where
* - \c globaltest terminates computation when global convergence has been detected.<br>
* It is encapsulated in a StatusTestWithOrdering object, to ensure that computation is terminated
* only after the most significant eigenvalues/eigenvectors have met the convergence criteria.<br>
* If not specified via setGlobalStatusTest(), this test is a StatusTestResNorm object which tests the
* 2-norms of the Ritz residuals relative to the Ritz values.
* - \c debugtest allows a user to specify additional monitoring of the iteration, encapsulated in a StatusTest object<br>
* If not specified via setDebugStatusTest(), \c debugtest is ignored.<br>
* In most cases, it should return ::Failed; if it returns ::Passed, solve() will throw an AnasaziError exception.
*
* Additionally, the solver manager will terminate solve() after a specified number of restarts.
*
* Much of this behavior is controlled via parameters and options passed to the
* solver manager. For more information, see BlockKrylovSchurSolMgr().
\ingroup anasazi_solver_framework
\author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, Heidi Thornquist
*/
template<class ScalarType, class MV, class OP>
class BlockKrylovSchurSolMgr : public SolverManager<ScalarType,MV,OP> {
private:
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MT;
public:
//! @name Constructors/Destructor
//@{
/*! \brief Basic constructor for BlockKrylovSchurSolMgr.
*
* This constructor accepts the Eigenproblem to be solved in addition
* to a parameter list of options for the solver manager. These options include the following:
* - Solver parameters
* - \c "Which" - a \c string specifying the desired eigenvalues: SM, LM, SR or LR. Default: "LM"
* - \c "Block Size" - a \c int specifying the block size to be used by the underlying block Krylov-Schur solver. Default: 1
* - \c "Num Blocks" - a \c int specifying the number of blocks allocated for the Krylov basis. Default: 3*nev
* - \c "Extra NEV Blocks" - a \c int specifying the number of extra blocks the solver should keep in addition to those
required to compute the number of eigenvalues requested. Default: 0
* - \c "Maximum Restarts" - a \c int specifying the maximum number of restarts the underlying solver is allowed to perform. Default: 20
* - \c "Orthogonalization" - a \c string specifying the desired orthogonalization: DGKS and SVQB. Default: "SVQB"
* - \c "Verbosity" - a sum of MsgType specifying the verbosity. Default: Anasazi::Errors
* - Convergence parameters
* - \c "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide convergence. Default: machine precision.
* - \c "Relative Convergence Tolerance" - a \c bool specifying whether residuals norms should be scaled by their eigenvalues for the purposing of deciding convergence. Default: true
*/
BlockKrylovSchurSolMgr( const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
Teuchos::ParameterList &pl );
//! Destructor.
virtual ~BlockKrylovSchurSolMgr() {};
//@}
//! @name Accessor methods
//@{
//! Return the eigenvalue problem.
const Eigenproblem<ScalarType,MV,OP>& getProblem() const {
return *_problem;
}
//! Get the iteration count for the most recent call to \c solve().
int getNumIters() const {
return _numIters;
}
/*! \brief Return the Ritz values from the most recent solve.
*/
std::vector<Value<ScalarType> > getRitzValues() const {
std::vector<Value<ScalarType> > ret( _ritzValues );
return ret;
}
/*! \brief Return the timers for this object.
*
* The timers are ordered as follows:
* - time spent in solve() routine
* - time spent restarting
*/
Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
return Teuchos::tuple(_timerSolve, _timerRestarting);
}
//@}
//! @name Solver application methods
//@{
/*! \brief This method performs possibly repeated calls to the underlying eigensolver's iterate() routine
* until the problem has been solved (as decided by the solver manager) or the solver manager decides to
* quit.
*
* This method calls BlockKrylovSchur::iterate(), which will return either because a specially constructed status test evaluates to ::Passed
* or an exception is thrown.
*
* A return from BlockKrylovSchur::iterate() signifies one of the following scenarios:
* - the maximum number of restarts has been exceeded. In this scenario, the solver manager will place\n
* all converged eigenpairs into the eigenproblem and return ::Unconverged.
* - global convergence has been met. In this case, the most significant NEV eigenpairs in the solver and locked storage \n
* have met the convergence criterion. (Here, NEV refers to the number of eigenpairs requested by the Eigenproblem.) \n
* In this scenario, the solver manager will return ::Converged.
*
* \returns ::ReturnType specifying:
* - ::Converged: the eigenproblem was solved to the specification required by the solver manager.
* - ::Unconverged: the eigenproblem was not solved to the specification desired by the solver manager.
*/
ReturnType solve();
//! Set the status test defining global convergence.
void setGlobalStatusTest(const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &global);
//! Get the status test defining global convergence.
const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > & getGlobalStatusTest() const;
//! Set the status test for debugging.
void setDebugStatusTest(const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &debug);
//! Get the status test for debugging.
const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > & getDebugStatusTest() const;
//@}
private:
Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > _problem;
Teuchos::RCP<SortManager<MagnitudeType> > _sort;
std::string _whch, _ortho;
MagnitudeType _ortho_kappa;
MagnitudeType _convtol;
int _maxRestarts;
bool _relconvtol,_conjSplit;
int _blockSize, _numBlocks, _stepSize, _nevBlocks, _xtra_nevBlocks;
int _numIters;
int _verbosity;
bool _inSituRestart, _dynXtraNev;
std::vector<Value<ScalarType> > _ritzValues;
int _printNum;
Teuchos::RCP<Teuchos::Time> _timerSolve, _timerRestarting;
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > globalTest_;
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > debugTest_;
};
// Constructor
template<class ScalarType, class MV, class OP>
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::BlockKrylovSchurSolMgr(
const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
Teuchos::ParameterList &pl ) :
_problem(problem),
_whch("LM"),
_ortho("SVQB"),
_ortho_kappa(-1.0),
_convtol(0),
_maxRestarts(20),
_relconvtol(true),
_conjSplit(false),
_blockSize(0),
_numBlocks(0),
_stepSize(0),
_nevBlocks(0),
_xtra_nevBlocks(0),
_numIters(0),
_verbosity(Anasazi::Errors),
_inSituRestart(false),
_dynXtraNev(false),
_printNum(-1)
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
,_timerSolve(Teuchos::TimeMonitor::getNewTimer("Anasazi: BlockKrylovSchurSolMgr::solve()")),
_timerRestarting(Teuchos::TimeMonitor::getNewTimer("Anasazi: BlockKrylovSchurSolMgr restarting"))
#endif
{
TEUCHOS_TEST_FOR_EXCEPTION(_problem == Teuchos::null, std::invalid_argument, "Problem not given to solver manager.");
TEUCHOS_TEST_FOR_EXCEPTION(!_problem->isProblemSet(), std::invalid_argument, "Problem not set.");
TEUCHOS_TEST_FOR_EXCEPTION(_problem->getInitVec() == Teuchos::null, std::invalid_argument, "Problem does not contain initial vectors to clone from.");
const int nev = _problem->getNEV();
// convergence tolerance
_convtol = pl.get("Convergence Tolerance",MT::prec());
_relconvtol = pl.get("Relative Convergence Tolerance",_relconvtol);
// maximum number of restarts
_maxRestarts = pl.get("Maximum Restarts",_maxRestarts);
// block size: default is 1
_blockSize = pl.get("Block Size",1);
TEUCHOS_TEST_FOR_EXCEPTION(_blockSize <= 0, std::invalid_argument,
"Anasazi::BlockKrylovSchurSolMgr: \"Block Size\" must be strictly positive.");
// set the number of blocks we need to save to compute the nev eigenvalues of interest.
_xtra_nevBlocks = pl.get("Extra NEV Blocks",0);
if (nev%_blockSize) {
_nevBlocks = nev/_blockSize + 1;
} else {
_nevBlocks = nev/_blockSize;
}
// determine if we should use the dynamic scheme for selecting the current number of retained eigenvalues.
// NOTE: This employs a technique similar to ARPACK in that it increases the number of retained eigenvalues
// by one for every converged eigenpair to accelerate convergence.
if (pl.isParameter("Dynamic Extra NEV")) {
if (Teuchos::isParameterType<bool>(pl,"Dynamic Extra NEV")) {
_dynXtraNev = pl.get("Dynamic Extra NEV",_dynXtraNev);
} else {
_dynXtraNev = ( Teuchos::getParameter<int>(pl,"Dynamic Extra NEV") != 0 );
}
}
_numBlocks = pl.get("Num Blocks",3*_nevBlocks);
TEUCHOS_TEST_FOR_EXCEPTION(_numBlocks <= _nevBlocks, std::invalid_argument,
"Anasazi::BlockKrylovSchurSolMgr: \"Num Blocks\" must be strictly positive and large enough to compute the requested eigenvalues.");
TEUCHOS_TEST_FOR_EXCEPTION(static_cast<ptrdiff_t>(_numBlocks)*_blockSize > MVT::GetGlobalLength(*_problem->getInitVec()),
std::invalid_argument,
"Anasazi::BlockKrylovSchurSolMgr: Potentially impossible orthogonality requests. Reduce basis size.");
// step size: the default is _maxRestarts*_numBlocks, so that Ritz values are only computed every restart.
if (_maxRestarts) {
_stepSize = pl.get("Step Size", (_maxRestarts+1)*(_numBlocks+1));
} else {
_stepSize = pl.get("Step Size", _numBlocks+1);
}
TEUCHOS_TEST_FOR_EXCEPTION(_stepSize < 1, std::invalid_argument,
"Anasazi::BlockKrylovSchurSolMgr: \"Step Size\" must be strictly positive.");
// get the sort manager
if (pl.isParameter("Sort Manager")) {
_sort = Teuchos::getParameter<Teuchos::RCP<Anasazi::SortManager<MagnitudeType> > >(pl,"Sort Manager");
} else {
// which values to solve for
_whch = pl.get("Which",_whch);
TEUCHOS_TEST_FOR_EXCEPTION(_whch != "SM" && _whch != "LM" && _whch != "SR" && _whch != "LR" && _whch != "SI" && _whch != "LI",
std::invalid_argument, "Invalid sorting string.");
_sort = Teuchos::rcp( new BasicSort<MagnitudeType>(_whch) );
}
// which orthogonalization to use
_ortho = pl.get("Orthogonalization",_ortho);
if (_ortho != "DGKS" && _ortho != "SVQB") {
_ortho = "SVQB";
}
// which orthogonalization constant to use
_ortho_kappa = pl.get("Orthogonalization Constant",_ortho_kappa);
// verbosity level
if (pl.isParameter("Verbosity")) {
if (Teuchos::isParameterType<int>(pl,"Verbosity")) {
_verbosity = pl.get("Verbosity", _verbosity);
} else {
_verbosity = (int)Teuchos::getParameter<Anasazi::MsgType>(pl,"Verbosity");
}
}
// restarting technique: V*Q or applyHouse(V,H,tau)
if (pl.isParameter("In Situ Restarting")) {
if (Teuchos::isParameterType<bool>(pl,"In Situ Restarting")) {
_inSituRestart = pl.get("In Situ Restarting",_inSituRestart);
} else {
_inSituRestart = ( Teuchos::getParameter<int>(pl,"In Situ Restarting") != 0 );
}
}
_printNum = pl.get<int>("Print Number of Ritz Values",-1);
}
// solve()
template<class ScalarType, class MV, class OP>
ReturnType
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::solve() {
const int nev = _problem->getNEV();
ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
Teuchos::BLAS<int,ScalarType> blas;
Teuchos::LAPACK<int,ScalarType> lapack;
typedef SolverUtils<ScalarType,MV,OP> msutils;
//////////////////////////////////////////////////////////////////////////////////////
// Output manager
Teuchos::RCP<BasicOutputManager<ScalarType> > printer = Teuchos::rcp( new BasicOutputManager<ScalarType>(_verbosity) );
//////////////////////////////////////////////////////////////////////////////////////
// Status tests
//
// convergence
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > convtest;
if (globalTest_ == Teuchos::null) {
convtest = Teuchos::rcp( new StatusTestResNorm<ScalarType,MV,OP>(_convtol,nev,RITZRES_2NORM,_relconvtol) );
}
else {
convtest = globalTest_;
}
Teuchos::RCP<StatusTestWithOrdering<ScalarType,MV,OP> > ordertest
= Teuchos::rcp( new StatusTestWithOrdering<ScalarType,MV,OP>(convtest,_sort,nev) );
// for a non-short-circuited OR test, the order doesn't matter
Teuchos::Array<Teuchos::RCP<StatusTest<ScalarType,MV,OP> > > alltests;
alltests.push_back(ordertest);
if (debugTest_ != Teuchos::null) alltests.push_back(debugTest_);
Teuchos::RCP<StatusTestCombo<ScalarType,MV,OP> > combotest
= Teuchos::rcp( new StatusTestCombo<ScalarType,MV,OP>( StatusTestCombo<ScalarType,MV,OP>::OR, alltests) );
// printing StatusTest
Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputtest;
if ( printer->isVerbosity(Debug) ) {
outputtest = Teuchos::rcp( new StatusTestOutput<ScalarType,MV,OP>( printer,combotest,1,Passed+Failed+Undefined ) );
}
else {
outputtest = Teuchos::rcp( new StatusTestOutput<ScalarType,MV,OP>( printer,combotest,1,Passed ) );
}
//////////////////////////////////////////////////////////////////////////////////////
// Orthomanager
Teuchos::RCP<OrthoManager<ScalarType,MV> > ortho;
if (_ortho=="SVQB") {
ortho = Teuchos::rcp( new SVQBOrthoManager<ScalarType,MV,OP>(_problem->getM()) );
} else if (_ortho=="DGKS") {
if (_ortho_kappa <= 0) {
ortho = Teuchos::rcp( new BasicOrthoManager<ScalarType,MV,OP>(_problem->getM()) );
}
else {
ortho = Teuchos::rcp( new BasicOrthoManager<ScalarType,MV,OP>(_problem->getM(),_ortho_kappa) );
}
} else {
TEUCHOS_TEST_FOR_EXCEPTION(_ortho!="SVQB"&&_ortho!="DGKS",std::logic_error,"Anasazi::BlockKrylovSchurSolMgr::solve(): Invalid orthogonalization type.");
}
//////////////////////////////////////////////////////////////////////////////////////
// Parameter list
Teuchos::ParameterList plist;
plist.set("Block Size",_blockSize);
plist.set("Num Blocks",_numBlocks);
plist.set("Step Size",_stepSize);
if (_printNum == -1) {
plist.set("Print Number of Ritz Values",_nevBlocks*_blockSize);
}
else {
plist.set("Print Number of Ritz Values",_printNum);
}
//////////////////////////////////////////////////////////////////////////////////////
// BlockKrylovSchur solver
Teuchos::RCP<BlockKrylovSchur<ScalarType,MV,OP> > bks_solver
= Teuchos::rcp( new BlockKrylovSchur<ScalarType,MV,OP>(_problem,_sort,printer,outputtest,ortho,plist) );
// set any auxiliary vectors defined in the problem
Teuchos::RCP< const MV > probauxvecs = _problem->getAuxVecs();
if (probauxvecs != Teuchos::null) {
bks_solver->setAuxVecs( Teuchos::tuple< Teuchos::RCP<const MV> >(probauxvecs) );
}
// Create workspace for the Krylov basis generated during a restart
// Need at most (_nevBlocks*_blockSize+1) for the updated factorization and another block for the current factorization residual block (F).
// ---> (_nevBlocks*_blockSize+1) + _blockSize
// If Hermitian, this becomes _nevBlocks*_blockSize + _blockSize
// we only need this if there is the possibility of restarting, ex situ
// Maximum allowable extra vectors that BKS can keep to accelerate convergence
int maxXtraBlocks = 0;
if ( _dynXtraNev ) maxXtraBlocks = ( ( bks_solver->getMaxSubspaceDim() - nev ) / _blockSize ) / 2;
Teuchos::RCP<MV> workMV;
if (_maxRestarts > 0) {
if (_inSituRestart==true) {
// still need one work vector for applyHouse()
workMV = MVT::Clone( *_problem->getInitVec(), 1 );
}
else { // inSituRestart == false
if (_problem->isHermitian()) {
workMV = MVT::Clone( *_problem->getInitVec(), (_nevBlocks+maxXtraBlocks)*_blockSize + _blockSize );
} else {
// Increase workspace by 1 because of potential complex conjugate pairs on the Ritz vector boundary
workMV = MVT::Clone( *_problem->getInitVec(), (_nevBlocks+maxXtraBlocks)*_blockSize + 1 + _blockSize );
}
}
} else {
workMV = Teuchos::null;
}
// go ahead and initialize the solution to nothing in case we throw an exception
Eigensolution<ScalarType,MV> sol;
sol.numVecs = 0;
_problem->setSolution(sol);
int numRestarts = 0;
int cur_nevBlocks = 0;
// enter solve() iterations
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor slvtimer(*_timerSolve);
#endif
// tell bks_solver to iterate
while (1) {
try {
bks_solver->iterate();
////////////////////////////////////////////////////////////////////////////////////
//
// check convergence first
//
////////////////////////////////////////////////////////////////////////////////////
if ( ordertest->getStatus() == Passed ) {
// we have convergence
// ordertest->whichVecs() tells us which vectors from solver state are the ones we want
// ordertest->howMany() will tell us how many
break;
}
////////////////////////////////////////////////////////////////////////////////////
//
// check for restarting, i.e. the subspace is full
//
////////////////////////////////////////////////////////////////////////////////////
// this is for the Hermitian case, or non-Hermitian conjugate split situation.
// --> for the Hermitian case the current subspace dimension needs to match the maximum subspace dimension
// --> for the non-Hermitian case:
// --> if a conjugate pair was detected in the previous restart then the current subspace dimension needs to match the
// maximum subspace dimension (the BKS solver keeps one extra vector if the problem is non-Hermitian).
// --> if a conjugate pair was not detected in the previous restart then the current subspace dimension will be one less
// than the maximum subspace dimension.
else if ( (bks_solver->getCurSubspaceDim() == bks_solver->getMaxSubspaceDim()) ||
(!_problem->isHermitian() && !_conjSplit && (bks_solver->getCurSubspaceDim()+1 == bks_solver->getMaxSubspaceDim())) ) {
// Update the Schur form of the projected eigenproblem, then sort it.
if (!bks_solver->isSchurCurrent()) {
bks_solver->computeSchurForm( true );
// Check for convergence, just in case we wait for every restart to check
outputtest->checkStatus( &*bks_solver );
}
// Don't bother to restart if we've converged or reached the maximum number of restarts
if ( numRestarts >= _maxRestarts || ordertest->getStatus() == Passed) {
break; // break from while(1){bks_solver->iterate()}
}
// Start restarting timer and increment counter
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor restimer(*_timerRestarting);
#endif
numRestarts++;
int numConv = ordertest->howMany();
cur_nevBlocks = _nevBlocks*_blockSize;
// Add in extra blocks for restarting if either static or dynamic boundaries are being used.
int moreNevBlocks = std::min( maxXtraBlocks, std::max( numConv/_blockSize, _xtra_nevBlocks) );
if ( _dynXtraNev )
cur_nevBlocks += moreNevBlocks * _blockSize;
else if ( _xtra_nevBlocks )
cur_nevBlocks += _xtra_nevBlocks * _blockSize;
/*
int cur_numConv = numConv;
while ( (cur_nevBlocks < (_nevBlocks + maxXtraVecs)) && cur_numConv > 0 ) {
cur_nevBlocks++;
cur_numConv--;
*/
printer->stream(Debug) << " Performing restart number " << numRestarts << " of " << _maxRestarts << std::endl << std::endl;
printer->stream(Debug) << " - Current NEV blocks is " << cur_nevBlocks << ", the minimum is " << _nevBlocks*_blockSize << std::endl;
// Get the most current Ritz values before we continue.
_ritzValues = bks_solver->getRitzValues();
// Get the state.
BlockKrylovSchurState<ScalarType,MV> oldState = bks_solver->getState();
// Get the current dimension of the factorization
int curDim = oldState.curDim;
// Determine if the storage for the nev eigenvalues of interest splits a complex conjugate pair.
std::vector<int> ritzIndex = bks_solver->getRitzIndex();
if (ritzIndex[cur_nevBlocks-1]==1) {
_conjSplit = true;
cur_nevBlocks++;
} else {
_conjSplit = false;
}
// Print out a warning to the user if complex eigenvalues were found on the boundary of the restart subspace
// and the eigenproblem is Hermitian. This solver is not prepared to handle this situation.
if (_problem->isHermitian() && _conjSplit)
{
printer->stream(Warnings)
<< " Eigenproblem is Hermitian, complex eigenvalues have been detected, and eigenvalues of interest split a conjugate pair!!!"
<< std::endl
<< " Block Krylov-Schur eigensolver cannot guarantee correct behavior in this situation, please turn Hermitian flag off!!!"
<< std::endl;
}
// Update the Krylov-Schur decomposition
// Get a view of the Schur vectors of interest.
Teuchos::SerialDenseMatrix<int,ScalarType> Qnev(Teuchos::View, *(oldState.Q), curDim, cur_nevBlocks);
// Get a view of the current Krylov basis.
std::vector<int> curind( curDim );
for (int i=0; i<curDim; i++) { curind[i] = i; }
Teuchos::RCP<const MV> basistemp = MVT::CloneView( *(oldState.V), curind );
// Compute the new Krylov basis: Vnew = V*Qnev
//
// this will occur ex situ in workspace allocated for this purpose (tmpMV)
// or in situ in the solver's memory space.
//
// we will also set a pointer for the location that the current factorization residual block (F),
// currently located after the current basis in oldstate.V, will be moved to
//
Teuchos::RCP<MV> newF;
if (_inSituRestart) {
//
// get non-const pointer to solver's basis so we can work in situ
Teuchos::RCP<MV> solverbasis = Teuchos::rcp_const_cast<MV>(oldState.V);
Teuchos::SerialDenseMatrix<int,ScalarType> copyQnev(Teuchos::Copy, Qnev);
//
// perform Householder QR of copyQnev = Q [D;0], where D is unit diag. We will want D below.
std::vector<ScalarType> tau(cur_nevBlocks), work(cur_nevBlocks);
int info;
lapack.GEQRF(curDim,cur_nevBlocks,copyQnev.values(),copyQnev.stride(),&tau[0],&work[0],work.size(),&info);
TEUCHOS_TEST_FOR_EXCEPTION(info != 0,std::logic_error,
"Anasazi::BlockKrylovSchurSolMgr::solve(): error calling GEQRF during restarting.");
// we need to get the diagonal of D
std::vector<ScalarType> d(cur_nevBlocks);
for (int j=0; j<copyQnev.numCols(); j++) {
d[j] = copyQnev(j,j);
}
if (printer->isVerbosity(Debug)) {
Teuchos::SerialDenseMatrix<int,ScalarType> R(Teuchos::Copy,copyQnev,cur_nevBlocks,cur_nevBlocks);
for (int j=0; j<R.numCols(); j++) {
R(j,j) = SCT::magnitude(R(j,j)) - 1.0;
for (int i=j+1; i<R.numRows(); i++) {
R(i,j) = zero;
}
}
printer->stream(Debug) << "||Triangular factor of Su - I||: " << R.normFrobenius() << std::endl;
}
//
// perform implicit V*Qnev
// this actually performs V*[Qnev Qtrunc*M] = [newV truncV], for some unitary M
// we are interested in only the first cur_nevBlocks vectors of the result
curind.resize(curDim);
for (int i=0; i<curDim; i++) curind[i] = i;
{
Teuchos::RCP<MV> oldV = MVT::CloneViewNonConst(*solverbasis,curind);
msutils::applyHouse(cur_nevBlocks,*oldV,copyQnev,tau,workMV);
}
// multiply newV*D
// get pointer to new basis
curind.resize(cur_nevBlocks);
for (int i=0; i<cur_nevBlocks; i++) { curind[i] = i; }
{
Teuchos::RCP<MV> newV = MVT::CloneViewNonConst( *solverbasis, curind );
MVT::MvScale(*newV,d);
}
// get pointer to new location for F
curind.resize(_blockSize);
for (int i=0; i<_blockSize; i++) { curind[i] = cur_nevBlocks + i; }
newF = MVT::CloneViewNonConst( *solverbasis, curind );
}
else {
// get pointer to first part of work space
curind.resize(cur_nevBlocks);
for (int i=0; i<cur_nevBlocks; i++) { curind[i] = i; }
Teuchos::RCP<MV> tmp_newV = MVT::CloneViewNonConst(*workMV, curind );
// perform V*Qnev
MVT::MvTimesMatAddMv( one, *basistemp, Qnev, zero, *tmp_newV );
tmp_newV = Teuchos::null;
// get pointer to new location for F
curind.resize(_blockSize);
for (int i=0; i<_blockSize; i++) { curind[i] = cur_nevBlocks + i; }
newF = MVT::CloneViewNonConst( *workMV, curind );
}
// Move the current factorization residual block (F) to the last block of newV.
curind.resize(_blockSize);
for (int i=0; i<_blockSize; i++) { curind[i] = curDim + i; }
Teuchos::RCP<const MV> oldF = MVT::CloneView( *(oldState.V), curind );
for (int i=0; i<_blockSize; i++) { curind[i] = i; }
MVT::SetBlock( *oldF, curind, *newF );
newF = Teuchos::null;
// Update the Krylov-Schur quasi-triangular matrix.
//
// Create storage for the new Schur matrix of the Krylov-Schur factorization
// Copy over the current quasi-triangular factorization of oldState.H which is stored in oldState.S.
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > newH =
Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::Copy, *(oldState.S), cur_nevBlocks+_blockSize, cur_nevBlocks) );
//
// Get a view of the B block of the current factorization
Teuchos::SerialDenseMatrix<int,ScalarType> oldB(Teuchos::View, *(oldState.H), _blockSize, _blockSize, curDim, curDim-_blockSize);
//
// Get a view of the a block row of the Schur vectors.
Teuchos::SerialDenseMatrix<int,ScalarType> subQ(Teuchos::View, *(oldState.Q), _blockSize, cur_nevBlocks, curDim-_blockSize);
//
// Get a view of the new B block of the updated Krylov-Schur factorization
Teuchos::SerialDenseMatrix<int,ScalarType> newB(Teuchos::View, *newH, _blockSize, cur_nevBlocks, cur_nevBlocks);
//
// Compute the new B block.
blas.GEMM( Teuchos::NO_TRANS, Teuchos::NO_TRANS, _blockSize, cur_nevBlocks, _blockSize, one,
oldB.values(), oldB.stride(), subQ.values(), subQ.stride(), zero, newB.values(), newB.stride() );
//
// Set the new state and initialize the solver.
BlockKrylovSchurState<ScalarType,MV> newstate;
if (_inSituRestart) {
newstate.V = oldState.V;
} else {
newstate.V = workMV;
}
newstate.H = newH;
newstate.curDim = cur_nevBlocks;
bks_solver->initialize(newstate);
} // end of restarting
////////////////////////////////////////////////////////////////////////////////////
//
// we returned from iterate(), but none of our status tests Passed.
// something is wrong, and it is probably our fault.
//
////////////////////////////////////////////////////////////////////////////////////
else {
TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,"Anasazi::BlockKrylovSchurSolMgr::solve(): Invalid return from bks_solver::iterate().");
}
}
catch (const AnasaziError &err) {
printer->stream(Errors)
<< "Anasazi::BlockKrylovSchurSolMgr::solve() caught unexpected exception from Anasazi::BlockKrylovSchur::iterate() at iteration " << bks_solver->getNumIters() << std::endl
<< err.what() << std::endl
<< "Anasazi::BlockKrylovSchurSolMgr::solve() returning Unconverged with no solutions." << std::endl;
return Unconverged;
}
}
//
// free temporary space
workMV = Teuchos::null;
// Get the most current Ritz values before we return
_ritzValues = bks_solver->getRitzValues();
sol.numVecs = ordertest->howMany();
printer->stream(Debug) << "ordertest->howMany() : " << sol.numVecs << std::endl;
std::vector<int> whichVecs = ordertest->whichVecs();
// Place any converged eigenpairs in the solution container.
if (sol.numVecs > 0) {
// Next determine if there is a conjugate pair on the boundary and resize.
std::vector<int> tmpIndex = bks_solver->getRitzIndex();
for (int i=0; i<(int)_ritzValues.size(); ++i) {
printer->stream(Debug) << _ritzValues[i].realpart << " + i " << _ritzValues[i].imagpart << ", Index = " << tmpIndex[i] << std::endl;
}
printer->stream(Debug) << "Number of converged eigenpairs (before) = " << sol.numVecs << std::endl;
for (int i=0; i<sol.numVecs; ++i) {
printer->stream(Debug) << "whichVecs[" << i << "] = " << whichVecs[i] << ", tmpIndex[" << whichVecs[i] << "] = " << tmpIndex[whichVecs[i]] << std::endl;
}
if (tmpIndex[whichVecs[sol.numVecs-1]]==1) {
printer->stream(Debug) << "There is a conjugate pair on the boundary, resizing sol.numVecs" << std::endl;
whichVecs.push_back(whichVecs[sol.numVecs-1]+1);
sol.numVecs++;
for (int i=0; i<sol.numVecs; ++i) {
printer->stream(Debug) << "whichVecs[" << i << "] = " << whichVecs[i] << ", tmpIndex[" << whichVecs[i] << "] = " << tmpIndex[whichVecs[i]] << std::endl;
}
}
bool keepMore = false;
int numEvecs = sol.numVecs;
printer->stream(Debug) << "Number of converged eigenpairs (after) = " << sol.numVecs << std::endl;
printer->stream(Debug) << "whichVecs[sol.numVecs-1] > sol.numVecs-1 : " << whichVecs[sol.numVecs-1] << " > " << sol.numVecs-1 << std::endl;
if (whichVecs[sol.numVecs-1] > (sol.numVecs-1)) {
keepMore = true;
numEvecs = whichVecs[sol.numVecs-1]+1; // Add 1 to fix zero-based indexing
printer->stream(Debug) << "keepMore = true; numEvecs = " << numEvecs << std::endl;
}
// Next set the number of Ritz vectors that the iteration must compute and compute them.
bks_solver->setNumRitzVectors(numEvecs);
bks_solver->computeRitzVectors();
// If the leading Ritz pairs are the converged ones, get the information
// from the iteration to the solution container. Otherwise copy the necessary
// information using 'whichVecs'.
if (!keepMore) {
sol.index = bks_solver->getRitzIndex();
sol.Evals = bks_solver->getRitzValues();
sol.Evecs = MVT::CloneCopy( *(bks_solver->getRitzVectors()) );
}
// Resize based on the number of solutions being returned and set the number of Ritz
// vectors for the iteration to compute.
sol.Evals.resize(sol.numVecs);
sol.index.resize(sol.numVecs);
// If the converged Ritz pairs are not the leading ones, copy over the information directly.
if (keepMore) {
std::vector<Anasazi::Value<ScalarType> > tmpEvals = bks_solver->getRitzValues();
for (int vec_i=0; vec_i<sol.numVecs; ++vec_i) {
sol.index[vec_i] = tmpIndex[whichVecs[vec_i]];
sol.Evals[vec_i] = tmpEvals[whichVecs[vec_i]];
}
sol.Evecs = MVT::CloneCopy( *(bks_solver->getRitzVectors()), whichVecs );
}
// Set the solution space to be the Ritz vectors at this time.
sol.Espace = sol.Evecs;
}
}
// print final summary
bks_solver->currentStatus(printer->stream(FinalSummary));
// print timing information
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
if ( printer->isVerbosity( TimingDetails ) ) {
Teuchos::TimeMonitor::summarize( printer->stream( TimingDetails ) );
}
#endif
_problem->setSolution(sol);
printer->stream(Debug) << "Returning " << sol.numVecs << " eigenpairs to eigenproblem." << std::endl;
// get the number of iterations performed during this solve.
_numIters = bks_solver->getNumIters();
if (sol.numVecs < nev) {
return Unconverged; // return from BlockKrylovSchurSolMgr::solve()
}
return Converged; // return from BlockKrylovSchurSolMgr::solve()
}
template <class ScalarType, class MV, class OP>
void
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::setGlobalStatusTest(
const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &global)
{
globalTest_ = global;
}
template <class ScalarType, class MV, class OP>
const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::getGlobalStatusTest() const
{
return globalTest_;
}
template <class ScalarType, class MV, class OP>
void
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::setDebugStatusTest(
const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &debug)
{
debugTest_ = debug;
}
template <class ScalarType, class MV, class OP>
const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::getDebugStatusTest() const
{
return debugTest_;
}
} // end Anasazi namespace
#endif /* ANASAZI_BLOCK_KRYLOV_SCHUR_SOLMGR_HPP */
|