/usr/include/trilinos/AnasaziBasicEigenproblem.hpp is in libtrilinos-anasazi-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef ANASAZI_BASIC_EIGENPROBLEM_H
#define ANASAZI_BASIC_EIGENPROBLEM_H
/*! \file AnasaziBasicEigenproblem.hpp
\brief Basic implementation of the Anasazi::Eigenproblem class
*/
#include "AnasaziEigenproblem.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
/*! \class Anasazi::BasicEigenproblem
\brief This provides a basic implementation for defining standard or
generalized eigenvalue problems.
*/
namespace Anasazi {
template<class ScalarType, class MV, class OP>
class BasicEigenproblem : public virtual Eigenproblem<ScalarType, MV, OP> {
public:
//! @name Constructors/Destructor
//@{
//! Empty constructor - allows Anasazi::BasicEigenproblem to be described at a later time through "Set Methods".
BasicEigenproblem();
//! Standard Eigenvalue Problem Constructor.
BasicEigenproblem( const Teuchos::RCP<const OP>& Op, const Teuchos::RCP<MV>& InitVec );
//! Generalized Eigenvalue Problem Constructor.
BasicEigenproblem( const Teuchos::RCP<const OP>& Op, const Teuchos::RCP<const OP>& B, const Teuchos::RCP<MV>& InitVec );
//! Copy Constructor.
BasicEigenproblem( const BasicEigenproblem<ScalarType, MV, OP>& Problem );
//! Destructor.
virtual ~BasicEigenproblem() {};
//@}
//! @name Set Methods
//@{
/*! \brief Set the operator for which eigenvalues will be computed.
\note This may be different from the \c A if a spectral transformation is employed.
For example, this operator may apply the operation \f$(A-\sigma I)^{-1}\f$ if you are
looking for eigenvalues of \c A around \f$\sigma\f$.
*/
void setOperator( const Teuchos::RCP<const OP>& Op ) { _Op = Op; _isSet=false; };
/*! \brief Set the operator \c A of the eigenvalue problem \f$Ax=Mx\lambda\f$.
*/
void setA( const Teuchos::RCP<const OP>& A ) { _AOp = A; _isSet=false; };
/*! \brief Set the operator \c M of the eigenvalue problem \f$Ax = Mx\lambda\f$.
*/
void setM( const Teuchos::RCP<const OP>& M ) { _MOp = M; _isSet=false; };
/*! \brief Set the preconditioner for this eigenvalue problem \f$Ax = Mx\lambda\f$.
*/
void setPrec( const Teuchos::RCP<const OP>& Prec ) { _Prec = Prec; _isSet=false; };
/*! \brief Set the initial guess.
This vector is required to create all the space needed
by Anasazi to solve the eigenvalue problem.
\note Even if an initial guess is not known by the user, an initial vector must be passed in.
*/
void setInitVec( const Teuchos::RCP<MV>& InitVec ) { _InitVec = InitVec; _isSet=false; };
/*! \brief Set auxiliary vectors.
\note This multivector can have any number of columns, and most likely will contain vectors that
will be used by the eigensolver to orthogonalize against.
*/
void setAuxVecs( const Teuchos::RCP<const MV>& AuxVecs ) { _AuxVecs = AuxVecs; _isSet=false; };
//! Specify the number of eigenvalues (NEV) that are requested.
void setNEV( int nev ){ _nev = nev; _isSet=false; };
//! Specify the symmetry of this eigenproblem.
/*! This knowledge may allow the solver to take advantage of the eigenproblems' symmetry.
Some computational work can be avoided by setting this properly.
*/
void setHermitian( bool isSym ){ _isSym = isSym; _isSet=false; };
/*! \brief Specify that this eigenproblem is fully defined.
*
* This routine serves multiple purpose:
* - sanity check that the eigenproblem has been fully and consistently defined
* - opportunity for the eigenproblem to allocate internal storage for eigenvalues
* and eigenvectors (to be used by eigensolvers and solver managers)
* </ul>
*
* This method reallocates internal storage, so that any previously retrieved references to
* internal storage (eigenvectors or eigenvalues) are invalidated.
*
* \note The user MUST call this routine before they send the eigenproblem to any solver or solver manager.
*
* \returns \c true signifies success, \c false signifies error.
*/
bool setProblem();
/*! \brief Set the solution to the eigenproblem.
*
* This mechanism allows an Eigensolution struct to be associated with an Eigenproblem object.
* setSolution() is usually called by a solver manager at the end of its SolverManager::solve()
* routine.
*/
void setSolution(const Eigensolution<ScalarType,MV> &sol) {_sol = sol;}
//@}
//! @name Accessor Methods
//@{
//! Get a pointer to the operator for which eigenvalues will be computed.
Teuchos::RCP<const OP> getOperator() const { return( _Op ); };
//! Get a pointer to the operator \c A of the eigenproblem \f$Ax=\lambda Mx\f$.
Teuchos::RCP<const OP> getA() const { return( _AOp ); };
//! Get a pointer to the operator \c M of the eigenproblem \f$Ax=\lambda Mx\f$.
Teuchos::RCP<const OP> getM() const { return( _MOp ); };
//! Get a pointer to the preconditioner of the eigenproblem \f$Ax=\lambda Mx\f$.
Teuchos::RCP<const OP> getPrec() const { return( _Prec ); };
//! Get a pointer to the initial vector
Teuchos::RCP<const MV> getInitVec() const { return( _InitVec ); };
//! Get a pointer to the auxiliary vector
Teuchos::RCP<const MV> getAuxVecs() const { return( _AuxVecs ); };
//! Get the number of eigenvalues (NEV) that are required by this eigenproblem.
int getNEV() const { return( _nev ); }
//! Get the symmetry information for this eigenproblem.
bool isHermitian() const { return( _isSym ); }
//! If the problem has been set, this method will return true.
bool isProblemSet() const { return( _isSet ); }
/*! \brief Get the solution to the eigenproblem.
*
* There is no computation associated with this method. It only provides a
* mechanism for associating an Eigensolution with a Eigenproblem.
*/
const Eigensolution<ScalarType,MV> & getSolution() const { return(_sol); }
//@}
//! @name Apply / Compute Methods
//@{
/*! \brief Returns the residual vector corresponding to the computed solution
*
* If there is no computed solution, returns Teuchos::null.
*
* \note If A has not been set, this function will compute \f$R = OpX-MX\Lambda\f$
* If you are using a spectral transformation, this may not be what you want.
*/
Teuchos::RCP<const MV> computeCurrResVec() const;
//@}
protected:
//! Reference-counted pointer for \c A of the eigenproblem \f$Ax=\lambda Mx\f$
Teuchos::RCP<const OP> _AOp;
//! Reference-counted pointer for \c M of the eigenproblem \f$Ax=\lambda Mx\f$
Teuchos::RCP<const OP> _MOp;
//! Reference-counted pointer for the operator of the eigenproblem \f$Ax=\lambda Mx\f$
Teuchos::RCP<const OP> _Op;
//! Reference-counted pointer for the preconditioner of the eigenproblem \f$Ax=\lambda Mx\f$
Teuchos::RCP<const OP> _Prec;
//! Reference-counted pointer for the initial vector of the eigenproblem \f$Ax=\lambda Mx\f$
Teuchos::RCP<MV> _InitVec;
//! Reference-counted pointer for the auxiliary vector of the eigenproblem \f$Ax=\lambda Mx\f$
Teuchos::RCP<const MV> _AuxVecs;
//! Number of eigenvalues requested
int _nev;
//! Symmetry of the eigenvalue problem
/*! \note A generalized eigenvalue problem \f$Ax= \lambda Mx\f$ is considered symmetric
if the operator \c M is positive (semi) definite.
*/
bool _isSym;
//! Sanity Check Flag
bool _isSet;
//! Type-definition for the MultiVecTraits class corresponding to the \c MV type
typedef MultiVecTraits<ScalarType,MV> MVT;
//! Type-definition for the OperatorTraits class corresponding to the \c OP type
typedef OperatorTraits<ScalarType,MV,OP> OPT;
//! Solution to problem
Eigensolution<ScalarType,MV> _sol;
};
//=============================================================================
// Implementations (Constructors / Destructors)
//=============================================================================
template <class ScalarType, class MV, class OP>
BasicEigenproblem<ScalarType, MV, OP>::BasicEigenproblem() :
_nev(0),
_isSym(false),
_isSet(false)
{
}
//=============================================================================
template <class ScalarType, class MV, class OP>
BasicEigenproblem<ScalarType, MV, OP>::BasicEigenproblem( const Teuchos::RCP<const OP>& Op, const Teuchos::RCP<MV>& InitVec ) :
_Op(Op),
_InitVec(InitVec),
_nev(0),
_isSym(false),
_isSet(false)
{
}
//=============================================================================
template <class ScalarType, class MV, class OP>
BasicEigenproblem<ScalarType, MV, OP>::BasicEigenproblem( const Teuchos::RCP<const OP>& Op, const Teuchos::RCP<const OP>& M,
const Teuchos::RCP<MV>& InitVec ) :
_MOp(M),
_Op(Op),
_InitVec(InitVec),
_nev(0),
_isSym(false),
_isSet(false)
{
}
//=============================================================================
template <class ScalarType, class MV, class OP>
BasicEigenproblem<ScalarType, MV, OP>::BasicEigenproblem( const BasicEigenproblem<ScalarType,MV,OP>& Problem ) :
_AOp(Problem._AOp),
_MOp(Problem._MOp),
_Op(Problem._Op),
_Prec(Problem._Prec),
_InitVec(Problem._InitVec),
_nev(Problem._nev),
_isSym(Problem._isSym),
_isSet(Problem._isSet),
_sol(Problem._sol)
{
}
//=============================================================================
// SetProblem (sanity check method)
//=============================================================================
template <class ScalarType, class MV, class OP>
bool BasicEigenproblem<ScalarType, MV, OP>::setProblem()
{
//----------------------------------------------------------------
// Sanity Checks
//----------------------------------------------------------------
// If there is no operator, then we can't proceed.
if ( !_AOp.get() && !_Op.get() ) { return false; }
// If there is no initial vector, then we don't have anything to clone workspace from.
if ( !_InitVec.get() ) { return false; }
// If we don't need any eigenvalues, we don't need to continue.
if (_nev == 0) { return false; }
// If there is an A, but no operator, we can set them equal.
if (_AOp.get() && !_Op.get()) { _Op = _AOp; }
// Clear the storage from any previous call to setSolution()
Eigensolution<ScalarType,MV> emptysol;
_sol = emptysol;
// mark the problem as set and return no-error
_isSet=true;
return true;
}
//=============================================================================
// Computes the residual vector
//=============================================================================
template <class ScalarType, class MV, class OP>
Teuchos::RCP<const MV> BasicEigenproblem<ScalarType, MV, OP>::computeCurrResVec() const
{
using Teuchos::RCP;
TEUCHOS_TEST_FOR_EXCEPTION(!isHermitian(), std::invalid_argument,
"BasicEigenproblem::computeCurrResVec: This method is not currently "
"implemented for non-Hermitian problems. Sorry for any inconvenience.");
const Eigensolution<ScalarType,MV> sol = getSolution();
if(sol.numVecs <= 0)
return Teuchos::null;
// Copy the eigenvalues
RCP<MV> X = sol.Evecs;
std::vector<ScalarType> Lambda(sol.numVecs);
for(int i = 0; i < sol.numVecs; i++)
Lambda[i] = sol.Evals[i].realpart;
// Compute AX
RCP<MV> AX = MVT::Clone(*X,sol.numVecs);
if(_AOp != Teuchos::null)
OPT::Apply(*_AOp,*X,*AX);
else
OPT::Apply(*_Op,*X,*AX);
// Compute MX if necessary
RCP<MV> MX;
if(_MOp != Teuchos::null)
{
MX = MVT::Clone(*X,sol.numVecs);
OPT::Apply(*_MOp,*X,*MX);
}
else
{
MX = MVT::CloneCopy(*X);
}
// Compute R = AX - MX \Lambda
RCP<MV> R = MVT::Clone(*X,sol.numVecs);
MVT::MvScale(*MX,Lambda);
MVT::MvAddMv(1.0,*AX,-1.0,*MX,*R);
return R;
}
} // end Anasazi namespace
#endif
// end AnasaziBasicEigenproblem.hpp
|