/usr/include/trilinos/klu2_version.h is in libtrilinos-amesos2-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | // @HEADER
// ***********************************************************************
//
// KLU2: A Direct Linear Solver package
// Copyright 2011 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, with Sandia Corporation, the
// U.S. Government retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Mike A. Heroux (maherou@sandia.gov)
//
// KLU2 is derived work from KLU, licensed under LGPL, and copyrighted by
// University of Florida. The Authors of KLU are Timothy A. Davis and
// Eka Palamadai. See Doc/KLU_README.txt for the licensing and copyright
// information for KLU.
//
// ***********************************************************************
// @HEADER
#ifndef _TKLU_VERSION_H
#define _TKLU_VERSION_H
// TODO : Check SPLIT complex
#ifdef DLONG
#define Int_id UF_long_id
#define Int_MAX UF_long_max
#else
#define Int_id "%d"
#define Int_MAX INT_MAX
#endif
#define NPRINT
#define KLU2_BYTES(type,n) (sizeof (type) * (n))
#define KLU2_CEILING(b,u) (((b)+(u)-1) / (u))
#define UNITS(type,n) (KLU2_CEILING (KLU2_BYTES (type,n), sizeof (Unit)))
#define DUNITS(type,n) (ceil (KLU2_BYTES (type, (double) n) / sizeof (Unit)))
#define GET_I_POINTER(LU, Xip, Xi, k) \
{ \
Xi = (Int *) (LU + Xip [k]) ; \
}
#define GET_X_POINTER(LU, Xip, Xlen, Xx, k) \
{ \
Xx = (Entry *) (LU + Xip [k] + UNITS (Int, Xlen [k])) ; \
}
#define GET_POINTER(LU, Xip, Xlen, Xi, Xx, k, xlen) \
{ \
Unit *xp = LU + Xip [k] ; \
xlen = Xlen [k] ; \
Xi = (Int *) xp ; \
Xx = (Entry *) (xp + UNITS (Int, xlen)) ; \
}
/* function names */
#define KLU_scale klu_scale
#define KLU_solve klu_solve
#define KLU_tsolve klu_tsolve
#define KLU_solve2 klu_solve2
#define KLU_tsolve2 klu_tsolve2
#define KLU_free_numeric klu_free_numeric
#define KLU_factor klu_factor
#define KLU_refactor klu_refactor
#define KLU_kernel_factor klu_kernel_factor
#define KLU_lsolve klu_lsolve
#define KLU_ltsolve klu_ltsolve
#define KLU_usolve klu_usolve
#define KLU_utsolve klu_utsolve
#define KLU_kernel klu_kernel
#define KLU_valid klu_valid
#define KLU_valid_LU klu_valid_LU
#define KLU_sort klu_sort
#define KLU_rgrowth klu_rgrowth
#define KLU_rcond klu_rcond
#define KLU_extract klu_extract
#define KLU_condest klu_condest
#define KLU_flops klu_flops
#define KLU_analyze klu_analyze
#define KLU_analyze_given klu_analyze_given
#define KLU_alloc_symbolic klu_alloc_symbolic
#define KLU_free_symbolic klu_free_symbolic
#define KLU_defaults klu_defaults
#define KLU_free klu_free
#define KLU_malloc klu_malloc
#define KLU_realloc klu_realloc
#define KLU_add_size_t klu_add_size_t
#define KLU_mult_size_t klu_mult_size_t
#define KLU_symbolic klu_symbolic
#define KLU_numeric klu_numeric
#define KLU_common klu_common
/* -------------------------------------------------------------------------- */
/* Numerical relop macros for correctly handling the NaN case */
/* -------------------------------------------------------------------------- */
/*
SCALAR_IS_NAN(x):
True if x is NaN. False otherwise. The commonly-existing isnan(x)
function could be used, but it's not in Kernighan & Ritchie 2nd edition
(ANSI C). It may appear in <math.h>, but I'm not certain about
portability. The expression x != x is true if and only if x is NaN,
according to the IEEE 754 floating-point standard.
SCALAR_IS_ZERO(x):
True if x is zero. False if x is nonzero, NaN, or +/- Inf.
This is (x == 0) if the compiler is IEEE 754 compliant.
SCALAR_IS_NONZERO(x):
True if x is nonzero, NaN, or +/- Inf. False if x zero.
This is (x != 0) if the compiler is IEEE 754 compliant.
SCALAR_IS_LTZERO(x):
True if x is < zero or -Inf. False if x is >= 0, NaN, or +Inf.
This is (x < 0) if the compiler is IEEE 754 compliant.
*/
/* These all work properly, according to the IEEE 754 standard ... except on */
/* a PC with windows. Works fine in Linux on the same PC... */
#define SCALAR_IS_NAN(x) ((x) != (x))
#define SCALAR_IS_ZERO(x) ((x) == 0.)
#define SCALAR_IS_NONZERO(x) ((x) != 0.)
#define SCALAR_IS_LTZERO(x) ((x) < 0.)
/* scalar absolute value macro. If x is NaN, the result is NaN: */
#define SCALAR_ABS(x) ((SCALAR_IS_LTZERO (x)) ? -(x) : (x))
/* print a scalar (avoid printing "-0" for negative zero). */
#ifdef NPRINT
#define PRINT_SCALAR(a)
#else
#define PRINT_SCALAR(a) \
{ \
if (SCALAR_IS_NONZERO (a)) \
{ \
PRINTF ((" (%g)", (a))) ; \
} \
else \
{ \
PRINTF ((" (0)")) ; \
} \
}
#endif
/* -------------------------------------------------------------------------- */
/* Real floating-point arithmetic */
/* -------------------------------------------------------------------------- */
#ifndef COMPLEX
typedef double Unit ;
/*#define Entry double*/
/* TODO: Need to add namespace to these methods */
#define SPLIT(s) (1)
#define REAL(c) (Teuchos::ScalarTraits<Entry>::real(c))
#define IMAG(c) (Teuchos::ScalarTraits<Entry>::imag(c))
#define CLEAR(c) { (c) = 0. ; }
#define CLEAR_AND_INCREMENT(p) { *p++ = 0. ; }
#define IS_NAN(a) SCALAR_IS_NAN (a) /* TODO : ???*/
#define IS_ZERO(a) SCALAR_IS_ZERO (a)
#define IS_NONZERO(a) SCALAR_IS_NONZERO (a)
#define SCALE_DIV(c,s) { (c) /= (s) ; }
#define SCALE_DIV_ASSIGN(a,c,s) { a = c / s ; }
#define SCALE(c,s) { (c) *= (s) ; }
#define ASSEMBLE(c,a) { (c) += (a) ; }
#define ASSEMBLE_AND_INCREMENT(c,p) { (c) += *p++ ; }
#define DECREMENT(c,a) { (c) -= (a) ; }
#define MULT(c,a,b) { (c) = (a) * (b) ; }
#define MULT_CONJ(c,a,b) { (c) = (a) * Teuchos::ScalarTraits<Entry>::conjugate(b) ; }
#define MULT_SUB(c,a,b) { (c) -= (a) * (b) ; }
#define MULT_SUB_CONJ(c,a,b) { (c) -= (a) * Teuchos::ScalarTraits<Entry>::conjugate(b) ; }
#define DIV(c,a,b) { (c) = KLU_ScalarTraits<Entry>::divide(a, b) ; }
#define RECIPROCAL(c) { (c) = KLU_ScalarTraits<Entry>::reciprocal(c) ; }
#define DIV_CONJ(c,a,b) { (c) = KLU_ScalarTraits<Entry>::divideConjugate(a, b) ; }
#define APPROX_ABS(s,a) { (s) = KLU_ScalarTraits<Entry>::approxABS(a) ; }
#define KLU2_ABS(s,a) { (s) = KLU_ScalarTraits<Entry>::abs(a) ; }
#define PRINT_ENTRY(a) PRINT_SCALAR (a)
#define CONJ(a,x) a = (Teuchos::ScalarTraits<Entry>::conjugate(x))
/* for flop counts */
#define MULTSUB_FLOPS 2. /* c -= a*b */
#define DIV_FLOPS 1. /* c = a/b */
#define ABS_FLOPS 0. /* c = abs (a) */
#define ASSEMBLE_FLOPS 1. /* c += a */
#define DECREMENT_FLOPS 1. /* c -= a */
#define MULT_FLOPS 1. /* c = a*b */
#define SCALE_FLOPS 1. /* c = a/s */
#else
/* -------------------------------------------------------------------------- */
/* Complex floating-point arithmetic */
/* -------------------------------------------------------------------------- */
/*
Note: An alternative to this Double_Complex type would be to use a
struct { double r ; double i ; }. The problem with that method
(used by the Sun Performance Library, for example) is that ANSI C provides
no guarantee about the layout of a struct. It is possible that the sizeof
the struct above would be greater than 2 * sizeof (double). This would
mean that the complex BLAS could not be used. The method used here avoids
that possibility. ANSI C *does* guarantee that an array of structs has
the same size as n times the size of one struct.
The ANSI C99 version of the C language includes a "double _Complex" type.
It should be possible in that case to do the following:
#define Entry double _Complex
and remove the Double_Complex struct. The macros, below, could then be
replaced with instrinsic operators. Note that the #define Real and
#define Imag should also be removed (they only appear in this file).
For the MULT, MULT_SUB, MULT_SUB_CONJ, and MULT_CONJ macros,
the output argument c cannot be the same as any input argument.
*/
#if 0
typedef struct
{
double component [2] ; /* real and imaginary parts */
} Double_Complex ;
typedef Double_Complex Unit ;
/*#define Entry Double_Complex*/
#define Real component [0]
#define Imag component [1]
/* for flop counts */
#define MULTSUB_FLOPS 8. /* c -= a*b */
#define DIV_FLOPS 9. /* c = a/b */
#define ABS_FLOPS 6. /* c = abs (a), count sqrt as one flop */
#define ASSEMBLE_FLOPS 2. /* c += a */
#define DECREMENT_FLOPS 2. /* c -= a */
#define MULT_FLOPS 6. /* c = a*b */
#define SCALE_FLOPS 2. /* c = a/s or c = a*s */
/* -------------------------------------------------------------------------- */
/* Return TRUE if a complex number is in split form, FALSE if in packed form */
#define SPLIT(sz) ((sz) != (double *) NULL)
/* c = (s1) + (s2)*i, if s2 is null, then X is in "packed" format (compatible
* with Entry and ANSI C99 double _Complex type). */
/*#define ASSIGN(c,s1,s2,p,split) \
{ \
if (split) \
{ \
(c).Real = (s1)[p] ; \
(c).Imag = (s2)[p] ; \
} \
else \
{ \
(c) = ((Entry *)(s1))[p] ; \
} \
}*/
/* -------------------------------------------------------------------------- */
#endif
/* -------------------------------------------------------------------------- */
/* print an entry (avoid printing "-0" for negative zero). */
#ifdef NPRINT
#define PRINT_ENTRY(a)
#else
#define PRINT_ENTRY(a) \
{ \
if (SCALAR_IS_NONZERO ((a).Real)) \
{ \
PRINTF ((" (%g", (a).Real)) ; \
} \
else \
{ \
PRINTF ((" (0")) ; \
} \
if (SCALAR_IS_LTZERO ((a).Imag)) \
{ \
PRINTF ((" - %gi)", -(a).Imag)) ; \
} \
else if (SCALAR_IS_ZERO ((a).Imag)) \
{ \
PRINTF ((" + 0i)")) ; \
} \
else \
{ \
PRINTF ((" + %gi)", (a).Imag)) ; \
} \
}
#endif
/* -------------------------------------------------------------------------- */
#endif /* #ifndef COMPLEX */
#endif
|