This file is indexed.

/usr/include/trilinos/klu2.hpp is in libtrilinos-amesos2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
/* ========================================================================== */
/* === klu ================================================================== */
/* ========================================================================== */
// @HEADER
// ***********************************************************************
//
//                   KLU2: A Direct Linear Solver package
//                    Copyright 2011 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, with Sandia Corporation, the 
// U.S. Government retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
// 
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Mike A. Heroux (maherou@sandia.gov)
//
// KLU2 is derived work from KLU, licensed under LGPL, and copyrighted by
// University of Florida. The Authors of KLU are Timothy A. Davis and
// Eka Palamadai. See Doc/KLU_README.txt for the licensing and copyright
// information for KLU.
//
// ***********************************************************************
// @HEADER

/* KLU: factorizes P*A into L*U, using the Gilbert-Peierls algorithm [1], with
 * optional symmetric pruning by Eisenstat and Liu [2].  The code is by Tim
 * Davis.  This algorithm is what appears as the default sparse LU routine in
 * MATLAB version 6.0, and still appears in MATLAB 6.5 as [L,U,P] = lu (A).
 * Note that no column ordering is provided (see COLAMD or AMD for suitable
 * orderings).  SuperLU is based on this algorithm, except that it adds the
 * use of dense matrix operations on "supernodes" (adjacent columns with
 * identical).  This code doesn't use supernodes, thus its name ("Kent" LU,
 * as in "Clark Kent", in contrast with Super-LU...).  This algorithm is slower
 * than SuperLU and UMFPACK for large matrices with lots of nonzeros in their
 * factors (such as for most finite-element problems).  However, for matrices
 * with very sparse LU factors, this algorithm is typically faster than both
 * SuperLU and UMFPACK, since in this case there is little chance to exploit
 * dense matrix kernels (the BLAS).
 *
 * Only one block of A is factorized, in the BTF form.  The input n is the
 * size of the block; k1 is the first row and column in the block.
 *
 * NOTE: no error checking is done on the inputs.  This version is not meant to
 * be called directly by the user.  Use klu_factor instead.
 *
 * No fill-reducing ordering is provided.  The ordering quality of
 * klu_kernel_factor is the responsibility of the caller.  The input A must
 * pre-permuted to reduce fill-in, or fill-reducing input permutation Q must
 * be provided.
 *
 * The input matrix A must be in compressed-column form, with either sorted
 * or unsorted row indices.  Row indices for column j of A is in
 * Ai [Ap [j] ... Ap [j+1]-1] and the same range of indices in Ax holds the
 * numerical values.  No duplicate entries are allowed.
 *
 * Copyright 2004-2009, Tim Davis.  All rights reserved.  See the README
 * file for details on permitted use.  Note that no code from The MathWorks,
 * Inc, or from SuperLU, or from any other source appears here.  The code is
 * written from scratch, from the algorithmic description in Gilbert & Peierls'
 * and Eisenstat & Liu's journal papers [1,2].
 *
 * If an input permutation Q is provided, the factorization L*U = A (P,Q)
 * is computed, where P is determined by partial pivoting, and Q is the input
 * ordering.  If the pivot tolerance is less than 1, the "diagonal" entry that
 * KLU attempts to choose is the diagonal of A (Q,Q).  In other words, the
 * input permutation is applied symmetrically to the input matrix.  The output
 * permutation P includes both the partial pivoting ordering and the input
 * permutation.  If Q is NULL, then it is assumed to be the identity
 * permutation.  Q is not modified.
 *
 * [1] Gilbert, J. R. and Peierls, T., "Sparse Partial Pivoting in Time
 *      Proportional to Arithmetic Operations," SIAM J. Sci. Stat. Comp.,
 *      vol 9, pp.  862-874, 1988.
 * [2] Eisenstat, S. C. and Liu, J. W. H., "Exploiting Structural Symmetry in
 *      Unsymmetric Sparse Symbolic Factorization," SIAM J. Matrix Analysis &
 *      Applic., vol 13, pp.  202-211, 1992.
 */

/* ========================================================================== */

#ifndef KLU2_HPP
#define KLU2_HPP

#include "klu2_internal.h"
#include "klu2_kernel.hpp"
#include "klu2_memory.hpp"

template <typename Entry, typename Int>
size_t KLU_kernel_factor            /* 0 if failure, size of LU if OK */
(
    /* inputs, not modified */
    Int n,          /* A is n-by-n. n must be > 0. */
    Int Ap [ ],     /* size n+1, column pointers for A */
    Int Ai [ ],     /* size nz = Ap [n], row indices for A */
    Entry Ax [ ],   /* size nz, values of A */
    Int Q [ ],      /* size n, optional column permutation */
    double Lsize,   /* estimate of number of nonzeros in L */

    /* outputs, not defined on input */
    Unit **p_LU,        /* row indices and values of L and U */
    Entry Udiag [ ],    /* size n, diagonal of U */
    Int Llen [ ],       /* size n, column length of L */
    Int Ulen [ ],       /* size n, column length of U */
    Int Lip [ ],        /* size n, column pointers for L */
    Int Uip [ ],        /* size n, column pointers for U */
    Int P [ ],          /* row permutation, size n */
    Int *lnz,           /* size of L */
    Int *unz,           /* size of U */

    /* workspace, undefined on input */
    Entry *X,       /* size n double's, zero on output */
    Int *Work,      /* size 5n Int's */

    /* inputs, not modified on output */
    Int k1,             /* the block of A is from k1 to k2-1 */
    Int PSinv [ ],      /* inverse of P from symbolic factorization */
    double Rs [ ],      /* scale factors for A */

    /* inputs, modified on output */
    Int Offp [ ],   /* off-diagonal matrix (modified by this routine) */
    Int Offi [ ],
    Entry Offx [ ],
    /* --------------- */
    KLU_common<Entry, Int> *Common
)
{
    double maxlnz, dunits ;
    Unit *LU ;
    Int *Pinv, *Lpend, *Stack, *Flag, *Ap_pos, *W ;
    Int lsize, usize, anz, ok ;
    size_t lusize ;
    ASSERT (Common != NULL) ;

    /* ---------------------------------------------------------------------- */
    /* get control parameters, or use defaults */
    /* ---------------------------------------------------------------------- */

    n = MAX (1, n) ;
    anz = Ap [n+k1] - Ap [k1] ;

    if (Lsize <= 0)
    {
        Lsize = -Lsize ;
        Lsize = MAX (Lsize, 1.0) ;
        lsize = (Int) Lsize * anz + n ;
    }
    else
    {
        lsize = (Int) Lsize ;
    }

    usize = lsize ;

    lsize  = MAX (n+1, lsize) ;
    usize  = MAX (n+1, usize) ;

    maxlnz = (((double) n) * ((double) n) + ((double) n)) / 2. ;
    maxlnz = MIN (maxlnz, ((double) INT_MAX)) ;
    lsize  = (Int) MIN (maxlnz, lsize) ;
    usize  = (Int) MIN (maxlnz, usize) ;

    PRINTF (("Welcome to klu: n %d anz %d k1 %d lsize %d usize %d maxlnz %g\n",
        n, anz, k1, lsize, usize, maxlnz)) ;

    /* ---------------------------------------------------------------------- */
    /* allocate workspace and outputs */
    /* ---------------------------------------------------------------------- */

    /* return arguments are not yet assigned */
    *p_LU = (Unit *) NULL ;

    /* these computations are safe from size_t overflow */
    W = Work ;
    Pinv = (Int *) W ;      W += n ;
    Stack = (Int *) W ;     W += n ;
    Flag = (Int *) W ;      W += n ;
    Lpend = (Int *) W ;     W += n ;
    Ap_pos = (Int *) W ;    W += n ;

    dunits = DUNITS (Int, lsize) + DUNITS (Entry, lsize) +
             DUNITS (Int, usize) + DUNITS (Entry, usize) ;
    lusize = (size_t) dunits ;
    ok = !INT_OVERFLOW (dunits) ; 
    LU = (Unit *) (ok ? KLU_malloc (lusize, sizeof (Unit), Common) : NULL) ;
    if (LU == NULL)
    {
        /* out of memory, or problem too large */
        Common->status = KLU_OUT_OF_MEMORY ;
        lusize = 0 ;
        return (lusize) ;
    }

    /* ---------------------------------------------------------------------- */
    /* factorize */
    /* ---------------------------------------------------------------------- */

    /* with pruning, and non-recursive depth-first-search */
    lusize = KLU_kernel<Entry> (n, Ap, Ai, Ax, Q, lusize,
            Pinv, P, &LU, Udiag, Llen, Ulen, Lip, Uip, lnz, unz,
            X, Stack, Flag, Ap_pos, Lpend,
            k1, PSinv, Rs, Offp, Offi, Offx, Common) ;

    /* ---------------------------------------------------------------------- */
    /* return LU factors, or return nothing if an error occurred */
    /* ---------------------------------------------------------------------- */

    if (Common->status < KLU_OK)
    {
        LU = (Unit *) KLU_free (LU, lusize, sizeof (Unit), Common) ;
        lusize = 0 ;
    }
    *p_LU = LU ;
    PRINTF ((" in klu noffdiag %d\n", Common->noffdiag)) ;
    return (lusize) ;
}

/* ========================================================================== */
/* === KLU_lsolve =========================================================== */
/* ========================================================================== */

/* Solve Lx=b.  Assumes L is unit lower triangular and where the unit diagonal
 * entry is NOT stored.  Overwrites B  with the solution X.  B is n-by-nrhs
 * and is stored in ROW form with row dimension nrhs.  nrhs must be in the
 * range 1 to 4. */

template <typename Entry, typename Int>
void KLU_lsolve
(
    /* inputs, not modified: */
    Int n,
    Int Lip [ ],
    Int Llen [ ],
    Unit LU [ ],
    Int nrhs,
    /* right-hand-side on input, solution to Lx=b on output */
    Entry X [ ]
)
{
    Entry x [4], lik ;
    Int *Li ;
    Entry *Lx ;
    Int k, p, len, i ;

    switch (nrhs)
    {

        case 1:
            for (k = 0 ; k < n ; k++)
            {
                x [0] = X [k] ;
                GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
                /* unit diagonal of L is not stored*/
                for (p = 0 ; p < len ; p++)
                {
                    /* X [Li [p]] -= Lx [p] * x [0] ; */
                    MULT_SUB (X [Li [p]], Lx [p], x [0]) ;
                }
            }
            break ;

        case 2:

            for (k = 0 ; k < n ; k++)
            {
                x [0] = X [2*k    ] ;
                x [1] = X [2*k + 1] ;
                GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Li [p] ;
                    lik = Lx [p] ;
                    MULT_SUB (X [2*i], lik, x [0]) ;
                    MULT_SUB (X [2*i + 1], lik, x [1]) ;
                }
            }
            break ;

        case 3:

            for (k = 0 ; k < n ; k++)
            {
                x [0] = X [3*k    ] ;
                x [1] = X [3*k + 1] ;
                x [2] = X [3*k + 2] ;
                GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Li [p] ;
                    lik = Lx [p] ;
                    MULT_SUB (X [3*i], lik, x [0]) ;
                    MULT_SUB (X [3*i + 1], lik, x [1]) ;
                    MULT_SUB (X [3*i + 2], lik, x [2]) ;
                }
            }
            break ;

        case 4:

            for (k = 0 ; k < n ; k++)
            {
                x [0] = X [4*k    ] ;
                x [1] = X [4*k + 1] ;
                x [2] = X [4*k + 2] ;
                x [3] = X [4*k + 3] ;
                GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Li [p] ;
                    lik = Lx [p] ;
                    MULT_SUB (X [4*i], lik, x [0]) ;
                    MULT_SUB (X [4*i + 1], lik, x [1]) ;
                    MULT_SUB (X [4*i + 2], lik, x [2]) ;
                    MULT_SUB (X [4*i + 3], lik, x [3]) ;
                }
            }
            break ;

    }
}

/* ========================================================================== */
/* === KLU_usolve =========================================================== */
/* ========================================================================== */

/* Solve Ux=b.  Assumes U is non-unit upper triangular and where the diagonal
 * entry is NOT stored.  Overwrites B with the solution X.  B is n-by-nrhs
 * and is stored in ROW form with row dimension nrhs.  nrhs must be in the
 * range 1 to 4. */

template <typename Entry, typename Int>
void KLU_usolve
(
    /* inputs, not modified: */
    Int n,
    Int Uip [ ],
    Int Ulen [ ],
    Unit LU [ ],
    Entry Udiag [ ],
    Int nrhs,
    /* right-hand-side on input, solution to Ux=b on output */
    Entry X [ ]
)
{
    Entry x [4], uik, ukk ;
    Int *Ui ;
    Entry *Ux ;
    Int k, p, len, i ;

    switch (nrhs)
    {

        case 1:

            for (k = n-1 ; k >= 0 ; k--)
            {
                GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
                /* x [0] = X [k] / Udiag [k] ; */
                DIV (x [0], X [k], Udiag [k]) ;
                X [k] = x [0] ;
                for (p = 0 ; p < len ; p++)
                {
                    /* X [Ui [p]] -= Ux [p] * x [0] ; */
                    MULT_SUB (X [Ui [p]], Ux [p], x [0]) ;

                }
            }

            break ;

        case 2:

            for (k = n-1 ; k >= 0 ; k--)
            {
                GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
                ukk = Udiag [k] ;
                /* x [0] = X [2*k    ] / ukk ;
                x [1] = X [2*k + 1] / ukk ; */
                DIV (x [0], X [2*k], ukk) ;
                DIV (x [1], X [2*k + 1], ukk) ;

                X [2*k    ] = x [0] ;
                X [2*k + 1] = x [1] ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Ui [p] ;
                    uik = Ux [p] ;
                    /* X [2*i    ] -= uik * x [0] ;
                    X [2*i + 1] -= uik * x [1] ; */
                    MULT_SUB (X [2*i], uik, x [0]) ;
                    MULT_SUB (X [2*i + 1], uik, x [1]) ;
                }
            }

            break ;

        case 3:

            for (k = n-1 ; k >= 0 ; k--)
            {
                GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
                ukk = Udiag [k] ;

                DIV (x [0], X [3*k], ukk) ;
                DIV (x [1], X [3*k + 1], ukk) ;
                DIV (x [2], X [3*k + 2], ukk) ;

                X [3*k    ] = x [0] ;
                X [3*k + 1] = x [1] ;
                X [3*k + 2] = x [2] ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Ui [p] ;
                    uik = Ux [p] ;
                    MULT_SUB (X [3*i], uik, x [0]) ;
                    MULT_SUB (X [3*i + 1], uik, x [1]) ;
                    MULT_SUB (X [3*i + 2], uik, x [2]) ;
                }
            }

            break ;

        case 4:

            for (k = n-1 ; k >= 0 ; k--)
            {
                GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
                ukk = Udiag [k] ;

                DIV (x [0], X [4*k], ukk) ;
                DIV (x [1], X [4*k + 1], ukk) ;
                DIV (x [2], X [4*k + 2], ukk) ;
                DIV (x [3], X [4*k + 3], ukk) ;

                X [4*k    ] = x [0] ;
                X [4*k + 1] = x [1] ;
                X [4*k + 2] = x [2] ;
                X [4*k + 3] = x [3] ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Ui [p] ;
                    uik = Ux [p] ;

                    MULT_SUB (X [4*i], uik, x [0]) ;
                    MULT_SUB (X [4*i + 1], uik, x [1]) ;
                    MULT_SUB (X [4*i + 2], uik, x [2]) ;
                    MULT_SUB (X [4*i + 3], uik, x [3]) ;
                }
            }

            break ;

    }
}

/* ========================================================================== */
/* === KLU_ltsolve ========================================================== */
/* ========================================================================== */

/* Solve L'x=b.  Assumes L is unit lower triangular and where the unit diagonal
 * entry is NOT stored.  Overwrites B with the solution X.  B is n-by-nrhs
 * and is stored in ROW form with row dimension nrhs.  nrhs must in the
 * range 1 to 4. */

template <typename Entry, typename Int>
void KLU_ltsolve
(
    /* inputs, not modified: */
    Int n,
    Int Lip [ ],
    Int Llen [ ],
    Unit LU [ ],
    Int nrhs,
#ifdef COMPLEX
    Int conj_solve,
#endif
    /* right-hand-side on input, solution to L'x=b on output */
    Entry X [ ]
)
{
    Entry x [4], lik ;
    Int *Li ;
    Entry *Lx ;
    Int k, p, len, i ;

    switch (nrhs)
    {

        case 1:

            for (k = n-1 ; k >= 0 ; k--)
            {
                GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
                x [0] = X [k] ;
                for (p = 0 ; p < len ; p++)
                {
#ifdef COMPLEX
                    if (conj_solve)
                    {
                        /* x [0] -= CONJ (Lx [p]) * X [Li [p]] ; */
                        MULT_SUB_CONJ (x [0], X [Li [p]], Lx [p]) ;
                    }
                    else
#endif
                    {
                        /*x [0] -= Lx [p] * X [Li [p]] ;*/
                        MULT_SUB (x [0], Lx [p], X [Li [p]]) ;
                    }
                }
                X [k] = x [0] ;
            }
            break ;

        case 2:

            for (k = n-1 ; k >= 0 ; k--)
            {
                x [0] = X [2*k    ] ;
                x [1] = X [2*k + 1] ;
                GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Li [p] ;
#ifdef COMPLEX
                    if (conj_solve)
                    {
                        CONJ (lik, Lx [p]) ;
                    }
                    else
#endif
                    {
                        lik = Lx [p] ;
                    }
                    MULT_SUB (x [0], lik, X [2*i]) ;
                    MULT_SUB (x [1], lik, X [2*i + 1]) ;
                }
                X [2*k    ] = x [0] ;
                X [2*k + 1] = x [1] ;
            }
            break ;

        case 3:

            for (k = n-1 ; k >= 0 ; k--)
            {
                x [0] = X [3*k    ] ;
                x [1] = X [3*k + 1] ;
                x [2] = X [3*k + 2] ;
                GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Li [p] ;
#ifdef COMPLEX
                    if (conj_solve)
                    {
                        CONJ (lik, Lx [p]) ;
                    }
                    else
#endif
                    {
                        lik = Lx [p] ;
                    }
                    MULT_SUB (x [0], lik, X [3*i]) ;
                    MULT_SUB (x [1], lik, X [3*i + 1]) ;
                    MULT_SUB (x [2], lik, X [3*i + 2]) ;
                }
                X [3*k    ] = x [0] ;
                X [3*k + 1] = x [1] ;
                X [3*k + 2] = x [2] ;
            }
            break ;

        case 4:

            for (k = n-1 ; k >= 0 ; k--)
            {
                x [0] = X [4*k    ] ;
                x [1] = X [4*k + 1] ;
                x [2] = X [4*k + 2] ;
                x [3] = X [4*k + 3] ;
                GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Li [p] ;
#ifdef COMPLEX
                    if (conj_solve)
                    {
                        CONJ (lik, Lx [p]) ;
                    }
                    else
#endif
                    {
                        lik = Lx [p] ;
                    }
                    MULT_SUB (x [0], lik, X [4*i]) ;
                    MULT_SUB (x [1], lik, X [4*i + 1]) ;
                    MULT_SUB (x [2], lik, X [4*i + 2]) ;
                    MULT_SUB (x [3], lik, X [4*i + 3]) ;
                }
                X [4*k    ] = x [0] ;
                X [4*k + 1] = x [1] ;
                X [4*k + 2] = x [2] ;
                X [4*k + 3] = x [3] ;
            }
            break ;
    }
}


/* ========================================================================== */
/* === KLU_utsolve ========================================================== */
/* ========================================================================== */

/* Solve U'x=b.  Assumes U is non-unit upper triangular and where the diagonal
 * entry is stored (and appears last in each column of U).  Overwrites B
 * with the solution X.  B is n-by-nrhs and is stored in ROW form with row
 * dimension nrhs.  nrhs must be in the range 1 to 4. */

template <typename Entry, typename Int>
void KLU_utsolve
(
    /* inputs, not modified: */
    Int n,
    Int Uip [ ],
    Int Ulen [ ],
    Unit LU [ ],
    Entry Udiag [ ],
    Int nrhs,
#ifdef COMPLEX
    Int conj_solve,
#endif
    /* right-hand-side on input, solution to Ux=b on output */
    Entry X [ ]
)
{
    Entry x [4], uik, ukk ;
    Int k, p, len, i ;
    Int *Ui ;
    Entry *Ux ;

    switch (nrhs)
    {

        case 1:

            for (k = 0 ; k < n ; k++)
            {
                GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
                x [0] = X [k] ;
                for (p = 0 ; p < len ; p++)
                {
#ifdef COMPLEX
                    if (conj_solve)
                    {
                        /* x [0] -= CONJ (Ux [p]) * X [Ui [p]] ; */
                        MULT_SUB_CONJ (x [0], X [Ui [p]], Ux [p]) ;
                    }
                    else
#endif
                    {
                        /* x [0] -= Ux [p] * X [Ui [p]] ; */
                        MULT_SUB (x [0], Ux [p], X [Ui [p]]) ;
                    }
                }
#ifdef COMPLEX
                if (conj_solve)
                {
                    CONJ (ukk, Udiag [k]) ;
                }
                else
#endif
                {
                    ukk = Udiag [k] ;
                }
                DIV (X [k], x [0], ukk) ;
            }
            break ;

        case 2:

            for (k = 0 ; k < n ; k++)
            {
                GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
                x [0] = X [2*k    ] ;
                x [1] = X [2*k + 1] ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Ui [p] ;
#ifdef COMPLEX
                    if (conj_solve)
                    {
                        CONJ (uik, Ux [p]) ;
                    }
                    else
#endif
                    {
                        uik = Ux [p] ;
                    }
                    MULT_SUB (x [0], uik, X [2*i]) ;
                    MULT_SUB (x [1], uik, X [2*i + 1]) ;
                }
#ifdef COMPLEX
                if (conj_solve)
                {
                    CONJ (ukk, Udiag [k]) ;
                }
                else
#endif
                {
                    ukk = Udiag [k] ;
                }
                DIV (X [2*k], x [0], ukk) ;
                DIV (X [2*k + 1], x [1], ukk) ;
            }
            break ;

        case 3:

            for (k = 0 ; k < n ; k++)
            {
                GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
                x [0] = X [3*k    ] ;
                x [1] = X [3*k + 1] ;
                x [2] = X [3*k + 2] ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Ui [p] ;
#ifdef COMPLEX
                    if (conj_solve)
                    {
                        CONJ (uik, Ux [p]) ;
                    }
                    else
#endif
                    {
                        uik = Ux [p] ;
                    }
                    MULT_SUB (x [0], uik, X [3*i]) ;
                    MULT_SUB (x [1], uik, X [3*i + 1]) ;
                    MULT_SUB (x [2], uik, X [3*i + 2]) ;
                }
#ifdef COMPLEX
                if (conj_solve)
                {
                    CONJ (ukk, Udiag [k]) ;
                }
                else
#endif
                {
                    ukk = Udiag [k] ;
                }
                DIV (X [3*k], x [0], ukk) ;
                DIV (X [3*k + 1], x [1], ukk) ;
                DIV (X [3*k + 2], x [2], ukk) ;
            }
            break ;

        case 4:

            for (k = 0 ; k < n ; k++)
            {
                GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
                x [0] = X [4*k    ] ;
                x [1] = X [4*k + 1] ;
                x [2] = X [4*k + 2] ;
                x [3] = X [4*k + 3] ;
                for (p = 0 ; p < len ; p++)
                {
                    i = Ui [p] ;
#ifdef COMPLEX
                    if (conj_solve)
                    {
                        CONJ (uik, Ux [p]) ;
                    }
                    else
#endif
                    {
                        uik = Ux [p] ;
                    }
                    MULT_SUB (x [0], uik, X [4*i]) ;
                    MULT_SUB (x [1], uik, X [4*i + 1]) ;
                    MULT_SUB (x [2], uik, X [4*i + 2]) ;
                    MULT_SUB (x [3], uik, X [4*i + 3]) ;
                }
#ifdef COMPLEX
                if (conj_solve)
                {
                    CONJ (ukk, Udiag [k]) ;
                }
                else
#endif
                {
                    ukk = Udiag [k] ;
                }
                DIV (X [4*k], x [0], ukk) ;
                DIV (X [4*k + 1], x [1], ukk) ;
                DIV (X [4*k + 2], x [2], ukk) ;
                DIV (X [4*k + 3], x [3], ukk) ;
            }
            break ;
    }
}

#endif /* KLU2_HPP */