This file is indexed.

/usr/include/torch/QCTrainer.h is in libtorch3-dev 3.1-2.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// Copyright (C) 2003--2004 Ronan Collobert (collober@idiap.ch)
//                
// This file is part of Torch 3.1.
//
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
//    derived from this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef QC_TRAINER_INC
#define QC_TRAINER_INC

#include "Trainer.h"
#include "QCMachine.h"
#include "QCCache.h"

namespace Torch {


/** Train a #QCMachine#.
    With the conventions of QCMachine.h,
    Q is given by the class QCCache (in #cache#)

    Options:
    \begin{tabular}{lcll}
      "unshrink"      & bool  &  unshrink or not unshrink              & [false] \\
      "max unshrink"  & int   &  maximal number of unshrinking         & [1] \\
      "iter shrink"   & int   &  minimal number of iterations to shrink& [100] \\
      "eps shrink"    & real  &  shrinking accuracy                    & [1E-4 (f)  1E-9 (d)] \\
      "end accuracy"  & real  &  end accuracy                          & [0.01] \\
      "iter message"  & int   &  number of iterations between messages & [1000]
    \end{tabular}


    Note: "iter shrink" must be carefully chosen.
    Read http://www.ai.mit.edu/projects/jmlr/papers/volume1/collobert01a/collobert01a.ps.gz
    for more details.

    @author Ronan Collobert (collober@idiap.ch)
    @see QCCache
    @see QCMachine
*/
class QCTrainer : public Trainer
{
  public:
    // ohhh boy, c'est la zone
    QCMachine *qcmachine;
    QCCache *cache;

    int n_unshrink;
    int n_max_unshrink;

    real *k_xi;
    real *k_xj;
  
    real old_alpha_xi;
    real old_alpha_xj;
    real current_error;

    int *active_var_new;
    int n_active_var_new;

    int n_alpha;                  // le nb de alphas

    bool deja_shrink;
    bool unshrink_mode;

    real *y;
    real *alpha;
    real *grad;

    real eps_shrink;
    real end_eps;
    real bound_eps;

    int n_active_var;
    int *active_var;
    int *not_at_bound_at_iter;
    int iter;
    int n_iter_min_to_shrink;
    int n_iter_message;

    char *status_alpha;
    real *Cup;
    real *Cdown;

    //-----

    ///
    QCTrainer(QCMachine *qcmachine_);

    /** Train it...
        Before calling this function, #grad# in #qcmachine#
        must contain the gradient of QP(alpha) with respect
        to alpha = 0.

        ( = $beta$, with the conventions of QCMachine.h)

        Moreover #alpha# in #qcmachine# has to be zero.
    */
    void train(DataSet *data, MeasurerList *measurers);

    //-----

    void prepareToLaunch();
    void atomiseAll();

    bool bCompute();
    bool selectVariables(int *i, int *j);
    int checkShrinking(real bmin, real bmax);
    void shrink();
    void unShrink();

    void analyticSolve(int xi, int xj);
    void updateStatus(int i);  
    inline bool isNotUp(int i)   {  return(status_alpha[i] != 2); };
    inline bool isNotDown(int i) {  return(status_alpha[i] != 1); };

    virtual ~QCTrainer();
};


}

#endif