/usr/include/TiledArray/tile.h is in libtiledarray-dev 0.6.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 | /*
* This file is a part of TiledArray.
* Copyright (C) 2015 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef TILEDARRAY_TILE_H__INCLUDED
#define TILEDARRAY_TILE_H__INCLUDED
#include <TiledArray/tile_op/tile_interface.h>
#include <memory>
// Forward declaration of MADNESS archive type traits
namespace madness {
namespace archive {
template <typename> struct is_output_archive;
template <typename> struct is_input_archive;
} // namespace archive
} // namespace madness
namespace TiledArray {
/**
* \defgroup TileInterface Tile interface for user defined tensor types
* @{
*/
/// An N-dimensional shallow copy wrapper for tile objects
/// \c Tile represents a block of an \c Array. The rank of the tile block is
/// the same as the owning \c Array object. In order for a user defined tensor
/// object to be used in TiledArray expressions, users must also define the
/// following functions:
/// \li \c add
/// \li \c add_to
/// \li \c subt
/// \li \c subt_to
/// \li \c mult
/// \li \c mult_to
/// \li \c scal
/// \li \c scal_to
/// \li \c gemm
/// \li \c neg
/// \li \c permute
/// \li \c empty
/// \li \c shift
/// \li \c shift_to
/// \li \c trance
/// \li \c sum
/// \li \c product
/// \li \c squared_norm
/// \li \c norm
/// \li \c min
/// \li \c max
/// \li \c abs_min
/// \li \c abs_max
/// \li \c dot
/// as for the intrusive or non-instrusive interface. See the
/// \ref NonIntrusiveTileInterface "non-intrusive tile interface"
/// documentation for more details.
/// \tparam T The tensor type used to represent tile data
template <typename T>
class Tile {
public:
/// This object type
typedef Tile<T> Tile_;
/// Tensor type used to represent tile data
typedef T tensor_type;
private:
std::shared_ptr<tensor_type> pimpl_;
public:
// Constructors and destructor ---------------------------------------------
Tile() = default;
Tile(const Tile_&) = default;
Tile(Tile_&&) = default;
/// Forwarding ctor
/// To simplify construction, Tile provides ctors that all forward their args
/// to T. To avoid clashing with copy and move ctors need conditional instantiation --
/// e.g. see http://ericniebler.com/2013/08/07/universal-references-and-the-copy-constructo/
/// NB For Arg that can be converted to Tile also use the copy/move ctors.
template <typename Arg,
typename = typename std::enable_if<
not detail::is_same_or_derived<Tile_,Arg>::value &&
not std::is_convertible<Arg,Tile_>::value
>::type
>
explicit Tile(Arg&& arg) :
pimpl_(std::make_shared<tensor_type>(std::forward<Arg>(arg)))
{ }
template <typename Arg1, typename Arg2, typename ... Args>
Tile(Arg1&& arg1, Arg2&& arg2, Args&&... args) :
pimpl_(std::make_shared<tensor_type>(std::forward<Arg1>(arg1),
std::forward<Arg2>(arg2),
std::forward<Args>(args)...))
{ }
~Tile() = default;
// Assignment operators ----------------------------------------------------
Tile_& operator=(Tile_&&) = default;
Tile_& operator=(const Tile_&) = default;
Tile_& operator=(const tensor_type& tensor) {
*pimpl_ = tensor;
return *this;
}
Tile_& operator=(tensor_type&& tensor) {
*pimpl_ = std::move(tensor);
return *this;
}
// State accessor ----------------------------------------------------------
bool empty() const {
return not bool(pimpl_);
}
// Tile accessor -----------------------------------------------------------
tensor_type& tensor() { return *pimpl_; }
const tensor_type& tensor() const { return *pimpl_; }
// Iterator accessor -------------------------------------------------------
/// Iterator factory
/// \return An iterator to the first data element
auto begin() -> decltype(std::begin(tensor()))
{ return std::begin(tensor()); }
/// Iterator factory
/// \return A const iterator to the first data element
auto begin() const -> decltype(std::begin(tensor()))
{ return std::begin(tensor()); }
/// Iterator factory
/// \return An iterator to the last data element
auto end() -> decltype(std::end(tensor()))
{ return std::end(tensor()); }
/// Iterator factory
/// \return A const iterator to the last data element
auto end() const -> decltype(std::end(tensor()))
{ return std::end(tensor()); }
// Dimension information accessors -----------------------------------------
/// Size accessors
/// \return The number of elements in the tensor
auto size() const -> decltype(tensor().size())
{ return tensor().size(); }
/// Range accessor
/// \return An object describes the upper and lower bounds of the tensor data
auto range() const -> decltype(tensor().range())
{ return tensor().range(); }
// Element accessors -------------------------------------------------------
/// Const element accessor via subscript operator
/// \param i The ordinal index of the element to be returned
/// \return The i-th element of the tensor
auto operator[](std::size_t i) const -> decltype(tensor()[i])
{ return tensor()[i]; }
/// Element accessor via subscript operator
/// \param i The ordinal index of the element to be returned
/// \return The i-th element of the tensor
auto operator[](std::size_t i) -> decltype(tensor()[i])
{ return tensor()[i]; }
/// Const element accessor via parentheses operator
/// \tparam I The set of coordinate index types (integral types)
/// \param i The set of coordinate indices of the tile element
/// \return The element of the tensor at the coordinate (i...)
template <typename... I>
auto operator()(const I... i) const -> decltype(tensor()(i...))
{ return tensor()(i...); }
/// Element accessor via parentheses operator
/// \tparam I The set of coordinate index types (integral types)
/// \param i The set of coordinate indices of the tile element
/// \return The element of the tensor at the coordinate (i...)
template <typename... I>
auto operator()(const I... i) -> decltype(tensor()(i...))
{ return tensor()(i...); }
// Serialization -----------------------------------------------------------
template <typename Archive,
typename std::enable_if<madness::archive::is_output_archive<Archive>::value>::type* = nullptr>
void serialize(Archive &ar) const {
// Serialize data for empty tile check
bool empty = !static_cast<bool>(pimpl_);
ar & empty;
if (!empty) {
// Serialize tile data
ar & *pimpl_;
}
}
template <typename Archive,
typename std::enable_if<madness::archive::is_input_archive<Archive>::value>::type* = nullptr>
void serialize(Archive &ar) {
// Check for empty tile
bool empty = false;
ar & empty;
if (!empty) {
// Deserialize tile data
tensor_type tensor;
ar & tensor;
// construct a new pimpl
pimpl_ = std::make_shared<T>(std::move(tensor));
} else {
// Set pimpl to an empty tile
pimpl_.reset();
}
}
}; // class Tile
// The following functions define the non-intrusive interface used to apply
// math operations to Tiles. These functions in turn use the non-intrusive
// interface functions to evaluate tiles.
namespace detail {
/// Factory function for tiles
/// \tparam T A tensor type
/// \param t A tensor object
/// \return A tile that wraps a copy of t.
template <typename T>
Tile<T> make_tile(T&& t) { return Tile<T>(std::forward<T>(t)); }
} // namespace detail
// Clone operations ----------------------------------------------------------
/// Create a copy of \c arg
/// \tparam Arg The tile argument type
/// \param arg The tile argument to be permuted
/// \return A (deep) copy of \c arg
template <typename Arg>
inline Tile<Arg> clone(const Tile<Arg>& arg) {
return Tile<Arg>(clone(arg.tensor()));
}
// Empty operations ----------------------------------------------------------
/// Check that \c arg is empty (no data)
/// \tparam Arg The tile argument type
/// \param arg The tile argument to be permuted
/// \return \c true if \c arg is empty, otherwise \c false.
template <typename Arg>
inline bool empty(const Tile<Arg>& arg) {
return arg.empty() || empty(arg.tensor());
}
// Permutation operations ----------------------------------------------------
/// Create a permuted copy of \c arg
/// \tparam Arg The tile argument type
/// \param arg The tile argument to be permuted
/// \param perm The permutation to be applied to the result
/// \return A tile that is equal to <tt>perm ^ arg</tt>
template <typename Arg>
inline auto permute(const Tile<Arg>& arg, const Permutation& perm) ->
Tile<decltype(permute(arg.tensor(), perm))>
{
return Tile<Arg>(permute(arg.tensor(), perm));
}
// Shift operations ----------------------------------------------------------
/// Shift the range of \c arg
/// \tparam Arg The tensor argument type
/// \tparam Index An array type
/// \param arg The tile argument to be shifted
/// \param range_shift The offset to be applied to the argument range
/// \return A copy of the tile with a new range
template <typename Arg, typename Index>
inline auto shift(const Tile<Arg>& arg, const Index& range_shift) ->
Tile<decltype(shift(arg.tensor(), range_shift))>
{ return detail::make_tile(shift(arg.tensor(), range_shift)); }
/// Shift the range of \c arg in place
/// \tparam Arg The tensor argument type
/// \tparam Index An array type
/// \param arg The tile argument to be shifted
/// \param range_shift The offset to be applied to the argument range
/// \return A copy of the tile with a new range
template <typename Arg, typename Index>
inline Tile<Arg>& shift_to(Tile<Arg>& arg, const Index& range_shift) {
shift_to(arg.tensor(), range_shift);
return arg;
}
// Addition operations -------------------------------------------------------
/// Add tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param left The left-hand argument to be added
/// \param right The right-hand argument to be added
/// \return A tile that is equal to <tt>(left + right)</tt>
template <typename Left, typename Right>
inline auto add(const Tile<Left>& left, const Tile<Right>& right) ->
Tile<decltype(add(left.tensor(), right.tensor()))>
{ return detail::make_tile(add(left.tensor(), right.tensor())); }
/// Add and scale tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \tparam Scalar A scalar type
/// \param left The left-hand argument to be added
/// \param right The right-hand argument to be added
/// \param factor The scaling factor
/// \return A tile that is equal to <tt>(left + right) * factor</tt>
template <typename Left, typename Right, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto add(const Tile<Left>& left, const Tile<Right>& right, const Scalar factor) ->
Tile<decltype(add(left.tensor(), right.tensor(), factor))>
{ return detail::make_tile(add(left.tensor(), right.tensor(), factor)); }
/// Add and permute tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param left The left-hand argument to be added
/// \param right The right-hand argument to be added
/// \param perm The permutation to be applied to the result
/// \return A tile that is equal to <tt>perm * (left + right)</tt>
template <typename Left, typename Right>
inline auto add(const Tile<Left>& left, const Tile<Right>& right, const Permutation& perm) ->
Tile<decltype(add(left.tensor(), right.tensor(), perm))>
{ return detail::make_tile(add(left.tensor(), right.tensor(), perm)); }
/// Add, scale, and permute tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \tparam Scalar A scalar type
/// \param left The left-hand argument to be added
/// \param right The right-hand argument to be added
/// \param factor The scaling factor
/// \param perm The permutation to be applied to the result
/// \return A tile that is equal to <tt>perm ^ (left + right) * factor</tt>
template <typename Left, typename Right, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto add(const Tile<Left>& left, const Tile<Right>& right,
const Scalar factor, const Permutation& perm) ->
Tile<decltype(add(left.tensor(), right.tensor(), factor, perm))>
{ return detail::make_tile(add(left.tensor(), right.tensor(), factor, perm)); }
/// Add a constant scalar to tile argument
/// \tparam Arg The tile argument type
/// \tparam Scalar A scalar type
/// \param arg The left-hand argument to be added
/// \param value The constant scalar to be added
/// \return A tile that is equal to <tt>arg + value</tt>
template <typename Arg, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto add(const Tile<Arg>& arg, const Scalar value) ->
Tile<decltype(add(arg.tensor(), value))>
{ return detail::make_tile(add(arg.tensor(), value)); }
/// Add a constant scalar and permute tile argument
/// \tparam Arg The tile argument type
/// \tparam Scalar A scalar type
/// \param arg The left-hand argument to be added
/// \param value The constant scalar value to be added
/// \param perm The permutation to be applied to the result
/// \return A tile that is equal to <tt>perm ^ (arg + value)</tt>
template <typename Arg, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto
add(const Tile<Arg>& arg, const Scalar value, const Permutation& perm) ->
Tile<decltype(add(arg.tensor(), value, perm))>
{ return detail::make_tile(add(arg.tensor(), value, perm)); }
/// Add to the result tile
/// \tparam Result The result tile type
/// \tparam Arg The argument tile type
/// \param result The result tile
/// \param arg The argument to be added to the result
/// \return A tile that is equal to <tt>result[i] += arg[i]</tt>
template <typename Result, typename Arg>
inline Tile<Result>& add_to(Tile<Result>& result, const Tile<Arg>& arg) {
add_to(result.tensor(), arg.tensor());
return result;
}
/// Add and scale to the result tile
/// \tparam Result The result tile type
/// \tparam Arg The argument tile type
/// \tparam Scalar A scalar type
/// \param result The result tile
/// \param arg The argument to be added to \c result
/// \param factor The scaling factor
/// \return A tile that is equal to <tt>(result[i] += arg[i]) *= factor</tt>
template <typename Result, typename Arg, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline Tile<Result>&
add_to(Tile<Result>& result, const Tile<Arg>& arg, const Scalar factor) {
add_to(result.tensor(), arg.tensor(), factor);
return result;
}
/// Add constant scalar to the result tile
/// \tparam Result The result tile type
/// \tparam Scalar A scalar type
/// \param result The result tile
/// \param value The constant scalar to be added to \c result
/// \return A tile that is equal to <tt>(result[i] += arg[i]) *= factor</tt>
template <typename Result, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline Tile<Result>& add_to(Tile<Result>& result, const Scalar value) {
add_to(result.tensor(), value);
return result;
}
// Subtraction ---------------------------------------------------------------
/// Subtract tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param left The left-hand argument to be subtracted
/// \param right The right-hand argument to be subtracted
/// \return A tile that is equal to <tt>(left - right)</tt>
template <typename Left, typename Right>
inline auto
subt(const Tile<Left>& left, const Tile<Right>& right) ->
Tile<decltype(sub(left.tensor(), right.tensor()))>
{ return detail::make_tile(subt(left.tensor(), right.tensor())); }
/// Subtract and scale tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param left The left-hand argument to be subtracted
/// \param right The right-hand argument to be subtracted
/// \param factor The scaling factor
/// \return A tile that is equal to <tt>(left - right) * factor</tt>
template <typename Left, typename Right, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto
subt(const Tile<Left>& left, const Tile<Right>& right, const Scalar factor) ->
Tile<decltype(subt(left.tensor(), right.tensor(), factor))>
{ return detail::make_tile(subt(left.tensor(), right.tensor(), factor)); }
/// Subtract and permute tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param left The left-hand argument to be subtracted
/// \param right The right-hand argument to be subtracted
/// \param perm The permutation to be applied to the result
/// \return A tile that is equal to <tt>perm ^ (left - right)</tt>
template <typename Left, typename Right>
inline auto
subt(const Tile<Left>& left, const Tile<Right>& right, const Permutation& perm) ->
Tile<decltype(subt(left.tensor(), right.tensor(), perm))>
{ return detail::make_tile(subt(left.tensor(), right.tensor(), perm)); }
/// Subtract, scale, and permute tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param left The left-hand argument to be subtracted
/// \param right The right-hand argument to be subtracted
/// \param factor The scaling factor
/// \param perm The permutation to be applied to the result
/// \return A tile that is equal to <tt>perm ^ (left - right) * factor</tt>
template <typename Left, typename Right, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto
subt(const Tile<Left>& left, const Tile<Right>& right, const Scalar factor,
const Permutation& perm) ->
Tile<decltype(subt(left.tensor(), right.tensor(), factor, perm))>
{ return detail::make_tile(subt(left.tensor(), right.tensor(), factor, perm)); }
/// Subtract a scalar constant from the tile argument
/// \tparam Arg The tile argument type
/// \param arg The left-hand argument to be subtracted
/// \param value The constant scalar to be subtracted
/// \return A tile that is equal to <tt>arg - value</tt>
template <typename Arg, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto
subt(const Tile<Arg>& arg, const Scalar value) ->
Tile<decltype(subt(arg.tensor(), value))>
{ return detail::make_tile(subt(arg.tensor(), value)); }
/// Subtract a constant scalar and permute tile argument
/// \tparam Arg The tile argument type
/// \param arg The left-hand argument to be subtracted
/// \param value The constant scalar value to be subtracted
/// \param perm The permutation to be applied to the result
/// \return A tile that is equal to <tt>perm ^ (arg - value)</tt>
template <typename Arg, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto
subt(const Tile<Arg>& arg, const Scalar value, const Permutation& perm) ->
Tile<decltype(subt(arg.tensor(), value, perm))>
{ return detail::make_tile(subt(arg.tensor(), value, perm)); }
/// Subtract from the result tile
/// \tparam Result The result tile type
/// \tparam Arg The argument tile type
/// \param result The result tile
/// \param arg The argument to be subtracted from the result
/// \return A tile that is equal to <tt>result[i] -= arg[i]</tt>
template <typename Result, typename Arg>
inline Tile<Result>& subt_to(Tile<Result>& result, const Tile<Arg>& arg) {
subt_to(result.tensor(), arg.tensor());
return result;
}
/// Subtract and scale from the result tile
/// \tparam Result The result tile type
/// \tparam Arg The argument tile type
/// \param result The result tile
/// \param arg The argument to be subtracted from \c result
/// \param factor The scaling factor
/// \return A tile that is equal to <tt>(result -= arg) *= factor</tt>
template <typename Result, typename Arg, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline Tile<Result>&
subt_to(Tile<Result>& result, const Tile<Arg>& arg, const Scalar factor) {
subt_to(result.tensor(), arg.tensor(), factor);
return result;
}
/// Subtract constant scalar from the result tile
/// \tparam Result The result tile type
/// \param result The result tile
/// \param value The constant scalar to be subtracted from \c result
/// \return A tile that is equal to <tt>(result -= arg) *= factor</tt>
template <typename Result, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline Tile<Result>& subt_to(Tile<Result>& result, const Scalar value) {
subt_to(result.tensor(), value);
return result;
}
// Multiplication operations -------------------------------------------------
/// Multiplication tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param left The left-hand argument to be multiplied
/// \param right The right-hand argument to be multiplied
/// \return A tile that is equal to <tt>(left * right)</tt>
template <typename Left, typename Right>
inline auto mult(const Tile<Left>& left, const Tile<Right>& right) ->
Tile<decltype(mult(left.tensor(), right.tensor()))>
{ return detail::make_tile(mult(left.tensor(), right.tensor())); }
/// Multiplication and scale tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param left The left-hand argument to be multiplied
/// \param right The right-hand argument to be multiplied
/// \param factor The scaling factor
/// \return A tile that is equal to <tt>(left * right) * factor</tt>
template <typename Left, typename Right, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto
mult(const Tile<Left>& left, const Tile<Right>& right, const Scalar factor) ->
Tile<decltype(mult(left.tensor(), right.tensor(), factor))>
{ return detail::make_tile(mult(left.tensor(), right.tensor(), factor)); }
/// Multiplication and permute tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param left The left-hand argument to be multiplied
/// \param right The right-hand argument to be multiplied
/// \param perm The permutation to be applied to the result
/// \return A tile that is equal to <tt>perm ^ (left * right)</tt>
template <typename Left, typename Right>
inline auto
mult(const Tile<Left>& left, const Tile<Right>& right, const Permutation& perm) ->
Tile<decltype(mult(left.tensor(), right.tensor(), perm))>
{ return detail::make_tile(mult(left.tensor(), right.tensor(), perm)); }
/// Multiplication, scale, and permute tile arguments
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param left The left-hand argument to be multiplied
/// \param right The right-hand argument to be multiplied
/// \param factor The scaling factor
/// \param perm The permutation to be applied to the result
/// \return A tile that is equal to <tt>perm ^ (left * right) * factor</tt>
template <typename Left, typename Right, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto
mult(const Tile<Left>& left, const Tile<Right>& right, const Scalar factor,
const Permutation& perm) ->
Tile<decltype(mult(left.tensor(), right.tensor(), factor, perm))>
{ return Tile<Left>(mult(left.tensor(), right.tensor(), factor, perm)); }
/// Multiply to the result tile
/// \tparam Result The result tile type
/// \tparam Arg The argument tile type
/// \param result The result tile to be multiplied
/// \param arg The argument to be multiplied by the result
/// \return A tile that is equal to <tt>result *= arg</tt>
template <typename Result, typename Arg>
inline Tile<Result>& mult_to(Tile<Result>& result, const Tile<Arg>& arg) {
mult_to(result.tensor(), arg.tensor());
return result;
}
/// Multiply and scale to the result tile
/// \tparam Result The result tile type
/// \tparam Arg The argument tile type
/// \param result The result tile to be multiplied
/// \param arg The argument to be multiplied by \c result
/// \param factor The scaling factor
/// \return A tile that is equal to <tt>(result *= arg) *= factor</tt>
template <typename Result, typename Arg, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline Tile<Result>& mult_to(Tile<Result>& result, const Tile<Arg>& arg,
const Scalar factor)
{
mult_to(result.tensor(), arg.tensor(), factor);
return result;
}
// Scaling operations --------------------------------------------------------
/// Scalar the tile argument
/// \tparam Arg The tile argument type
/// \param arg The left-hand argument to be scaled
/// \param factor The scaling factor
/// \return A tile that is equal to <tt>arg * factor</tt>
template <typename Arg, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto scale(const Tile<Arg>& arg, const Scalar factor) ->
Tile<decltype(scale(arg.tensor(), factor))>
{ return detail::make_tile(scale(arg.tensor(), factor)); }
/// Scale and permute tile argument
/// \tparam Arg The tile argument type
/// \param arg The left-hand argument to be scaled
/// \param factor The scaling factor
/// \param perm The permutation to be applied to the result
/// \return A tile that is equal to <tt>perm ^ (arg * factor)</tt>
template <typename Arg, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto
scale(const Tile<Arg>& arg, const Scalar factor, const Permutation& perm) ->
Tile<decltype(scale(arg.tensor(), factor, perm))>
{ return detail::make_tile(scale(arg.tensor(), factor, perm)); }
/// Scale to the result tile
/// \tparam Result The result tile type
/// \param result The result tile to be scaled
/// \param factor The scaling factor
/// \return A tile that is equal to <tt>result *= factor</tt>
template <typename Result, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline Tile<Result>& scale_to(Tile<Result>& result, const Scalar factor) {
scale_to(result.tensor(), factor);
return result;
}
// Negation operations -------------------------------------------------------
/// Negate the tile argument
/// \tparam Arg The tile argument type
/// \param arg The argument to be negated
/// \return A tile that is equal to <tt>-arg</tt>
template <typename Arg>
inline auto neg(const Tile<Arg>& arg) ->
Tile<decltype(neg(arg.tensor()))>
{ return detail::make_tile(neg(arg.tensor())); }
/// Negate and permute tile argument
/// \tparam Arg The tile argument type
/// \param arg The argument to be negated
/// \param perm The permutation to be applied to the result
/// \return A tile that is equal to <tt>perm ^ -arg</tt>
template <typename Arg>
inline auto neg(const Tile<Arg>& arg, const Permutation& perm) ->
Tile<decltype(neg(arg.tensor(), perm))>
{ return detail::make_tile(neg(arg.tensor(), perm)); }
/// Multiplication constant scalar to a tile
/// \tparam Result The result tile type
/// \param result The result tile to be negated
/// \return A tile that is equal to <tt>result = -result</tt>
template <typename Result>
inline Tile<Result>& neg_to(Tile<Result>& result) {
neg_to(result.tensor());
return result;
}
// Complex conjugate operations ---------------------------------------------
/// Create a complex conjugated copy of a tile
/// \tparam Arg The tile argument type
/// \param arg The tile to be conjugated
/// \return A complex conjugated copy of `arg`
template <typename Arg>
inline auto conj(const Tile<Arg>& arg) ->
Tile<decltype(conj(arg.tensor()))>
{ return detail::make_tile(conj(arg.tensor())); }
/// Create a complex conjugated and scaled copy of a tile
/// \tparam Arg The tile argument type
/// \tparam Scalar A scalar type
/// \param arg The tile to be conjugated
/// \param factor The scaling factor
/// \return A complex conjugated and scaled copy of `arg`
template <typename Arg, typename Scalar,
typename std::enable_if<
TiledArray::detail::is_numeric<Scalar>::value
>::type* = nullptr>
inline auto conj(const Tile<Arg>& arg, const Scalar factor) ->
Tile<decltype(conj(arg.tensor(), factor))>
{ return detail::make_tile(conj(arg.tensor(), factor)); }
/// Create a complex conjugated and permuted copy of a tile
/// \tparam Arg The tile argument type
/// \param arg The tile to be conjugated
/// \param perm The permutation to be applied to `arg`
/// \return A complex conjugated and permuted copy of `arg`
template <typename Arg>
inline auto conj(const Tile<Arg>& arg, const Permutation& perm) ->
Tile<decltype(conj(arg.tensor(), perm))>
{ return detail::make_tile(conj(arg.tensor(), perm)); }
/// Create a complex conjugated, scaled, and permuted copy of a tile
/// \tparam Arg The tile argument type
/// \tparam Scalar A scalar type
/// \param arg The argument to be conjugated
/// \param factor The scaling factor
/// \param perm The permutation to be applied to `arg`
/// \return A complex conjugated, scaled, and permuted copy of `arg`
template <typename Arg, typename Scalar,
typename std::enable_if<
TiledArray::detail::is_numeric<Scalar>::value
>::type* = nullptr>
inline auto conj(const Tile<Arg>& arg, const Scalar factor, const Permutation& perm) ->
Tile<decltype(conj(arg.tensor(), factor, perm))>
{ return detail::make_tile(conj(arg.tensor(), factor, perm)); }
/// In-place complex conjugate a tile
/// \tparam Result The tile type
/// \param result The tile to be conjugated
/// \return A reference to `result`
template <typename Result>
inline Result& conj_to(Tile<Result>& result) {
conj_to(result.tensor());
return result;
}
/// In-place complex conjugate and scale a tile
/// \tparam Result The tile type
/// \tparam Scalar A scalar type
/// \param result The tile to be conjugated
/// \param factor The scaling factor
/// \return A reference to `result`
template <typename Result, typename Scalar,
typename std::enable_if<
TiledArray::detail::is_numeric<Scalar>::value
>::type* = nullptr>
inline Result& conj_to(Tile<Result>& result, const Scalar factor) {
conj_to(result.tensor(), factor);
return result;
}
// Contraction operations ----------------------------------------------------
/// Contract and scale tile arguments
/// The contraction is done via a GEMM operation with fused indices as defined
/// by \c gemm_config.
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param left The left-hand argument to be contracted
/// \param right The right-hand argument to be contracted
/// \param factor The scaling factor
/// \param gemm_config A helper object used to simplify gemm operations
/// \return A tile that is equal to <tt>(left * right) * factor</tt>
template <typename Left, typename Right, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline auto gemm(const Tile<Left>& left, const Tile<Right>& right,
const Scalar factor, const math::GemmHelper& gemm_config) ->
Tile<decltype(gemm(left.tensor(), right.tensor(), factor, gemm_config))>
{ return detail::make_tile(gemm(left.tensor(), right.tensor(), factor, gemm_config)); }
/// Contract and scale tile arguments to the result tile
/// The contraction is done via a GEMM operation with fused indices as defined
/// by \c gemm_config.
/// \tparam Result The result tile type
/// \tparam Left The left-hand tile type
/// \tparam Right The right-hand tile type
/// \param result The contracted result
/// \param left The left-hand argument to be contracted
/// \param right The right-hand argument to be contracted
/// \param factor The scaling factor
/// \param gemm_config A helper object used to simplify gemm operations
/// \return A tile that is equal to <tt>result = (left * right) * factor</tt>
template <typename Result, typename Left, typename Right, typename Scalar,
typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
inline Tile<Result>& gemm(Tile<Result>& result, const Tile<Left>& left,
const Tile<Right>& right, const Scalar factor,
const math::GemmHelper& gemm_config)
{
gemm(result.tensor(), left.tensor(), right.tensor(), factor, gemm_config);
return result;
}
// Reduction operations ------------------------------------------------------
/// Sum the hyper-diagonal elements a tile
/// \tparam Arg The tile argument type
/// \param arg The argument to be summed
/// \return The sum of the hyper-diagonal elements of \c arg
template <typename Arg>
inline auto trace(const Tile<Arg>& arg) -> decltype(trace(arg.tensor()))
{ return trace(arg.tensor()); }
/// Sum the elements of a tile
/// \tparam Arg The tile argument type
/// \param arg The argument to be summed
/// \return A scalar that is equal to <tt>sum_i arg[i]</tt>
template <typename Arg>
inline auto sum(const Tile<Arg>& arg) -> decltype(sum(arg.tensor()))
{ return sum(arg.tensor()); }
/// Multiply the elements of a tile
/// \tparam Arg The tile argument type
/// \param arg The argument to be multiplied
/// \return A scalar that is equal to <tt>prod_i arg[i]</tt>
template <typename Arg>
inline auto product(const Tile<Arg>& arg) -> decltype(product(arg.tensor()))
{ return product(arg.tensor()); }
/// Squared vector 2-norm of the elements of a tile
/// \tparam Arg The tile argument type
/// \param arg The argument to be multiplied and summed
/// \return The sum of the squared elements of \c arg
/// \return A scalar that is equal to <tt>sum_i arg[i] * arg[i]</tt>
template <typename Arg>
inline auto squared_norm(const Tile<Arg>& arg) ->
decltype(squared_norm(arg.tensor()))
{ return squared_norm(arg.tensor()); }
/// Vector 2-norm of a tile
/// \tparam Arg The tile argument type
/// \param arg The argument to be multiplied and summed
/// \return A scalar that is equal to <tt>sqrt(sum_i arg[i] * arg[i])</tt>
template <typename Arg>
inline auto norm(const Tile<Arg>& arg) -> decltype(norm(arg.tensor()))
{ return norm(arg.tensor()); }
/// Maximum element of a tile
/// \tparam Arg The tile argument type
/// \param arg The argument to find the maximum
/// \return A scalar that is equal to <tt>max(arg)</tt>
template <typename Arg>
inline auto max(const Tile<Arg>& arg) -> decltype(max(arg.tensor()))
{ return max(arg.tensor()); }
/// Minimum element of a tile
/// \tparam Arg The tile argument type
/// \param arg The argument to find the minimum
/// \return A scalar that is equal to <tt>min(arg)</tt>
template <typename Arg>
inline auto min(const Tile<Arg>& arg) -> decltype(min(arg.tensor()))
{ return min(arg.tensor()); }
/// Absolute maximum element of a tile
/// \tparam Arg The tile argument type
/// \param arg The argument to find the maximum
/// \return A scalar that is equal to <tt>abs(max(arg))</tt>
template <typename Arg>
inline auto abs_max(const Tile<Arg>& arg) -> decltype(abs_max(arg.tensor()))
{ return abs_max(arg.tensor()); }
/// Absolute mainimum element of a tile
/// \tparam Arg The tile argument type
/// \param arg The argument to find the minimum
/// \return A scalar that is equal to <tt>abs(min(arg))</tt>
template <typename Arg>
inline auto abs_min(const Tile<Arg>& arg) -> decltype(abs_min(arg.tensor()))
{ return abs_min(arg.tensor()); }
/// Vector dot product of a tile
/// \tparam Left The left-hand argument type
/// \tparam Right The right-hand argument type
/// \param left The left-hand argument tile to be contracted
/// \param right The right-hand argument tile to be contracted
/// \return A scalar that is equal to <tt>sum_i left[i] * right[i]</tt>
template <typename Left, typename Right>
inline auto dot(const Tile<Left>& left, const Tile<Right>& right) ->
decltype(dot(left.tensor(), right.tensor()))
{ return dot(left.tensor(), right.tensor()); }
// Tile arithmetic operators -------------------------------------------------
/// Add tiles operator
/// \tparam Left The left-hand tensor type
/// \tparam Right The right-hand tensor type
/// \param left The left-hand tile
/// \param right The right-hand tile
/// \return The sum of the \c left and \c right tiles
template <typename Left, typename Right>
inline auto operator+(const Tile<Left>& left, const Tile<Right>& right) ->
decltype(add(left, right))
{ return add(left, right); }
/// In-place add tile operator
/// Add the elements of the \c right tile to that of the \c left tile.
/// \tparam Left The left-hand tensor type
/// \tparam Right The right-hand tensor type
/// \param left The left-hand tile
/// \param right The right-hand tile
/// \return The \c left tile, <tt>left[i] += right[i]</tt>
template <typename Left, typename Right>
inline Tile<Left>& operator+=(Tile<Left>& left, const Tile<Right>& right)
{ return add_to(left, right); }
/// Subtract tiles operator
/// \tparam Left The left-hand tensor type
/// \tparam Right The right-hand tensor type
/// \param left The left-hand tile
/// \param right The right-hand tile
/// \return The difference of the \c left and \c right tiles
template <typename Left, typename Right>
inline auto operator-(const Tile<Left>& left, const Tile<Right>& right) ->
decltype(subt(left, right))
{ return subt(left, right); }
/// In-place subtract tile operator
/// Subtract the elements of the \c right tile from that of the \c left tile.
/// \tparam Left The left-hand tensor type
/// \tparam Right The right-hand tensor type
/// \param left The left-hand tile
/// \param right The right-hand tile
/// \return The \c left tile, <tt>left[i] -= right[i]</tt>
template <typename Left, typename Right>
inline Tile<Left>& operator-=(Tile<Left>& left, const Tile<Right>& right)
{ return subt_to(left, right); }
/// Product tiles operator
/// \tparam Left The left-hand tensor type
/// \tparam Right The right-hand tensor type
/// \param left The left-hand tile
/// \param right The right-hand tile
/// \return The product of the \c left and \c right tiles
template <typename Left, typename Right>
inline auto operator*(const Tile<Left>& left, const Tile<Right>& right) ->
decltype(mult(left, right))
{ return mult(left, right); }
/// Scale tile operator
/// \tparam Left The left-hand tensor type
/// \tparam Right The right-hand scalar type
/// \param left The left-hand tile
/// \param right The right-hand scaling factor
/// \return The \c left tile scaled by \c right
template <typename Left, typename Right,
typename std::enable_if<detail::is_numeric<Right>::value>::type* = nullptr>
inline auto operator*(const Tile<Left>& left, const Right right) ->
decltype(scale(left, right))
{ return scale(left, right); }
/// Scale tile operator
/// \tparam Left The left-hand scalar type
/// \tparam Right The right-hand scalar type
/// \param left The left-hand scaling factor
/// \param right The right-hand tile
/// \return The \c right tile scaled by \c left
template <typename Left, typename Right,
typename std::enable_if<TiledArray::detail::is_numeric<Left>::value>::type* = nullptr>
inline auto operator*(const Left left, const Tile<Right>& right) ->
decltype(scale(right, left))
{ return scale(right, left); }
/// In-place product tile operator
/// Multiply the elements of the \c right tile by that of the \c left tile.
/// \tparam Left The left-hand tensor type
/// \tparam Right The right-hand tensor type
/// \param left The left-hand tile
/// \param right The right-hand tile
/// \return The \c left tile, <tt>left[i] *= right[i]</tt>
template <typename Left, typename Right>
inline Tile<Left>& operator*=(Tile<Left>& left, const Tile<Right>& right)
{ return mult_to(left, right); }
/// Negate tile operator
/// \tparam Arg The argument tensor type
/// \param arg The argument tile
/// \return A negated copy of \c arg
template <typename Arg>
inline auto operator-(const Tile<Arg>& arg) -> decltype(neg(arg))
{ return neg(arg); }
/// Permute tile operator
/// \tparam Arg The argument tensor type
/// \param perm The permutation to be applied to \c arg
/// \param arg The argument tile
/// \return A permuted copy of \c arg
template <typename Arg>
inline auto operator*(const Permutation& perm, Tile<Arg> const arg) ->
decltype(permute(arg, perm))
{ return permute(arg, perm); }
/// Tile output stream operator
/// \tparam T The tensor type
/// \param os The output stream
/// \param tile The tile to be printted
/// \return The modified output stream
template <typename T>
inline std::ostream &operator<<(std::ostream &os, const Tile<T>& tile) {
os << tile.tensor();
return os;
}
/** @}*/
} // namespace TiledArray
#endif // TILEDARRAY_TILE_H__INCLUDED
|