This file is indexed.

/usr/include/TiledArray/tile.h is in libtiledarray-dev 0.6.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2015  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifndef TILEDARRAY_TILE_H__INCLUDED
#define TILEDARRAY_TILE_H__INCLUDED

#include <TiledArray/tile_op/tile_interface.h>
#include <memory>

// Forward declaration of MADNESS archive type traits
namespace madness {
  namespace archive {

    template <typename> struct is_output_archive;
    template <typename> struct is_input_archive;

  }  // namespace archive
}  // namespace madness

namespace TiledArray {


  /**
   * \defgroup TileInterface Tile interface for user defined tensor types
   * @{
   */

  /// An N-dimensional shallow copy wrapper for tile objects

  /// \c Tile represents a block of an \c Array. The rank of the tile block is
  /// the same as the owning \c Array object. In order for a user defined tensor
  /// object to be used in TiledArray expressions, users must also define the
  /// following functions:
  /// \li \c add
  /// \li \c add_to
  /// \li \c subt
  /// \li \c subt_to
  /// \li \c mult
  /// \li \c mult_to
  /// \li \c scal
  /// \li \c scal_to
  /// \li \c gemm
  /// \li \c neg
  /// \li \c permute
  /// \li \c empty
  /// \li \c shift
  /// \li \c shift_to
  /// \li \c trance
  /// \li \c sum
  /// \li \c product
  /// \li \c squared_norm
  /// \li \c norm
  /// \li \c min
  /// \li \c max
  /// \li \c abs_min
  /// \li \c abs_max
  /// \li \c dot
  /// as for the intrusive or non-instrusive interface. See the
  /// \ref NonIntrusiveTileInterface "non-intrusive tile interface"
  /// documentation for more details.
  /// \tparam T The tensor type used to represent tile data
  template <typename T>
  class Tile {
  public:
    /// This object type
    typedef Tile<T> Tile_;
    /// Tensor type used to represent tile data
    typedef T tensor_type;

  private:

    std::shared_ptr<tensor_type> pimpl_;

  public:

    // Constructors and destructor ---------------------------------------------

    Tile() = default;
    Tile(const Tile_&) = default;
    Tile(Tile_&&) = default;

    /// Forwarding ctor

    /// To simplify construction, Tile provides ctors that all forward their args
    /// to T. To avoid clashing with copy and move ctors need conditional instantiation --
    /// e.g. see http://ericniebler.com/2013/08/07/universal-references-and-the-copy-constructo/
    /// NB For Arg that can be converted to Tile also use the copy/move ctors.
    template <typename Arg,
      typename = typename std::enable_if<
        not detail::is_same_or_derived<Tile_,Arg>::value &&
        not std::is_convertible<Arg,Tile_>::value
      >::type
    >
    explicit Tile(Arg&& arg) :
      pimpl_(std::make_shared<tensor_type>(std::forward<Arg>(arg)))
    { }

    template <typename Arg1, typename Arg2, typename ... Args>
    Tile(Arg1&& arg1, Arg2&& arg2, Args&&... args) :
      pimpl_(std::make_shared<tensor_type>(std::forward<Arg1>(arg1),
                                           std::forward<Arg2>(arg2),
                                           std::forward<Args>(args)...))
    { }

    ~Tile() = default;

    // Assignment operators ----------------------------------------------------

    Tile_& operator=(Tile_&&) = default;
    Tile_& operator=(const Tile_&) = default;

    Tile_& operator=(const tensor_type& tensor) {
      *pimpl_ = tensor;
      return *this;
    }

    Tile_& operator=(tensor_type&& tensor) {
      *pimpl_ = std::move(tensor);
      return *this;
    }


    // State accessor ----------------------------------------------------------

    bool empty() const {
      return not bool(pimpl_);
    }

    // Tile accessor -----------------------------------------------------------

    tensor_type& tensor() { return *pimpl_; }

    const tensor_type& tensor() const { return *pimpl_; }


    // Iterator accessor -------------------------------------------------------

    /// Iterator factory

    /// \return An iterator to the first data element
    auto begin() -> decltype(std::begin(tensor()))
    { return std::begin(tensor()); }

    /// Iterator factory

    /// \return A const iterator to the first data element
    auto begin() const -> decltype(std::begin(tensor()))
    { return std::begin(tensor()); }

    /// Iterator factory

    /// \return An iterator to the last data element
    auto end() -> decltype(std::end(tensor()))
    { return std::end(tensor()); }

    /// Iterator factory

    /// \return A const iterator to the last data element
    auto end() const -> decltype(std::end(tensor()))
    { return std::end(tensor()); }


    // Dimension information accessors -----------------------------------------

    /// Size accessors

    /// \return The number of elements in the tensor
    auto size() const -> decltype(tensor().size())
    { return tensor().size(); }

    /// Range accessor

    /// \return An object describes the upper and lower bounds of  the tensor data
    auto range() const -> decltype(tensor().range())
    { return tensor().range(); }


    // Element accessors -------------------------------------------------------

    /// Const element accessor via subscript operator

    /// \param i The ordinal index of the element to be returned
    /// \return The i-th element of the tensor
    auto operator[](std::size_t i) const -> decltype(tensor()[i])
    { return tensor()[i]; }

    /// Element accessor via subscript operator

    /// \param i The ordinal index of the element to be returned
    /// \return The i-th element of the tensor
    auto operator[](std::size_t i) -> decltype(tensor()[i])
    { return tensor()[i]; }

    /// Const element accessor via parentheses operator

    /// \tparam I The set of coordinate index types (integral types)
    /// \param i The set of coordinate indices of the tile element
    /// \return The element of the tensor at the coordinate (i...)
    template <typename... I>
    auto operator()(const I... i) const -> decltype(tensor()(i...))
    { return tensor()(i...); }

    /// Element accessor via parentheses operator

    /// \tparam I The set of coordinate index types (integral types)
    /// \param i The set of coordinate indices of the tile element
    /// \return The element of the tensor at the coordinate (i...)
    template <typename... I>
    auto operator()(const I... i) -> decltype(tensor()(i...))
    { return tensor()(i...); }


    // Serialization -----------------------------------------------------------

    template <typename Archive,
        typename std::enable_if<madness::archive::is_output_archive<Archive>::value>::type* = nullptr>
    void serialize(Archive &ar) const {
      // Serialize data for empty tile check
      bool empty = !static_cast<bool>(pimpl_);
      ar & empty;
      if (!empty) {
        // Serialize tile data
        ar & *pimpl_;
      }
    }

    template <typename Archive,
        typename std::enable_if<madness::archive::is_input_archive<Archive>::value>::type* = nullptr>
    void serialize(Archive &ar) {
      // Check for empty tile
      bool empty = false;
      ar & empty;

      if (!empty) {
        // Deserialize tile data
        tensor_type tensor;
        ar & tensor;

        // construct a new pimpl
        pimpl_ = std::make_shared<T>(std::move(tensor));
      } else {
        // Set pimpl to an empty tile
        pimpl_.reset();
      }
    }

  }; // class Tile

  // The following functions define the non-intrusive interface used to apply
  // math operations to Tiles. These functions in turn use the non-intrusive
  // interface functions to evaluate tiles.

  namespace detail {

    /// Factory function for tiles

    /// \tparam T A tensor type
    /// \param t A tensor object
    /// \return A tile that wraps a copy of t.
    template <typename T>
    Tile<T> make_tile(T&& t) { return Tile<T>(std::forward<T>(t)); }

  }  // namespace detail


  // Clone operations ----------------------------------------------------------

  /// Create a copy of \c arg

  /// \tparam Arg The tile argument type
  /// \param arg The tile argument to be permuted
  /// \return A (deep) copy of \c arg
  template <typename Arg>
  inline Tile<Arg> clone(const Tile<Arg>& arg) {
    return Tile<Arg>(clone(arg.tensor()));
  }


  // Empty operations ----------------------------------------------------------

  /// Check that \c arg is empty (no data)

  /// \tparam Arg The tile argument type
  /// \param arg The tile argument to be permuted
  /// \return \c true if \c arg is empty, otherwise \c false.
  template <typename Arg>
  inline bool empty(const Tile<Arg>& arg) {
    return arg.empty() || empty(arg.tensor());
  }


  // Permutation operations ----------------------------------------------------

  /// Create a permuted copy of \c arg

  /// \tparam Arg The tile argument type
  /// \param arg The tile argument to be permuted
  /// \param perm The permutation to be applied to the result
  /// \return A tile that is equal to <tt>perm ^ arg</tt>
  template <typename Arg>
  inline auto permute(const Tile<Arg>& arg, const Permutation& perm) ->
      Tile<decltype(permute(arg.tensor(), perm))>
  {
    return Tile<Arg>(permute(arg.tensor(), perm));
  }


  // Shift operations ----------------------------------------------------------

  /// Shift the range of \c arg

  /// \tparam Arg The tensor argument type
  /// \tparam Index An array type
  /// \param arg The tile argument to be shifted
  /// \param range_shift The offset to be applied to the argument range
  /// \return A copy of the tile with a new range
  template <typename Arg, typename Index>
  inline auto shift(const Tile<Arg>& arg, const Index& range_shift) ->
      Tile<decltype(shift(arg.tensor(), range_shift))>
  { return detail::make_tile(shift(arg.tensor(), range_shift)); }

  /// Shift the range of \c arg in place

  /// \tparam Arg The tensor argument type
  /// \tparam Index An array type
  /// \param arg The tile argument to be shifted
  /// \param range_shift The offset to be applied to the argument range
  /// \return A copy of the tile with a new range
  template <typename Arg, typename Index>
  inline Tile<Arg>& shift_to(Tile<Arg>& arg, const Index& range_shift) {
    shift_to(arg.tensor(), range_shift);
    return arg;
  }


  // Addition operations -------------------------------------------------------

  /// Add tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param left The left-hand argument to be added
  /// \param right The right-hand argument to be added
  /// \return A tile that is equal to <tt>(left + right)</tt>
  template <typename Left, typename Right>
  inline auto add(const Tile<Left>& left, const Tile<Right>& right) ->
    Tile<decltype(add(left.tensor(), right.tensor()))>
  { return detail::make_tile(add(left.tensor(), right.tensor())); }

  /// Add and scale tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \tparam Scalar A scalar type
  /// \param left The left-hand argument to be added
  /// \param right The right-hand argument to be added
  /// \param factor The scaling factor
  /// \return A tile that is equal to <tt>(left + right) * factor</tt>
  template <typename Left, typename Right, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto add(const Tile<Left>& left, const Tile<Right>& right, const Scalar factor) ->
      Tile<decltype(add(left.tensor(), right.tensor(), factor))>
  { return detail::make_tile(add(left.tensor(), right.tensor(), factor)); }

  /// Add and permute tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param left The left-hand argument to be added
  /// \param right The right-hand argument to be added
  /// \param perm The permutation to be applied to the result
  /// \return A tile that is equal to <tt>perm * (left + right)</tt>
  template <typename Left, typename Right>
  inline auto add(const Tile<Left>& left, const Tile<Right>& right, const Permutation& perm) ->
      Tile<decltype(add(left.tensor(), right.tensor(), perm))>
  { return detail::make_tile(add(left.tensor(), right.tensor(), perm)); }

  /// Add, scale, and permute tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \tparam Scalar A scalar type
  /// \param left The left-hand argument to be added
  /// \param right The right-hand argument to be added
  /// \param factor The scaling factor
  /// \param perm The permutation to be applied to the result
  /// \return A tile that is equal to <tt>perm ^ (left + right) * factor</tt>
  template <typename Left, typename Right, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto add(const Tile<Left>& left, const Tile<Right>& right,
      const Scalar factor, const Permutation& perm) ->
      Tile<decltype(add(left.tensor(), right.tensor(), factor, perm))>
  { return detail::make_tile(add(left.tensor(), right.tensor(), factor, perm)); }

  /// Add a constant scalar to tile argument

  /// \tparam Arg The tile argument type
  /// \tparam Scalar A scalar type
  /// \param arg The left-hand argument to be added
  /// \param value The constant scalar to be added
  /// \return A tile that is equal to <tt>arg + value</tt>
  template <typename Arg, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto add(const Tile<Arg>& arg, const Scalar value) ->
      Tile<decltype(add(arg.tensor(), value))>
  { return detail::make_tile(add(arg.tensor(), value)); }

  /// Add a constant scalar and permute tile argument

  /// \tparam Arg The tile argument type
  /// \tparam Scalar A scalar type
  /// \param arg The left-hand argument to be added
  /// \param value The constant scalar value to be added
  /// \param perm The permutation to be applied to the result
  /// \return A tile that is equal to <tt>perm ^ (arg + value)</tt>
  template <typename Arg, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto
  add(const Tile<Arg>& arg, const Scalar value, const Permutation& perm) ->
      Tile<decltype(add(arg.tensor(), value, perm))>
  { return detail::make_tile(add(arg.tensor(), value, perm)); }

  /// Add to the result tile

  /// \tparam Result The result tile type
  /// \tparam Arg The argument tile type
  /// \param result The result tile
  /// \param arg The argument to be added to the result
  /// \return A tile that is equal to <tt>result[i] += arg[i]</tt>
  template <typename Result, typename Arg>
  inline Tile<Result>& add_to(Tile<Result>& result, const Tile<Arg>& arg) {
    add_to(result.tensor(), arg.tensor());
    return result;
  }

  /// Add and scale to the result tile

  /// \tparam Result The result tile type
  /// \tparam Arg The argument tile type
  /// \tparam Scalar A scalar type
  /// \param result The result tile
  /// \param arg The argument to be added to \c result
  /// \param factor The scaling factor
  /// \return A tile that is equal to <tt>(result[i] += arg[i]) *= factor</tt>
  template <typename Result, typename Arg, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline Tile<Result>&
  add_to(Tile<Result>& result, const Tile<Arg>& arg, const Scalar factor) {
    add_to(result.tensor(), arg.tensor(), factor);
    return result;
  }

  /// Add constant scalar to the result tile

  /// \tparam Result The result tile type
  /// \tparam Scalar A scalar type
  /// \param result The result tile
  /// \param value The constant scalar to be added to \c result
  /// \return A tile that is equal to <tt>(result[i] += arg[i]) *= factor</tt>
  template <typename Result, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline Tile<Result>& add_to(Tile<Result>& result, const Scalar value) {
    add_to(result.tensor(), value);
    return result;
  }


  // Subtraction ---------------------------------------------------------------

  /// Subtract tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param left The left-hand argument to be subtracted
  /// \param right The right-hand argument to be subtracted
  /// \return A tile that is equal to <tt>(left - right)</tt>
  template <typename Left, typename Right>
  inline auto
  subt(const Tile<Left>& left, const Tile<Right>& right) ->
      Tile<decltype(sub(left.tensor(), right.tensor()))>
  { return detail::make_tile(subt(left.tensor(), right.tensor())); }

  /// Subtract and scale tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param left The left-hand argument to be subtracted
  /// \param right The right-hand argument to be subtracted
  /// \param factor The scaling factor
  /// \return A tile that is equal to <tt>(left - right) * factor</tt>
  template <typename Left, typename Right, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto
  subt(const Tile<Left>& left, const Tile<Right>& right, const Scalar factor) ->
      Tile<decltype(subt(left.tensor(), right.tensor(), factor))>
  { return detail::make_tile(subt(left.tensor(), right.tensor(), factor)); }

  /// Subtract and permute tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param left The left-hand argument to be subtracted
  /// \param right The right-hand argument to be subtracted
  /// \param perm The permutation to be applied to the result
  /// \return A tile that is equal to <tt>perm ^ (left - right)</tt>
  template <typename Left, typename Right>
  inline auto
  subt(const Tile<Left>& left, const Tile<Right>& right, const Permutation& perm) ->
      Tile<decltype(subt(left.tensor(), right.tensor(), perm))>
  { return detail::make_tile(subt(left.tensor(), right.tensor(), perm)); }

  /// Subtract, scale, and permute tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param left The left-hand argument to be subtracted
  /// \param right The right-hand argument to be subtracted
  /// \param factor The scaling factor
  /// \param perm The permutation to be applied to the result
  /// \return A tile that is equal to <tt>perm ^ (left - right) * factor</tt>
  template <typename Left, typename Right, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto
  subt(const Tile<Left>& left, const Tile<Right>& right, const Scalar factor,
      const Permutation& perm) ->
      Tile<decltype(subt(left.tensor(), right.tensor(), factor, perm))>
  { return detail::make_tile(subt(left.tensor(), right.tensor(), factor, perm)); }

  /// Subtract a scalar constant from the tile argument

  /// \tparam Arg The tile argument type
  /// \param arg The left-hand argument to be subtracted
  /// \param value The constant scalar to be subtracted
  /// \return A tile that is equal to <tt>arg - value</tt>
  template <typename Arg, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto
  subt(const Tile<Arg>& arg, const Scalar value) ->
      Tile<decltype(subt(arg.tensor(), value))>
  { return detail::make_tile(subt(arg.tensor(), value)); }

  /// Subtract a constant scalar and permute tile argument

  /// \tparam Arg The tile argument type
  /// \param arg The left-hand argument to be subtracted
  /// \param value The constant scalar value to be subtracted
  /// \param perm The permutation to be applied to the result
  /// \return A tile that is equal to <tt>perm ^ (arg - value)</tt>
  template <typename Arg, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto
  subt(const Tile<Arg>& arg, const Scalar value, const Permutation& perm) ->
      Tile<decltype(subt(arg.tensor(), value, perm))>
  { return detail::make_tile(subt(arg.tensor(), value, perm)); }

  /// Subtract from the result tile

  /// \tparam Result The result tile type
  /// \tparam Arg The argument tile type
  /// \param result The result tile
  /// \param arg The argument to be subtracted from the result
  /// \return A tile that is equal to <tt>result[i] -= arg[i]</tt>
  template <typename Result, typename Arg>
  inline Tile<Result>& subt_to(Tile<Result>& result, const Tile<Arg>& arg) {
    subt_to(result.tensor(), arg.tensor());
    return result;
  }

  /// Subtract and scale from the result tile

  /// \tparam Result The result tile type
  /// \tparam Arg The argument tile type
  /// \param result The result tile
  /// \param arg The argument to be subtracted from \c result
  /// \param factor The scaling factor
  /// \return A tile that is equal to <tt>(result -= arg) *= factor</tt>
  template <typename Result, typename Arg, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline Tile<Result>&
  subt_to(Tile<Result>& result, const Tile<Arg>& arg, const Scalar factor) {
    subt_to(result.tensor(), arg.tensor(), factor);
    return result;
  }

  /// Subtract constant scalar from the result tile

  /// \tparam Result The result tile type
  /// \param result The result tile
  /// \param value The constant scalar to be subtracted from \c result
  /// \return A tile that is equal to <tt>(result -= arg) *= factor</tt>
  template <typename Result, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline Tile<Result>& subt_to(Tile<Result>& result, const Scalar value) {
    subt_to(result.tensor(), value);
    return result;
  }


  // Multiplication operations -------------------------------------------------


  /// Multiplication tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param left The left-hand argument to be multiplied
  /// \param right The right-hand argument to be multiplied
  /// \return A tile that is equal to <tt>(left * right)</tt>
  template <typename Left, typename Right>
  inline auto mult(const Tile<Left>& left, const Tile<Right>& right) ->
      Tile<decltype(mult(left.tensor(), right.tensor()))>
  { return detail::make_tile(mult(left.tensor(), right.tensor())); }

  /// Multiplication and scale tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param left The left-hand argument to be multiplied
  /// \param right The right-hand argument to be multiplied
  /// \param factor The scaling factor
  /// \return A tile that is equal to <tt>(left * right) * factor</tt>
  template <typename Left, typename Right, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto
  mult(const Tile<Left>& left, const Tile<Right>& right,  const Scalar factor) ->
      Tile<decltype(mult(left.tensor(), right.tensor(), factor))>
  { return detail::make_tile(mult(left.tensor(), right.tensor(), factor)); }

  /// Multiplication and permute tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param left The left-hand argument to be multiplied
  /// \param right The right-hand argument to be multiplied
  /// \param perm The permutation to be applied to the result
  /// \return A tile that is equal to <tt>perm ^ (left * right)</tt>
  template <typename Left, typename Right>
  inline auto
  mult(const Tile<Left>& left, const Tile<Right>& right, const Permutation& perm) ->
      Tile<decltype(mult(left.tensor(), right.tensor(), perm))>
  { return detail::make_tile(mult(left.tensor(), right.tensor(), perm)); }

  /// Multiplication, scale, and permute tile arguments

  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param left The left-hand argument to be multiplied
  /// \param right The right-hand argument to be multiplied
  /// \param factor The scaling factor
  /// \param perm The permutation to be applied to the result
  /// \return A tile that is equal to <tt>perm ^ (left * right) * factor</tt>
  template <typename Left, typename Right, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto
  mult(const Tile<Left>& left, const Tile<Right>& right, const Scalar factor,
      const Permutation& perm) ->
      Tile<decltype(mult(left.tensor(), right.tensor(), factor, perm))>
  { return Tile<Left>(mult(left.tensor(), right.tensor(), factor, perm)); }

  /// Multiply to the result tile

  /// \tparam Result The result tile type
  /// \tparam Arg The argument tile type
  /// \param result The result tile  to be multiplied
  /// \param arg The argument to be multiplied by the result
  /// \return A tile that is equal to <tt>result *= arg</tt>
  template <typename Result, typename Arg>
  inline Tile<Result>& mult_to(Tile<Result>& result, const Tile<Arg>& arg) {
    mult_to(result.tensor(), arg.tensor());
    return result;
  }

  /// Multiply and scale to the result tile

  /// \tparam Result The result tile type
  /// \tparam Arg The argument tile type
  /// \param result The result tile to be multiplied
  /// \param arg The argument to be multiplied by \c result
  /// \param factor The scaling factor
  /// \return A tile that is equal to <tt>(result *= arg) *= factor</tt>
  template <typename Result, typename Arg, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline Tile<Result>& mult_to(Tile<Result>& result, const Tile<Arg>& arg,
      const Scalar factor)
  {
    mult_to(result.tensor(), arg.tensor(), factor);
    return result;
  }


  // Scaling operations --------------------------------------------------------

  /// Scalar the tile argument

  /// \tparam Arg The tile argument type
  /// \param arg The left-hand argument to be scaled
  /// \param factor The scaling factor
  /// \return A tile that is equal to <tt>arg * factor</tt>
  template <typename Arg, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto scale(const Tile<Arg>& arg, const Scalar factor) ->
      Tile<decltype(scale(arg.tensor(), factor))>
  { return detail::make_tile(scale(arg.tensor(), factor)); }

  /// Scale and permute tile argument

  /// \tparam Arg The tile argument type
  /// \param arg The left-hand argument to be scaled
  /// \param factor The scaling factor
  /// \param perm The permutation to be applied to the result
  /// \return A tile that is equal to <tt>perm ^ (arg * factor)</tt>
  template <typename Arg, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto
  scale(const Tile<Arg>& arg, const Scalar factor, const Permutation& perm) ->
      Tile<decltype(scale(arg.tensor(), factor, perm))>
  { return detail::make_tile(scale(arg.tensor(), factor, perm)); }

  /// Scale to the result tile

  /// \tparam Result The result tile type
  /// \param result The result tile to be scaled
  /// \param factor The scaling factor
  /// \return A tile that is equal to <tt>result *= factor</tt>
  template <typename Result, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline Tile<Result>& scale_to(Tile<Result>& result, const Scalar factor) {
    scale_to(result.tensor(), factor);
    return result;
  }


  // Negation operations -------------------------------------------------------

  /// Negate the tile argument

  /// \tparam Arg The tile argument type
  /// \param arg The argument to be negated
  /// \return A tile that is equal to <tt>-arg</tt>
  template <typename Arg>
  inline auto neg(const Tile<Arg>& arg) ->
      Tile<decltype(neg(arg.tensor()))>
  { return detail::make_tile(neg(arg.tensor())); }

  /// Negate and permute tile argument

  /// \tparam Arg The tile argument type
  /// \param arg The argument to be negated
  /// \param perm The permutation to be applied to the result
  /// \return A tile that is equal to <tt>perm ^ -arg</tt>
  template <typename Arg>
  inline auto neg(const Tile<Arg>& arg, const Permutation& perm) ->
      Tile<decltype(neg(arg.tensor(), perm))>
  { return detail::make_tile(neg(arg.tensor(), perm)); }

  /// Multiplication constant scalar to a tile

  /// \tparam Result The result tile type
  /// \param result The result tile to be negated
  /// \return A tile that is equal to <tt>result = -result</tt>
  template <typename Result>
  inline Tile<Result>& neg_to(Tile<Result>& result) {
    neg_to(result.tensor());
    return result;
  }


  // Complex conjugate operations ---------------------------------------------

  /// Create a complex conjugated copy of a tile

  /// \tparam Arg The tile argument type
  /// \param arg The tile to be conjugated
  /// \return A complex conjugated copy of `arg`
  template <typename Arg>
  inline auto conj(const Tile<Arg>& arg) ->
      Tile<decltype(conj(arg.tensor()))>
  { return detail::make_tile(conj(arg.tensor())); }

  /// Create a complex conjugated and scaled copy of a tile

  /// \tparam Arg The tile argument type
  /// \tparam Scalar A scalar type
  /// \param arg The tile to be conjugated
  /// \param factor The scaling factor
  /// \return A complex conjugated and scaled copy of `arg`
  template <typename Arg, typename Scalar,
      typename std::enable_if<
          TiledArray::detail::is_numeric<Scalar>::value
      >::type* = nullptr>
  inline auto conj(const Tile<Arg>& arg, const Scalar factor) ->
      Tile<decltype(conj(arg.tensor(), factor))>
  { return detail::make_tile(conj(arg.tensor(), factor)); }

  /// Create a complex conjugated and permuted copy of a tile

  /// \tparam Arg The tile argument type
  /// \param arg The tile to be conjugated
  /// \param perm The permutation to be applied to `arg`
  /// \return A complex conjugated and permuted copy of `arg`
  template <typename Arg>
  inline auto conj(const Tile<Arg>& arg, const Permutation& perm) ->
      Tile<decltype(conj(arg.tensor(), perm))>
  { return detail::make_tile(conj(arg.tensor(), perm)); }

  /// Create a complex conjugated, scaled, and permuted copy of a tile

  /// \tparam Arg The tile argument type
  /// \tparam Scalar A scalar type
  /// \param arg The argument to be conjugated
  /// \param factor The scaling factor
  /// \param perm The permutation to be applied to `arg`
  /// \return A complex conjugated, scaled, and permuted copy of `arg`
  template <typename Arg, typename Scalar,
      typename std::enable_if<
          TiledArray::detail::is_numeric<Scalar>::value
      >::type* = nullptr>
  inline auto conj(const Tile<Arg>& arg, const Scalar factor, const Permutation& perm) ->
      Tile<decltype(conj(arg.tensor(), factor, perm))>
  { return detail::make_tile(conj(arg.tensor(), factor, perm)); }

  /// In-place complex conjugate a tile

  /// \tparam Result The tile type
  /// \param result The tile to be conjugated
  /// \return A reference to `result`
  template <typename Result>
  inline Result& conj_to(Tile<Result>& result) {
    conj_to(result.tensor());
    return result;
  }

  /// In-place complex conjugate and scale a tile

  /// \tparam Result The tile type
  /// \tparam Scalar A scalar type
  /// \param result The tile to be conjugated
  /// \param factor The scaling factor
  /// \return A reference to `result`
  template <typename Result, typename Scalar,
      typename std::enable_if<
          TiledArray::detail::is_numeric<Scalar>::value
      >::type* = nullptr>
  inline Result& conj_to(Tile<Result>& result, const Scalar factor) {
    conj_to(result.tensor(), factor);
    return result;
  }

  // Contraction operations ----------------------------------------------------


  /// Contract and scale tile arguments

  /// The contraction is done via a GEMM operation with fused indices as defined
  /// by \c gemm_config.
  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param left The left-hand argument to be contracted
  /// \param right The right-hand argument to be contracted
  /// \param factor The scaling factor
  /// \param gemm_config A helper object used to simplify gemm operations
  /// \return A tile that is equal to <tt>(left * right) * factor</tt>
  template <typename Left, typename Right, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline auto gemm(const Tile<Left>& left, const Tile<Right>& right,
      const Scalar factor, const math::GemmHelper& gemm_config) ->
      Tile<decltype(gemm(left.tensor(), right.tensor(), factor, gemm_config))>
  { return detail::make_tile(gemm(left.tensor(), right.tensor(), factor, gemm_config)); }

  /// Contract and scale tile arguments to the result tile

  /// The contraction is done via a GEMM operation with fused indices as defined
  /// by \c gemm_config.
  /// \tparam Result The result tile type
  /// \tparam Left The left-hand tile type
  /// \tparam Right The right-hand tile type
  /// \param result The contracted result
  /// \param left The left-hand argument to be contracted
  /// \param right The right-hand argument to be contracted
  /// \param factor The scaling factor
  /// \param gemm_config A helper object used to simplify gemm operations
  /// \return A tile that is equal to <tt>result = (left * right) * factor</tt>
  template <typename Result, typename Left, typename Right, typename Scalar,
      typename std::enable_if<detail::is_numeric<Scalar>::value>::type* = nullptr>
  inline Tile<Result>& gemm(Tile<Result>& result, const Tile<Left>& left,
      const Tile<Right>& right, const Scalar factor,
      const math::GemmHelper& gemm_config)
  {
    gemm(result.tensor(), left.tensor(), right.tensor(), factor, gemm_config);
    return result;
  }


  // Reduction operations ------------------------------------------------------

  /// Sum the hyper-diagonal elements a tile

  /// \tparam Arg The tile argument type
  /// \param arg The argument to be summed
  /// \return The sum of the hyper-diagonal elements of \c arg
  template <typename Arg>
  inline auto trace(const Tile<Arg>& arg) -> decltype(trace(arg.tensor()))
  { return trace(arg.tensor()); }

  /// Sum the elements of a tile

  /// \tparam Arg The tile argument type
  /// \param arg The argument to be summed
  /// \return A scalar that is equal to <tt>sum_i arg[i]</tt>
  template <typename Arg>
  inline auto sum(const Tile<Arg>& arg) -> decltype(sum(arg.tensor()))
  { return sum(arg.tensor()); }

  /// Multiply the elements of a tile

  /// \tparam Arg The tile argument type
  /// \param arg The argument to be multiplied
  /// \return A scalar that is equal to <tt>prod_i arg[i]</tt>
  template <typename Arg>
  inline auto product(const Tile<Arg>& arg) -> decltype(product(arg.tensor()))
  { return product(arg.tensor()); }

  /// Squared vector 2-norm of the elements of a tile

  /// \tparam Arg The tile argument type
  /// \param arg The argument to be multiplied and summed
  /// \return The sum of the squared elements of \c arg
  /// \return A scalar that is equal to <tt>sum_i arg[i] * arg[i]</tt>
  template <typename Arg>
  inline auto squared_norm(const Tile<Arg>& arg) ->
      decltype(squared_norm(arg.tensor()))
  { return squared_norm(arg.tensor()); }

  /// Vector 2-norm of a tile

  /// \tparam Arg The tile argument type
  /// \param arg The argument to be multiplied and summed
  /// \return A scalar that is equal to <tt>sqrt(sum_i arg[i] * arg[i])</tt>
  template <typename Arg>
  inline auto norm(const Tile<Arg>& arg) -> decltype(norm(arg.tensor()))
  { return norm(arg.tensor()); }

  /// Maximum element of a tile

  /// \tparam Arg The tile argument type
  /// \param arg The argument to find the maximum
  /// \return A scalar that is equal to <tt>max(arg)</tt>
  template <typename Arg>
  inline auto max(const Tile<Arg>& arg) -> decltype(max(arg.tensor()))
  { return max(arg.tensor()); }

  /// Minimum element of a tile

  /// \tparam Arg The tile argument type
  /// \param arg The argument to find the minimum
  /// \return A scalar that is equal to <tt>min(arg)</tt>
  template <typename Arg>
  inline auto min(const Tile<Arg>& arg) -> decltype(min(arg.tensor()))
  { return min(arg.tensor()); }

  /// Absolute maximum element of a tile

  /// \tparam Arg The tile argument type
  /// \param arg The argument to find the maximum
  /// \return A scalar that is equal to <tt>abs(max(arg))</tt>
  template <typename Arg>
  inline auto abs_max(const Tile<Arg>& arg) -> decltype(abs_max(arg.tensor()))
  { return abs_max(arg.tensor()); }

  /// Absolute mainimum element of a tile

  /// \tparam Arg The tile argument type
  /// \param arg The argument to find the minimum
  /// \return A scalar that is equal to <tt>abs(min(arg))</tt>
  template <typename Arg>
  inline auto abs_min(const Tile<Arg>& arg) -> decltype(abs_min(arg.tensor()))
  { return abs_min(arg.tensor()); }

  /// Vector dot product of a tile

  /// \tparam Left The left-hand argument type
  /// \tparam Right The right-hand argument type
  /// \param left The left-hand argument tile to be contracted
  /// \param right The right-hand argument tile to be contracted
  /// \return A scalar that is equal to <tt>sum_i left[i] * right[i]</tt>
  template <typename Left, typename Right>
  inline auto dot(const Tile<Left>& left, const Tile<Right>& right) ->
      decltype(dot(left.tensor(), right.tensor()))
  { return dot(left.tensor(), right.tensor()); }

  // Tile arithmetic operators -------------------------------------------------


  /// Add tiles operator

  /// \tparam Left The left-hand tensor type
  /// \tparam Right The right-hand tensor type
  /// \param left The left-hand tile
  /// \param right The right-hand tile
  /// \return The sum of the \c left and \c right tiles
  template <typename Left, typename Right>
  inline auto operator+(const Tile<Left>& left, const Tile<Right>& right) ->
      decltype(add(left, right))
  { return add(left, right); }

  /// In-place add tile operator

  /// Add the elements of the \c right tile to that of the \c left tile.
  /// \tparam Left The left-hand tensor type
  /// \tparam Right The right-hand tensor type
  /// \param left The left-hand tile
  /// \param right The right-hand tile
  /// \return The \c left tile, <tt>left[i] += right[i]</tt>
  template <typename Left, typename Right>
  inline Tile<Left>& operator+=(Tile<Left>& left, const Tile<Right>& right)
  { return add_to(left, right); }

  /// Subtract tiles operator

  /// \tparam Left The left-hand tensor type
  /// \tparam Right The right-hand tensor type
  /// \param left The left-hand tile
  /// \param right The right-hand tile
  /// \return The difference of the \c left and \c right tiles
  template <typename Left, typename Right>
  inline auto operator-(const Tile<Left>& left, const Tile<Right>& right) ->
      decltype(subt(left, right))
  { return subt(left, right); }

  /// In-place subtract tile operator

  /// Subtract the elements of the \c right tile from that of the \c left tile.
  /// \tparam Left The left-hand tensor type
  /// \tparam Right The right-hand tensor type
  /// \param left The left-hand tile
  /// \param right The right-hand tile
  /// \return The \c left tile, <tt>left[i] -= right[i]</tt>
  template <typename Left, typename Right>
  inline Tile<Left>& operator-=(Tile<Left>& left, const Tile<Right>& right)
  { return subt_to(left, right); }

  /// Product tiles operator

  /// \tparam Left The left-hand tensor type
  /// \tparam Right The right-hand tensor type
  /// \param left The left-hand tile
  /// \param right The right-hand tile
  /// \return The product of the \c left and \c right tiles
  template <typename Left, typename Right>
  inline auto operator*(const Tile<Left>& left, const Tile<Right>& right) ->
      decltype(mult(left, right))
  { return mult(left, right); }

  /// Scale tile operator

  /// \tparam Left The left-hand tensor type
  /// \tparam Right The right-hand scalar type
  /// \param left The left-hand tile
  /// \param right The right-hand scaling factor
  /// \return The \c left tile scaled by \c right
  template <typename Left, typename Right,
      typename std::enable_if<detail::is_numeric<Right>::value>::type* = nullptr>
  inline auto operator*(const Tile<Left>& left, const Right right) ->
      decltype(scale(left, right))
  { return scale(left, right); }

  /// Scale tile operator

  /// \tparam Left The left-hand scalar type
  /// \tparam Right The right-hand scalar type
  /// \param left The left-hand scaling factor
  /// \param right The right-hand tile
  /// \return The \c right tile scaled by \c left
  template <typename Left, typename Right,
      typename std::enable_if<TiledArray::detail::is_numeric<Left>::value>::type* = nullptr>
  inline auto operator*(const Left left, const Tile<Right>& right) ->
      decltype(scale(right, left))
  { return scale(right, left); }

  /// In-place product tile operator

  /// Multiply the elements of the \c right tile by that of the \c left tile.
  /// \tparam Left The left-hand tensor type
  /// \tparam Right The right-hand tensor type
  /// \param left The left-hand tile
  /// \param right The right-hand tile
  /// \return The \c left tile, <tt>left[i] *= right[i]</tt>
  template <typename Left, typename Right>
  inline Tile<Left>& operator*=(Tile<Left>& left, const Tile<Right>& right)
  { return mult_to(left, right); }

  /// Negate tile operator

  /// \tparam Arg The argument tensor type
  /// \param arg The argument tile
  /// \return A negated copy of \c arg
  template <typename Arg>
  inline auto operator-(const Tile<Arg>& arg) -> decltype(neg(arg))
  { return neg(arg); }

  /// Permute tile operator

  /// \tparam Arg The argument tensor type
  /// \param perm The permutation to be applied to \c arg
  /// \param arg The argument tile
  /// \return A permuted copy of \c arg
  template <typename Arg>
  inline auto operator*(const Permutation& perm, Tile<Arg> const arg) ->
      decltype(permute(arg, perm))
  { return permute(arg, perm); }

  /// Tile output stream operator

  /// \tparam T The tensor type
  /// \param os The output stream
  /// \param tile The tile to be printted
  /// \return The modified output stream
  template <typename T>
  inline std::ostream &operator<<(std::ostream &os, const Tile<T>& tile) {
    os << tile.tensor();
    return os;
  }

  /** @}*/

}  // namespace TiledArray

#endif  // TILEDARRAY_TILE_H__INCLUDED